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Bangpungtongsung-san (BTS) is a traditional Korean medicine consisting of 18 herbs,
some which have antidepressant effects. Here, we used an animal model of reserpine-
induced depression and lipopolysaccharide (LPS)-stimulated BV2 microglia to assess the
antidepressant and anti-neuroinflammatory effects of BTS. Aside from a control group,
C57BL/6 mice were administered reserpine (0.5 mg/kg) daily for 10 days via
intraperitoneal injection. BTS (100, 300, or 500 mg/kg), vehicle (PBS), or fluoxetine
(FXT, 20 mg/kg) was administered orally 1 h before reserpine treatment. Following
treatment, a forced swimming test (FST), tail suspension test (TST), and open field test
(OFT) were performed, and immobility time and total travel distance were measured.
Administration of BTS not only reduced immobility time in the FST and TST but also
significantly increased the total travel distance in the OFT. Furthermore, reserpine-treated
mice showed significantly elevated serum levels of corticosterone, a stress hormone;
however, treatment with BTS significantly reduced corticosterone levels, similar to FXT
treatment. Serotonin in reserpine-treated mice was significantly reduced compared to that
in control mice, while BTS mice exhibited increased serotonin levels. BTS mice showed
increased expression of brain-derived neurotrophic factor (BDNF) and a higher ratio of
phosphorylated cAMP response element-binding protein (p-CREB) to CREB (p-CREB/
CREB) in the hippocampus. Additionally, reserpine-treated mice exhibited significantly
elevated mRNA levels of pro-inflammatory cytokines, but BTS mice showed reduced
mRNA levels of interleukin (IL)-1b, IL-6, and tumor necrosis factor (TNF)-a in the
hippocampus. To further demonstrate the anti-neuroinflammatory effects of BTS in
vitro, we examined its anti-neuroinflammatory and neuroprotective effects in
lipopolysaccharide (LPS)-stimulated BV2 microglia. BTS significantly reduced the levels
of NO, inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2, TNF-a, IL-1b, and
IL-6 in a dose-dependent manner via a decrease in the expression of nuclear factor (NF)-
kB p65. Furthermore, the neuroprotective factor heme oxygenase-1 (HO-1) was
upregulated via the nuclear factor-E2-related factor 2 (NRF2)/CREB pathway. Taken
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together, our data suggest that BTS has considerable potential as an anti-
neuroinflammation and antidepressant agent, as it has clear effects on depressive
behaviors and associated factors caused by reserpine-induced depression
Keywords: reserpine, depression, Bangpungtongsung-san, antidepressant, anti-neuroinflammation,
neuroprotection, BV2, microglia
INTRODUCTION

Depression is an emotional disorder associated with various
symptoms, such as sleep disorders, eating disorders, and
anxiety (Organization, 2009). Major depressive disorder
(MDD) is defined as the persistence of a depressed mood for
at least 2 weeks or the loss of pleasure or interest in activities that
are usually found enjoyable (Kessler et al., 2003). MDD has a
lifetime prevalence of around 15%–25% worldwide and is among
the highest ranked diseases according to the World Health
Organization (WHO) disease burden ranking (Greenberg et al.,
2003; Simon, 2003).

The causes of depression include environmental as well as
genetic factors, but environmental aspects related to urbanization
and industrialization are largely responsible for the observed
increase in prevalence (Hidaka, 2012). The classic model for the
pathogenesis of depression is based on the monoamine
hypothesis (Tiemeier, 2003). In the 1960s, a neurochemical
model of depression was proposed, based on a report that
monoamine depletion caused adverse effects leading to
depression in patients using reserpine for treatment of
hypertension (Schildkraut, 1965). This demonstrated that
monoaminergic dysfunction in the central nervous system is
associated with depression and led to the development and
study of associated tricyclic antidepressants (TCAs), selective
serotonin reuptake inhibitors (SSRIs), noradrenaline reuptake
inhibitors (NRIs), serotonin and noradrenaline reuptake
inhibitors (SNRIs), monoamine oxidase inhibitors (MAOIs),
and other antidepressants (Torres et al., 2003). However, these
antidepressants are known to cause side effects such as dizziness,
sedation, anticholinergic side effects, weight gain, sexual
dysfunction, neurological side effects, cardiovascular effects,
insomnia, and anxiety (Sarko, 2000). To overcome these
limitations, recently, modulators of neuroinflammation,
oxidative stress, the hypothalamic pituitary adrenal axis,
glutamate, and opioids, as well as anticholinergic drugs and
some neuropeptides such as substance P, neuropeptide Y, and
galanin, have been developed, and various attempts have been
made to treat depression without side effects (Papakostas and
Ionescu, 2015; Rosenblat et al., 2015).

