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Abstract: Purpose: To develop a method of coronary flow reserve (CFR) calculation derived from
three-dimensional (3D) coronary angiographic parameters and intracoronary pressure data during
fractional flow reserve (FFR) measurement. Methods: Altogether 19 coronary arteries of 16 native
and 3 stented vessels were reconstructed in 3D. The measured distal intracoronary pressures were
corrected to the hydrostatic pressure based on the height differences between the levels of the vessel
orifice and the sensor position. Classical fluid dynamic equations were applied to calculate the
flow during the resting state and vasodilatation based on morphological data and intracoronary
pressure values. 3D-derived coronary flow reserve (CFRp-3D) was defined as the ratio between the
calculated hyperemic and the resting flow and was compared to the CFR values simultaneously
measured by the Doppler sensor (CFRDoppler). Results: Haemodynamic calculations using the distal
coronary pressures corrected for hydrostatic pressures showed a strong correlation between the
individual CFRp-3D values and the CFRDoppler measurements (r = 0.89, p < 0.0001). Hydrostatic
pressure correction increased the specificity of the method from 46.1% to 92.3% for predicting an
abnormal CFRDoppler < 2. Conclusions: CFRp-3D calculation with hydrostatic pressure correction
during FFR measurement facilitates a comprehensive hemodynamic assessment, supporting the
complex evaluation of macro-and microvascular coronary artery disease.

Keywords: stable angina; fractional flow reserve (FFR); coronary flow reserve (CFR); quantitative
coronary angiography; coronary microvascular disease; microvascular resistance reserve (MRR)

1. Introduction

According to the current European guideline on coronary revascularization, pressure
wire-derived fractional flow reserve (FFR) measurement is recommended for the functional
assessment of lesion severity in patients with 40–90% diameter stenosis and without
prior evidence of ischemia [1]. A more recent guideline suggests the consideration of
a guidewire-based coronary flow reserve CFR measurement in patients with persistent
symptoms but with preserved FFR [2] based on earlier publications [3–5]. The combination
of FFR and CFR evaluation may identify the potential components of ischemia originating
from the decreased conductance of the epicardial vessels and the increased resistance of
the microvasculature [6–9].
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As a temperature sensor, the pressure-wire sensor makes it possible to calculate
thermodilution; however, the bolus method comes with several limitations, as already
detailed in early validation studies [10–12]. On the other hand, the direct measurement of
coronary flow velocity by a Doppler sensor is considered technically difficult to perform;
consequently, it is not routinely used in clinical practice.

The resistance of the microvasculature (MR) is defined as the ratio of the distal coronary
pressure divided by the distal coronary flow rate. The resistive reserve ratio (RRR) is the
index expressing the ratio between basal and hyperemic microcirculation resistance (bMR
divided by hMR) [13,14].

Lately, the term microvascular resistance reserve (MRR) was suggested for specific
characterization of the microvasculature [15]:

MRR = (CFR/FFR) × (Pa rest/Pa hyp) (1)

where Pa rest and Pa hyp are the aortic pressures during resting and hyperemic state.
The concept was proposed in connection with the continuous thermodilution tech-

nique (requiring a special infusion catheter) and was validated by intracoronary Doppler
measurements [16].

In our study, we aimed at developing a clinically applicable method for calculating
specific CFR and RRR values (CFRp-3D and RRRp-3D) during FFR measurement, using sim-
ple hemodynamic calculations that combine intracoronary pressure data and 3D anatomical
parameters (Figure 1). The results of our calculations were compared to data obtained
using invasive Doppler wire measurement, as a gold standard of flow assessment.
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It has recently been underlined that pressure differences are systematically detectable 
between the different segments of the coronary arteries in the supine position [17–19]. We 
also investigated how the correction of distal pressure for hydrostatic pressure offset 
affects the pressure-derived flow determinations. 

  

Figure 1. Calculation of CFR and RRR values during FFR measurement. The method for calculating
CFRp-3D and RRRp-3D uses hemodynamic calculations combining intracoronary pressure data (top
left panel) and 3D anatomical parameters (bottom left panel). Based on the hyperemic and resting
pressure data, as well as 3D anatomical parameters, simple hemodynamic equations were used to
calculate resting and hyperemic flow, CFR, and RRR. The detailed description of the flow calculations
is described in the patent of the method: https://patents.google.com/patent/WO2019175612A2/en
(accessed on 5 March 2022).