Bangpungtongsung-san (BTS) is a traditional Korean medicine
described in the Donguibogam, a well-documented textbook of
traditional Korean medicine (Jun, 1980; Song et al., 2016). It was
discovered while searching for a prescription for depression and
comorbid diseases and acts as a 5-hydroxytryptamine (5-HT)2C
antagonist in 5-HT2C receptor binding assays of our screening test.
BTS has been approved by the Korean Ministry of Food and Drug
Safety (MFDS) and has been widely used in Japan and Korea for the
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treatment of diseases such as hypertension, obesity, allergic rhinitis,
and atherosclerosis (Lee M.Y. et al., 2012). In addition, some studies
have reported that BTS treatments improve immune function. BTS
downregulated the MAPK (ERK, JNK, and p38) and NF-kB
signaling pathways in macrophages stimulated by LPS, thereby
reducing inflammation-inducing mediators such as NO, PGE2,
TNF-a, and IL-6. Furthermore, the anti-inflammatory effect of
BTS was demonstrated to reduce edema and sensitization in vivo
(Lee C.W. et al., 2012). BTS is composed of the herbs Angelica gigas,
Paeonia lactiflora, Cnidium officinale, Gardenia jasminoides,
Forsythia viridissima, Mentha arvensis, Zingiber officinale,
Schizonepeta tenuifolia, Saposhnikovia divaricata, Ephedra sinica,
Rheum undulatum, Atractylodes japonica, Platycodon grandiflorum,
Scutellaria baicalensis, Glycyrrhiza uralensis, Gypsum, Talcum, and
Natrii sulfas (Lee M.Y. et al., 2012). Among these, Angelica gigas has
been reported to ameliorate depressive symptoms in corticosterone-
treated rats (Lee B. et al., 2015), while Paeonia lactiflora has been
shown to improve depression-related behavior in mice (Mao et al.,
2008). Gardenia jasminoides has been found to increase brain-
derived neurotrophic factor (BDNF) in the mouse hippocampus
(Zhang et al., 2015). It has also been reported that baicalin, a
component of Scutellaria baicalensis, exerts antidepressant activity
by inhibiting monoamine oxidase (MAO)-A and -B in the rat brain
(Zhu et al., 2006) and that liquiritin, a component of Glycyrrhiza
uralensis, has antidepressant effects on rats with chronic stress-
induced depression (Zhao et al., 2008). However, the therapeutic
potential of BTS in the treatment of depression has not yet been
investigated. In this study, we investigated the antidepressant
and anti-neuroinflammatory effects of BTS in an animal
model of reserpine-induced depression and in vitro model of
lipopolysaccharide (LPS)-stimulated BV2microglia.
METHODS

Preparation of BTS
BTS was purchased from Hanpoong Pharm and Foods Co., Ltd.
(Jeonju, Korea). The plant materials were authenticated by Dr. Goya
Choi (Herbal Medicine Resources Research Center, Korea Institute
of Oriental Medicine, Naju, Korea) based on their morphological
characteristics. The voucher specimens were deposited in the
herbarium of Herbal Medicine Resources Research Center, Korea
Institute of Oriental Medicine. Assurance of quality control for all
the materials was validated according to the Korean Herbal
Pharmacopoeia (Korea Food and Drug Administration, 2002). All
the botanical names are checked using www.theplantlist.org and
listed in Supplementary Table 1. The BTS herb sample, containing
July 2020 | Volume 11 | Article 958
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Angelica gigas, Paeonia lactiflora, Cnidium officinale, Gardenia
jasminoides, Forsythia viridissima, Mentha arvensis, Zingiber
officinale, Schizonepeta tenuifolia, Saposhnikovia divaricata,
Ephedra sinica, Rheum undulatum, Natrii sulfas, Atractylodes
japonica, Platycodon grandiflorum, Scutellaria baicalensis,
Glycyrrhiza uralensis, Talcum, and Gypsum at ratios of
1:1:1:1:1:1:1:1:1:1:1.25:1.25:1.675:1.675:1.675: 1.675:1.675:2.5 (total
weight = 2.421 kg) was extracted in boiling water for 3 h. The
BTS extract was then filtered and concentrated under a vacuum.
The yield of the dried extract was approximately 12.97%. The
extract was stored at –80°C and dissolved in phosphate-buffered
saline (PBS) before use.

To standardize the BTS, gallic acid, geniposide, albiflorin,
paeoniflorin, liquiritin apioside, liquiritin, nodakenin, benzoic
acid, baicalin, wogonoside, and glycyrrhizin were used as
markers and quantified. Quantitative and qualitative analysis of
the 11 marker compounds in BTS was conducted using an
optimized HPLC-PDA method. Each component in BTS was
identified by comparing its retention time and UV spectrum with
those of each reference standard. The retention times and
amounts of the 11 marker compounds in BTS are shown in
Supplementary Figure 1.

Animal Experiments
Seven-week-old male C57BL/6 mice were purchased from
Daehan Biolink Co. (Chungbuk, Korea). Animal experiments
were performed in accordance with the National Institutes of
Health (NIH) Guide for the Care and Use of Laboratory Animals
and approved by the Korea Institute of Oriental Medicine
Institutional Animal Care and Use Committee (written
approval number: 17-049). The mice were housed in
polypropylene cages maintained under standard conditions at
a 12-h light/dark cycle, 24 ± 0.5°C, and 55 ± 5% humidity, with
standard food and water provided. To induce depression, the
mice were acclimated for 1 week before receiving intraperitoneal
(IP) injections of reserpine (0.5 mg/kg in PBS containing 0.1%
dimethyl sulfoxide and 0.3% Tween-80) (Sigma-Aldrich, St.
Louis, MO, USA) once per day for 10 days. Control mice were
injected with PBS containing 0.1% dimethyl sulfoxide and 0.3%
Tween-80 without reserpine. The reserpine-induced mice were
randomly divided into five groups (n = 6 per group) and orally
treated with PBS (reserpine-only group), 20 mg/kg fluoxetine
(FXT) (Sigma-Aldrich), or 100, 300, or 500 mg/kg BTS. The
control mice were administered oral doses of PBS. The
experimental schemes, including reserpine induction and
administration schedules, are presented in Figure 1A.

Body Weight Changes and Food Intake
Body weight was measured on days 1, 5, and 10. Food intake was
estimated as the difference between the amount of food
remaining in the feeder on day 10 from that provided on day 1
(Park et al., 2017).

Behavioral Tests
For the open field test (OFT), an open field arena (30 × 30 cm)
was constructed from acrylic sheets, and each mouse was placed
in the center of the field. The mice were individually transferred
Frontiers in Pharmacology | www.frontiersin.org 3
to the test field, and their behaviors were recorded for 10 min.
The recordings were analyzed using video tracking software
(EthoVision XT 9.0, Noldus Information Technology,
Wageningen, Netherlands), as described by Deussing
(Deussing, 2006). For the tail suspension test (TST), mice that
were both acoustically and visually isolated were suspended 50
cm above the floor by adhesive tape placed approximately 1 cm
from the tip of the tail. Immobility time was recorded during the
last 4 min of a 6-min session using video tracking software
(SMART 3.0; Panlab S.I., Barcelona, Spain). For the forced
swimming test (FST), mice underwent a 15-min swimming
session the day before the test. On the test day, mice were
individually forced to swim in a cylinder (45-cm height, 20-cm
diameter) containing tap water (25 ± 2°C, 25-cm depth) (Choi
et al., 2017a). Total immobility time was measured during the
last 4 min of a 6-min swim using the same video tracking
software as in the TST. Mice underwent behavioral testing in
the following order, with a 6-h interval between each experiment:
OFT, TST, FST.