It has recently been underlined that pressure differences are systematically detectable
between the different segments of the coronary arteries in the supine position [17–19]. We
also investigated how the correction of distal pressure for hydrostatic pressure offset affects
the pressure-derived flow determinations.

https://patents.google.com/patent/WO2019175612A2/en
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2. Materials and Methods
2.1. Patient Inclusion and Exclusion Criteria

Patients, who underwent clinically indicated invasive physiological investigations,
were selected for this study, with single stenosis of intermediate severity (40–80% based
on a visual assessment) in a main branch of the epicardial coronary artery system. Cases
with good quality hyperemic and resting pressure and Doppler traces were included for
the evaluations. Only traces without pressure drift (<1 mmHg) confirmed by the pullback
of the pressure sensor at the end of the procedure were considered. Patients with an acute
coronary syndrome, left main stenosis, ostial stenosis, earlier bypass surgery, or diffuse
coronary artery disease were excluded. The study has been approved by the local ethics
committee of the University of Debrecen and has therefore been performed in concordance
with the Declaration of Helsinki.

2.2. Invasive Coronary Angiography and Simultaneous Pressure and Flow Measurement by ComboWire

After administering 5000 international units (IU) of intravenous, unfractionated hep-
arin (UFH) and intracoronary glyceryl trinitrate (GTN), diagnostic angiographic cine-
recordings were acquired from standard projections, using digital X-ray equipment (Axiom
Artis, Siemens, Erlangen, Germany). Diagnostic angiographic images were recorded at
15 frames per second. Low- or iso-osmolar contrast material (CM) (iopamidol (Scanlux)
or iodixanol (Visipaque)) was injected in 5 mL fractions with a speed of 3 mL/sec using
a dedicated contrast pump (ACIST CVi™, ACIST Medical Systems, Eden Prairie, MN,
USA). If the operator detected a 40–80% diameter stenosis by visual assessment, complete
physiological measurements were performed via a 6F guiding catheter, using a ComboWire
equipped with both pressure and Doppler sensors (Philips Volcano, San Diego, CA, USA).

After the pressures were equalized with the sensor positioned at the level of the
catheter tip, it was advanced through the coronary artery stenosis, and measurements
were performed approximately 2 cm distal to the lesion. Following the basal pressure
and flow measurements, 150–200 µg intracoronary adenosine was administered, and the
pressure and Doppler traces were recorded. One representative measurement is presented
in Figure 2.
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Figure 2. Results of simultaneous pressure and flow measurements by the ComboWire. In this case,
the average proximal (aortic) and distal pressures were detected to be 95 mmHg and 88 mmHg,
respectively. At maximal hyperemia (P), the average peak velocity (APV-P) increased to 29 cm/s
from the basal (B) velocity of 10 cm/s (APV-B) parallel with the increase in the pressure drop (the
proximal and distal pressures were 89 mmHg and 79 mmHg, respectively). The measured FFR was
0.89, while the CFR was 2.9 (Case 10).
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2.3. Three-Dimensional Quantitative Coronary Artery Reconstruction and Hemodynamic Calculations

Offline 3D angiographic reconstruction was performed from two selected angiograms
of good quality, with at least 25◦ difference in angle, using dedicated software (QAngio
XA® Research Edition 1.0, Medis Specials bv, Leiden, The Netherlands). The reconstructed
vessel segment was marked from the coronary orifice to the location of the wire sensors.
Numerous geometric measures describing the lesion (average cross-sectional diameters
and vessel segment lengths), as well as the proximally and distally connecting vessel
segments, were automatically obtained by the software. These values with intracoronary
pressure at the proximal and distal positions during the resting and vasodilation states
were combined for hemodynamic calculations. The method and its validation are described
in our previous papers in detail [20,21], and an online calculation tool (http://coronart.
unideb.hu/) (accessed on 5 March 2022) is available.

2.4. Calculation of the Doppler-Derived Indices

The resistance of the microvasculature (MR) was defined as the ratio of the distal
coronary pressure divided by the distal coronary flow rate both in the basal state and
during hyperemia:

bMR =
Pd rest
APV B

(2)

hMR =
Pd hyperemic

APV P
(3)

where bMR: basal microvascular resistance, hMR: hyperemic microvascular resistance
and APV-B: basal average peak velocity, APV-P: peak average velocity measured by the
ComboWire during basal and hyperemic flow (see Figure 2).