Electrospray Ionization Mass
Spectrometry
Whole brain samples were homogenized in 1 ml distilled water
by a homogenizer (POLYTRON PT 2500 E, Luzern, Switzerland)
and lysed at 145 rpm for 120 s at ambient temperature. The
sample was diluted 1:9 (v/v) with methanol and centrifuged at
13000×g for 10 min at ambient temperature. Five microliters of
upper clear was injected into the liquid chromatograph-tandem
mass spectrometer (LC/MS/MS). Standards for dopamine,
serotonin, and norepinephrine were purchased from Sigma-
Aldrich, and standard solutions were prepared in analytical-
grade methanol (Merck KGaA). An optimized multiple reaction
monitoring (MRM) method was developed using ultra-
performance liquid chromatography (UPLC) coupled with
tandem mass spectrometry (MS/MS). A UPLC system
(Acquity system, Waters) was coupled to a Xevo TQ-S triple
quadrupole mass spectrometer (Waters). Chromatographic
separations were carried out using a reverse-phase hybrid
column (Synergi Hydro-RP, 4 mm; Phenomenex, Torrance,
CA, USA) maintained at 30°C. Serotonin, dopamine, and
norepinephrine were separated using gradient elution with a
flow rate of 0.2 ml/min. Mobile phase solvent A was 0.1% formic
acid (Sigma-Aldrich) in water, and solvent B was 0.1% formic
acid in acetonitrile. The samples were eluted according to a linear
gradient from 3% to 100% solvent B for 10 min. Ions were
generated in positive ionization mode using an electrospray
ionization interface. MS/MS analysis was performed using
MRM mode by monitoring the transition pairs of m/z 177.2 !
160.0 for serotonin, m/z 154.1 ! 137.0 for dopamine, and m/z
170.1 ! 152.1 for norepinephrine. The gas flow of desolvation,
cone, and nebulizer were set at 650 l/h, 150 l/h, and 7
bar, respectively.

Immunofluorescence
The hippocampus was frozen at –20°C and cut to a thickness of 20
mm using a Cryostat Microtome (CM 3050 S, Leica Microsystems,
July 2020 | Volume 11 | Article 958
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Wetzlar, Germany). For double immunofluorescence staining, the
tissue sections were incubated with antibodies specific for BDNF
(Novus Biologicals, Inc., Littleton, CO, USA), phosphorylated (p)-
cAMP response element-binding protein (p-CREB), and CREB
(Cell Signaling Technology, Inc., Danvers, MA, USA) overnight at
4°C. Subsequently, fluorescein isothiocyanate-conjugated
secondary antibody was added for 2 h, and nuclear staining was
performed with 4′,6-diamidino-2-phenylindole (DAPI). All tissue
samples were observed with an Eclipse Ti-E inverted fluorescent
microscope (Nikon, Tokyo, Japan).

Cell Culture
LPS and FXT were purchased from Sigma-Aldrich. Tin
protoporphyrin IX (SnPP), a heme oxygenase-1 (HO-1)
inhibitor, and cobalt protoporphyrin IX (CoPP), a HO-1
inducer, were purchased from Santa Cruz Biotechnology
(Santa Cruz, CA, USA). Murine BV-2 microglial cells were
obtained from Dr. S.W. Chae (Korea Institute of Oriental
Medicine) and cultured in Dulbecco’s modified Eagle’s
medium (DMEM; Lonza , Walkersv i l l e , MD, USA)
supplemented with 10% fetal bovine serum (FBS; Gibco,
Frontiers in Pharmacology | www.frontiersin.org 4
Gaithersburg, MD, USA) and 100 mg/ml penicill in-
streptomycin (Gibco) at 37°C in a humidified atmosphere
containing 5% CO2.