The resistive reserve ratio (RRR) as the index of the ratio between basal and hyperemic
microcirculation resistance [13,14] was calculated as follows:

RRR Doppler =
bMR
hMR

(4)

2.5. Calculation of the RRRp-3D

The RRR was also defined analogously from the calculated flows defined by simple
flow equations using the pressure and 3D anatomy data (Qp-3D):

RRR p3D =
Pd rest / Qp3D rest

Pd hyperemic / Qp3D hyperemic
(5)

2.6. Correction of the Distal Coronary Pressure for Hydrostatic Pressure

In the supine position, the measured pressure difference between the catheter tip
and the pressure sensor distal to the lesion originates from two components, namely the
pressure loss caused by the flow through the stenosis, the difference between the hydrostatic
pressure at the catheter tip at the coronary orifice, and the level of the distal intracoronary
sensor (Figure 3).

The latter component can be referred to as hydrostatic offset (∆P hydrostatic pressure)
and can modify the detected pressure ratio values through the “altered” distal pressure
value [18,19].

The correction of distal pressure for hydrostatic pressure (Pd corr) was based on the
height differences between the orifice and other coronary artery segments in supine posi-
tions. The distal pressure values were corrected, using a correction factor of 0.77 mmHg hy-
drostatic pressure per 1 cm height difference, where blood density was taken as 1050 kg/m3

(Figure 3):
Pd corr = Pd − ∆P hydrostatic pressure (6)

http://coronart.unideb.hu/
http://coronart.unideb.hu/
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Figure 3. The height difference between the LAD orifice and the sensor position. After 3D recon-
struction, the height difference between the orifice and the pressure wire sensor was transformed to
mmHg getting hydrostatic pressure (red) (Case 10). This value (5.58 mmHg) influences the gradient
between the aortic pressure at the tip of the catheter and the pressure detected by the sensor of the
pressure wire, and it has a great impact on the results of the CFR calculation.

2.7. Statistical Analysis

Statistical evaluations were performed in MedCalc Statistical Software, Version 14.8.1
(MedCalc Software bvba, Ostend, Belgium). Following a normality test, Spearman’s
correlation analysis was carried out. The correlation between CFRp-3D and the CFRDoppler
was examined both without and with hydrostatic pressure correction of the distal pressure.
The agreement between CFRDoppler and CFRp-3D was assessed using the Bland-Altman
analysis. The area under the curve (AUC) calculated by receiver operating characteristic
analysis was applied to determine the diagnostic power of CFRp-3D without and with
hydrostatic pressure correction. The sensitivity and specificity of CFRp-3D without and
with hydrostatic pressure correction were calculated using the standard method.

3. Results

We performed simultaneous intracoronary pressure and Doppler measurement by
ComboWire in 20 patients screened in the study. In 3 cases the Doppler signal quality was
insufficient for the calculation, in 1 further case more than 2 mmHg drift was detected at
the end of the investigation and the attempt for repeat measurement also failed. Therefore,
sixteen 16 patients (14 males, 2 females) with single, intermediate epicardial coronary
stenosis were involved in the study. In 3 cases, measurements were performed both
before and after stent implantation. Patient characteristics are presented in Table 1. The
results of 3D reconstruction and the measured physiological data are summarized for each
interrogated vessel in Table 2.

3.1. Correlation and Agreement between the Results of the CFRDoppler Measurements and
Calculated CFRp-3D Values without and with the Correction for Hydrostatic Offset

When including morphological data from 3D coronary angiography in the hemody-
namic calculation and correcting the values for hydrostatic pressure, a strong correlation
was found between the individual CFRp-3D values and the CFRDoppler measurements
(r = 0.89, p < 0.0001). A weak but still significant correlation was demonstrated even with-
out the correction of hydrostatic error (r = 0.57, p = 0.01) (Figure 4A,B). The difference
between the two correlations was found to be significant (p = 0.02).
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Table 1. Clinical characteristics.

Patient No. Age Gender Target Vessel Hypertension DM Dyslipidaemia Hyperuricaemia Chronic
Renal Failure