Nitric Oxide Determination
BV2 cells (2 × 105/ml) were pretreated with BTS and FXT for 1 h
and then stimulated with LPS (100 ng/ml) for 24 h. The levels of
nitric oxide (NO) in the culture supernatant were determined
using an NO detection kit (iNtRON Biotechnology, Seongnam,
Korea), according to the manufacturer’s instructions.

Enzyme-Linked Immunosorbent Assay
(ELISA)
Mouse blood was collected into heparin-coated tubes under
anesthesia with Zoletil (25 mg/kg, Zoletil 50; Virbac, Cedex,
France). For plasma collection, the samples were centrifuged for
10 min at 3,000 rpm at 4°C, and the supernatant was carefully
transferred to a new tube. The plasma was stored at −80°C before
use. Plasma levels of mouse corticosterone (Cayman Chemical
Company, Ann Arbor, MI, USA) were determined using ELISA
kits, according to the manufacturer’s protocols.
A

B

C

D

E

F

FIGURE 1 | Effects of BTS on development and depression-related behaviors of reserpine-induced depression in mice. Mice were orally administered vehicle (PBS),
BTS (100, 300, or 500 mg/kg), or fluoxetine (FXT, 20 mg/kg) for the indicated durations on a daily base. (A) Reserpine treatment and oral administration schedules
for the behavior experiments. (B) Body weight and (C) food intake were measured on the indicated days. (D) Immobility time in the forced swimming test (FST) and
(E) the tail suspension test (TST) and (F) total travel distance in the open field test (OFT), measured on day 11. Data are mean ± SD values (n = 6, one-way ANOVA:
#p < 0.05, ##p < 0.01, ###p < 0.001 vs. control; *p < 0.05, **p < 0.01, ***p < 0.001 vs. reserpine-only).
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BV2 cells (2 × 105/ml) were pretreated with BTS or FXT for
1 h and then stimulated with LPS (100 ng/ml) for 16 h. The levels
of IL-6, IL-1b, TNF-a, and IL-10 in the culture supernatant were
determined using a commercially available ELISA kit (R&D
systems, Minneapolis, MN, USA), according to the
manufacturer’s protocols.

Real-Time PCR
Total RNA was isolated using TRIzol reagent (Invitrogen,
Carlsbad, CA, USA), and cDNA synthesis was performed
using the PrimeScript™ RT reagent kit (TaKaRa, Shiga, Japan).
The mRNA levels of Il1b, Il6, Tnfa, Nos2, Cox2, Hmox1, and
glyceraldehyde-3 phosphate dehydrogenase (Gapdh) were
quantified using a 7500 real-time PCR system (Applied
Biosystems, Foster City, CA, USA) with Power SYBR® Green
PCRMaster Mix (Applied Biosystems) (Park et al., 2015). Primer
sequences are listed in Table 1.

Western Blotting
Brain samples were homogenized in 1 ml of lysis buffer (Pro-
Prep™ ; iNtRON Biotechnology) containing 1 mM
phenylmethylsulfonyl fluoride (PMSF) and 1 µg/ml protease
inhibitor mixture. Whole-cell lysates were harvested using
radioimmunoprecipitation assay (RIPA) buffer containing
protease inhibitor cocktail (Sigma-Aldrich), 1 mM PMSF, and
phosphatase inhibitor cocktail set III (Calbiochem, San Diego,
CA, USA). Nuclear extracts were prepared using a nuclear
extract kit (Active Motif, Carlsbad, CA, USA). Equal amounts
(20 mg) of protein were separated using 10% sodium dodecyl
sulfate-polyacrylamide gel electrophoresis and transferred to
polyvinylidene fluoride membranes (Amersham Biosciences,
Piscataway, NJ, USA), which were blocked with 5% skim
milk in TBS/T (Tris-buffered saline in 0.1% TWEEN® 20)
buffer for 1 h. The membranes were then treated overnight
with antibodies specific to iNOS, nuclear factor (NF)-kB p65,
HO-1, nuclear factor erythroid 2-related factor 2 (NRF2),
phospho-CREB, CREB, phospho-p38 (Thr180/Tyr182), p38,
phospho-Erk (Thr202/Tyr204), Erk, phospho-JNK (Thr183/
Tyr185), JNK, phospho-Akt (Ser473), Akt (Cell Signaling
Technology, Inc.) and BDNF (Abcam, Cambridge, UK) at
Frontiers in Pharmacology | www.frontiersin.org 5
4°C. Blots were incubated with horseradish peroxidase (HRP)-
conjugated secondary antibody for 2 h at room temperature.
HRP was detected using a chemiluminescent detection
reagent (Amersham Biosciences) . b-Act in (S igma-
Aldrich) and proliferating cell nuclear antigen (PCNA; Cell
Signaling Technology, Inc.) were used as loading controls.
Chemiluminescence was visualized using an LAS-3000
LuminoImage analyzer (Fujifilm, Tokyo, Japan) (Park
et al., 2013).

Statistical Analysis
All data are expressed as mean ± standard deviation (SD). One-
way analysis of variance (ANOVA) was performed using
GraphPad Prism version 7 (GraphPad Software Inc., San
Diego, CA, USA) to assess between-group differences. Multiple
group comparisons were performed using one-way ANOVA,
followed by post-hoc Tukey tests. Differences at p < 0.05 were
considered statistically significant.
RESULTS

Effects of BTS on Body Weight Changes
and Food Intake
Mean body weight did not significantly differ among the groups on
day 1. After reserpine injection, reserpine-only mice demonstrated
a decrease in body weight, observed on days 5 and 10, compared to
control mice; however, oral BTS administration suppressed the
body weight decrease on day 10 (BTS 100: 23.33 ± 0.86 g, BTS 300:
23.13 ± 0.64 g, and BTS 500: 23.27 ± 0.9 g, all p < 0.001; Figure
1B). FXT administration (20 mg/kg) significantly increased body
weight on days 5 (FXT: 23.42 ± 0.57 g, p < 0.01; Figure 1B) and 10
(FXT: 23.57 ± 0.92 g, p < 0.001; Figure 1B). Regarding food intake,
reserpine-treated mice showed a significant reduction in food
intake compared to that of control mice on day 10 (23.51 ±
1.09 g, p < 0.05). However, BTS and FXT treatments counteracted
the reduction in food intake on day 10 (BTS 300: 26.79 ± 0.21 g,
p < 0.01; BTS 500: 28.22 ± 0.4 g, p < 0.05; FXT: 26.79 ± 1.6 g, p <
0.05; Figure 1C). These results suggest that BTS counteracted
weight loss and food intake reduction in mice with reserpine-
induced depression.

Effects of BTS on Behavioral Tests
In the FST [F (5, 30) = 12.99, p < 0.001; Figure 1D], we measured
immobilization time on day 11. As expected, immobilization
time significantly increased in reserpine-treated mice compared
with that in control mice (203.28 ± 11.58 s, p < 0.001), whereas in
BTS-treated mice, immobilization time was markedly reduced
compared with that in reserpine-treated mice (BTS 100: 136.46 ±
21.7 s, p < 0.001; BTS 300: 161.66 ± 15.24 s, p < 0.01; BTS 500:
156.93 ± 22.16 s, p < 0.01; Figure 1D). FXT treatment also
significantly decreased the immobilization time (FXT: 165.63 ±
22.54 s, p < 0.05). In the TST [F (5, 30) = 3.867, p < 0.01; Figure
1E), the immobilization time decreased in BTS-treated mice
(BTS 100: 151.37 ± 14.01 s, p < 0.01; BTS 300: 162.57 ± 19.19
s, p < 0.05; BTS 500: 158.23 ± 33.32 s, p < 0.05) compared to that
TABLE 1 | Sequences of the real-time PCR primers.