Aorta
Stenosis DVT CCS

(prev)
PCI

(prev) PAD

1 62 f RCA
√ √

χ χ χ χ
√ √ √

χ

2 51 m CX χ χ χ χ χ χ χ
√ √

χ

3 60 m RCA
√

χ
√

χ χ
√

χ
√

χ
√

4 66 m LAD
√

χ
√

χ χ χ χ
√ √

χ

5 65 m LAD χ
√ √

χ χ χ χ
√ √

χ

6 55 m LAD
√

χ
√

χ χ χ χ
√

χ χ

7 64 m RCA
√

χ χ χ
√

χ χ
√ √

χ

8 55 m LAD
√ √ √

χ
√

χ χ
√

χ χ

9 69 m LAD
√ √

χ χ χ χ χ
√ √

χ

10 43 m RCA
√

χ
√ √

χ χ χ
√ √

χ

11 56 m LAD
√ √

χ χ χ χ χ
√ √

χ

12 52 m LAD χ χ
√

χ χ χ χ
√ √

χ

13 66 m CX-OM
√ √ √

χ χ χ χ
√ √ √

14 60 f CX-OM
√ √

χ χ χ χ χ
√

χ χ

15 63 m LAD
√

χ
√

χ χ χ χ
√

χ χ

16 66 m LAD
√ √

χ
√

χ
√

χ
√

χ χ

RCA: right coronary artery; CX: circumflex artery; LAD: left descending coronary artery; CX-OM: obtuse marginal branch of circumflex artery; DM: diabetes mellitus; DVT: deep vein
thrombosis; CCS: chronic coronary syndrome; PCI: percutaneous coronary intervention; PAD: peripheral artery disease.
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Table 2. Measured and calculated hemodynamic parameters of the interrogated lesions.

Case No. Vessel Segment Hydrostatic Pressure
Difference (mmHg) ** Pd/Pa Rest FFR CFRp-3D

CFRp-3D
Corrected ***

APV-B
(cm/s)

APV-P
(cm/s) CFR Doppler RRRp-3D

Corrected ***
RRRDoppler

Corrected ***

1 RCA med 0.46 0.99 0.94 3.55 2.72 14 42 3 3.12 3.43
2 LCx dist 1.99 0.98 0.92 3.47 2.21 19 45 2.4 2.67 2.86
3 RCA med 0.05 0.96 0.91 1.86 1.85 18 32 1.8 2.03 1.95
4 LAD prox −2.93 0.92 0.86 1.74 2.3 24 50 2.1 2.44 2.21
5 LAD med −2.5 0.86 0.63 1.58 1.7 14 29 2.1 2.68 3.26
6 LAD prox −0.69 0.79 0.64 1.24 1.25 32 42 1.3 1.81 1.91

7 * RCA med 0.76 0.92 0.79 2.21 2.1 15 30 2 2.39 2.27
8 RCA med (post stent) 0.77 0.98 0.94 2.68 2.2 15 33 2.2 2.29 2.3
9 LAD prox −0.71 0.93 0.79 1.65 1.71 19 36 1.9 2.58 2.86
10 LAD med −5.58 0.93 0.89 1.33 2.78 10 29 2.9 3.08 3.21
11 RCA med 1.05 0.98 0.9 3.01 2.33 36 86 2.4 2.44 2.5

12 * LAD dist −4.51 0.89 0.72 1.88 2.34 22 45 2.1 2.84 2.49
13 LAD dist (post stent) −3.93 0.93 0.85 1.72 2.46 22 55 2.5 2.89 2.93
14 LAD prox −3.65 0.79 0.53 1.74 1.9 38 46 1.2 2.67 1.7
15 LCx dist (OM) 2.6 0.62 0.54 1.09 1.08 33 36 1.1 1.27 1.27
16 LCx dist (OM) 1.84 0.98 0.91 3.46 2.27 26 62 2.4 2.68 2.81
17 LAD prox −5 0.89 0.79 1.74 2.31 15 31 2.1 2.64 2.37

18 * LAD med −6 0.74 0.62 1.21 1.3 31 43 1.4 1.59 1.7
19 LAD med (post stent) −6 0.87 0.76 1.69 2.74 24 57 2.4 3.37 2.92

* Cases No. 8, No. 13 and No. 19 are the same vessels as No. 7, No. 12, and No. 18 after stent implantation. ** Hydrostatic pressure difference is the difference between the hydrostatic
pressure between the pressure sensor and the tip of the catheter at the coronary orifice (hydrostatic pressure offset). *** Corrected values are calculated with the corrected hydrostatic
pressures. RCA: right coronary artery; LAD: left anterior descending coronary artery; LCX: left circumflex artery; OM: obtuse marginal branch; prox: proximal vessel segment; med:
medial vessel segment; dist: distal vessel segment; Pd/Pa: distal coronary pressure at rest/aortic pressure at rest; FFR: fractional flow reserve; CFRp-3D: coronary flow reserve calculated
from intracoronary pressure data and 3D anatomical parameters; APV-B: average peak velocity at rest, APV-P average peak velocity during vasodilatation measured by Doppler wire;
CFRDoppler: coronary flow reserve measured by Combowire; RRRp-3D: resistive reserve ratio calculated from intracoronary pressure data and 3D anatomical parameters; RRRDoppler:
resistive reserve ratio measured by Combowire.
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drostatic offset correction, and the measured Doppler CFR values. (A,B) Correlations between the
calculated CFRp-3D values without and with hydrostatic offset correction and the measured Doppler
CFR values: r = 0.57, p = 0.01, and r = 0.89, p < 0.0001, respectively. (C,D) Bland-Altman analysis of
the agreement between the calculated CFRp-3D values without and with hydrostatic offset correction
and the measured Doppler CFR values.

The Bland-Altman analysis showed the mean differences between the Doppler-measured
and the calculated CFRp-3D values with and without hydrostatic offset correction to be
−0.02 (±1.96 SD: 0.47, −0.50) and −0.05 (±1.96 SD: 1.38, −1.48), respectively. After hydro-
static offset correction, the values of CFRp-3D and those of CFRDoppler got closer without any
systematic skewing suggesting a higher level of concordance (Figure 4C,D).

3.2. Correlation and Agreement between the Results of the ComboWire Based RRR Measurements
(RRRDoppler) and the Calculated RRRp-3D Values with the Correction for Hydrostatic Offset

The calculated microvascular resistance reserve (RRRp-3D) also demonstrated a good
correlation with the measured RRRDoppler values (r = 0.83, p < 0.0001) Figure 5A. The Bland-
Altman analysis showed the mean differences between the Doppler-measured and the calcu-
lated RRRp-3D values with hydrostatic offset correction to be −0.03 (±1.96 SD: 0.63, −0.68)
Figure 5B.

3.3. The Results of Hydrostatic Offset Correction on the Pressure Ratios and the CFRp-3D in the
Main Coronary Branches

Figure 6 shows the clustered multiple variable graphs of resting Pd/Pa (A), FFR (B),
and the CFRp-3D (C) without and with hydrostatic pressure correction. In line with the
findings of our previous work [18], the correction of the hydrostatic offset resulted in
specific concordant differences between the uncorrected and corrected values in the main
coronary branches in both resting and hyperemic (FFR) states (Figure 6A,B). The correction
definitively increased the values in the LAD, while in the LCx and the RCA, the values
decreased. We observed much higher differences in CFRs, especially in the range of higher
CFR values (Figure 6C).
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ments (RRRDoppler) and the calculated RRRp-3D values with the correction for hydrostatic offset.
(A) The calculated microvascular resistance reserve RRRp-3D corrected to the hydrostatic pressure
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(B) The Bland-Altman analysis showed the mean differences between the Doppler-measured and the
calculated RRRp-3D values with hydrostatic offset correction to be −0.03 (±1.96 SD: 0.71, −0.78).
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Figure 6. Clustered multiple variable graphs of resting Pd/Pa, FFR, and CFRp-3D without and with
hydrostatic pressure correction. In both the resting and the hyperemic (FFR) state (A,B), the correction
of the hydrostatic offset resulted in differences in consequent directions between the uncorrected and
corrected values in the main coronary branches. The correction significantly increased the values in
the LAD, while in the LC and the RCA the values decreased. Much greater differences in the same
direction can be observed for the CFRs, especially in the range of the higher values (C).

3.4. Diagnostic Powers of CFRp-3D Calculated from the Distal Pressure without and with
Hydrostatic Offset Correction for Identifying CFRDoppler < 2

The diagnostic power of different computations of the CFRp-3D for predicting the abnor-
mal CFRDoppler was assessed using the computed CFRp-3D (cut-off value = 2). The AUCs of
the values calculated without and with hydrostatic error correction was 0.73 (CI: 0.48–0.90)
and 0.96 (CI: 0.78–1.00), respectively. Correcting for hydrostatic pressure offset increased
the specificity of the method from 46.1% to 92.3%, while the sensitivity of both calculations
was 100%.

4. Discussion

In pioneering research, the pressure drop across arterial stenosis was estimated sat-
isfactorily by simple flow equations [22]. Later the 3D anatomical characteristics of the
coronary artery were also incorporated into computational fluid dynamics calculations
leading to the virtual, image-based FFR assessment [23–25]. Recently, the possibility to
determine coronary flow from invasively measured intracoronary pressure has arisen by
“backward” calculations [26,27]. The so-called pressure-bounded coronary flow reserve
(CFRpb) assessment identified the possible range of CFR according to the resting and
hyperemic pressures.
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Wijntjens and colleagues compared the CFRpb to flow-derived CFR defined by ther-
modilution and Doppler measurements in 453 intermediate coronary lesions, but they
found a poor diagnostic agreement between the two estimations [28]. It is important to
emphasize, that in this publication, hydrostatic offset correction of the distal coronary
pressure was not applied to CFR calculations.

Similar to the method presented in this article, an absolute flow calculation with fluid
dynamic computation (CFD) using the Ansys software (QCFD) was recently published
by Morris et al. [29]. In contrast with our method where the distal flow is rendered to the
tapered vessel size [20], their in vitro and in vivo models did not account for flow to side
branches, resulting in underestimation of the volumetric flow [30]. This underestimation
could lead to unlikely low resting and hyperemic calculated flow values in major coronary
branches, as was pointed out in the editorial responding to their paper [31]. It is very
obvious that in their in vivo study, the hydrostatic pressure error had caused, at least partly,
a very weak correlation to the Doppler results.

The direction of the effect of the hydrostatic offset depends on the orientation of the
sensor in the distal position relative to the coronary orifice.

If one interrogates distal LAD with the sensor, the hydrostatic pressure is lower in the
supine position, which results in higher pressure ratios after hydrostatic offset correction.
In contrast, LCx takes a downward course, which leads to higher hydrostatic pressure at
the level of the sensor, and consequently, the pressure values are lower compared to the
one measured following correction. The height correction of RCA measurements can result
in a slight increase of the distal pressure value, as the distal sensor in the distal RCA is
at a lower level compared to the orifice (Figure 6A,B) [18]. Thus, a slight increase in the
corrected pressure ratios can be observed (Figure 6A,B).

In our opinion, the correction of distal pressure for hydrostatic pressure is essen-
tial when determining pressure-derived CFR. A minor hydrostatic pressure may have a
significant influence on the measured pressure gradient, especially in the resting state.

This phenomenon is demonstrated in Figure 6C, where the correction resulted in
significant differences between the calculated CFRp-3D and the uncorrected values, most
prominently in the range of higher CFR values.

The CFRp-3D values calculated after the correction for hydrostatic pressure and those
derived from native pressure values were compared with the Doppler flow measurements.
A strong correlation was demonstrated between the individual CFRp-3D and the CFRDoppler
values when the correction for hydrostatic pressure was made, while the only weak correla-
tion was found without hydrostatic pressure correction.

Importantly, the elimination of hydrostatic pressure offset increased the specificity of
our method from 46.1% to 92.3%, while the sensitivity of both calculations remained 100%
against the “gold standard” Doppler measurement.

5. Limitations of the Study

The main limitation of our pilot study of CFRp-3D calculations is represented by
the small sample size; however, the archived and statistically highly significant results
look promising.

We are aware that our simple model considers only Hagen-Poiseuille-type friction
losses and highly simplified Borda-Carnot-type separation losses. For this reason, the
calculation of the flow rate is also not expected to be always accurate, but because the CFR
is by definition a ratio-type parameter, the CFRp-3D may be accurate enough for clinical
applications [22].

The simplified hemodynamic model used for the calculation of the CFRp-3D can
consider only one stenosis, with normal proximal and distal segments. Consequently,
our flow calculation method in the present form may not be adequate for assessing the
hemodynamic relevance of sequential stenoses.

In cases with a very low resting pressure gradient, any small error during the measure-
ment could potentially cause a great deviation in the results, as these values are represented
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in the denominator during the calculations. However, most of the cases with intermedi-
ate coronary lesions showed not less than a 1–2 mmHg resting pressure gradient, which
allowed the appropriate calculation of the CFRp-3D.

6. Conclusions

In this study, we proposed a method of combined determination of FFR and CFR/RRR
without the need for a Doppler wire or thermodilution procedure. In our opinion, the
CFRp-3D is applicable for most coronary angiography with the clinically indicated invasive
measurement of the FFR, when the target vessel is suitable for 3D reconstruction. The flow
calculation does not require significantly more time this way. As a result, the consequences
of epicardial stenosis can be assessed simultaneously with the state of the microvasculature,
thereby supporting the clinical decision for selecting the most appropriate therapy. In
our opinion, large-scale studies are warranted to investigate the clinical relevance of the
pressure-flow relation determined by our technique [32].
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