Mouse gene Sequence

Il1b forward, 5′- GCTGAAAGCTCTCCACCTCA -3′
reverse, 5′- AGGCCACAGGTATTTTGTCG -3′

Il6 forward, 5′- GAGGATACCACTCCCAACAGACC -3′
reverse, 5′- AAGTGCATCATCGTTGTTCATACA -3′

Tnfa forward, 5′- AGACCCTCACACTCAGATCATCTTC -3′
reverse, 5′- CCACTTGGTGGTTTGCTACGA -3′

Hmox1 forward, 5′- AGCCCCACCAAGTTCAAACA -3′
reverse, 5′- CATCACCTGCAGCTCCTCAA -3′

Nos2 forward, 5′- GAATCTTGGAGCGAGTTGTGGA -3′
reverse, 5′- GTGAGGGCTTGGCTGAGTGAG -3′

Cox2 forward, 5′- TGGGGTGATGAGCAACTATT-3
reverse, 5′- 5-AAGGAGCTCTGGGTCAAACT-3

Gapdh forward, 5′- AAGGTGGTGAAGCAGGCAT -3′
reverse, 5′- GGTCCAGGGTTTCTTACTCCT -3′
July 2020 | Volume 11 | Article 958
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in reserpine-treated mice (Figure 1E). Similarly, in the OFT [F
(5, 30) = 3.867, p < 0.01; Figure 1F], the travel distance increased
in BTS-treated mice (BTS 300: 2161.26 ± 281.19 cm, p < 0.001;
BTS 500: 1997.62 ± 486.63 cm, p < 0.05) compared to that in
reserpine-treated mice (Figure 1F). FXT treatment resulted in
effects similar to those of BTS. These results suggest that BTS
might control depressive-like behaviors in mice with reserpine-
induced depression.

Effects of BTS on Mood-Related
Hormones in Reserpine-Treated Mice
Serotonin levels in the brain, an indicator of mood disorders
(Martinowich and Lu, 2008), were significantly decreased in
reserpine-treated mice, but oral BTS and FXT administration
reversed this decrease (Figure 2A). Plasma levels of the stress
hormone corticosterone (Liu et al., 2010) significantly increased
in reserpine-treated mice but decreased in BTS- and FXT-treated
mice (Figure 2D). These data suggest that BTS might have effects
on mood-related hormones in reserpine-induced depression in
mice. Notably, dopamine and norepinephrine levels in the brain
were not significantly increased in BTS mice (Figures 2B, C).

Effects of BTS on BDNF and p-CREB
Expression in the Brain
To understand the effects of BTS on depression-like symptoms at the
molecular level, BDNF and p-CREB expression in the brain was
examinedbywesternblotting. BDNF levels dramatically decreased in
reserpine-treated mice compared with those in control mice,
indicating neuronal dysfunction of the brain (Lu et al., 2014);
Frontiers in Pharmacology | www.frontiersin.org 6
however, BTS treatment significantly enhanced BDNF levels in a
dose-dependent manner in the hippocampus (Figure 3A). The
BDNF-CREB pathway is associated with MDD (Nair and Vaidya,
2006). The level of p-CREB also decreased in the brains of reserpine-
treated mice and markedly increased in BTS and FXT mice (Figure
3B).TheseresultssuggestthatBTSmightaffectneuronalactivityinthe
mouse brain in reserpine-induced depression.

To confirm the effect of BTS treatment on our reserpine-
induced depression model, we observed BDNF and p-CREB
expression in the hippocampus using immunofluorescence.
BDNF levels were decreased in the reserpine-treated group,
and this decrease was counteracted by treatment with 300 mg/
kg BTS (Figure 3C). Likewise, the same results were obtained for
p-CREB expression (Figure 3D). These changes were seen in the
dentate gyrus of the hippocampus. These results suggest that BTS
attenuates reserpine-induced depression via activation of the
BDNF-CREB pathway.

Effects of BTS on Pro-Inflammatory
Cytokines in Reserpine-Induced
Depression
Pro-inflammatory cytokines such as IL-1b, IL-6, and TNF-a,
which are released through the activation of the neuroendocrine
system, contribute to neuroinflammation (Krishnan and Nestler,
2008). Il1b, Il6, and Tnfa mRNA levels in the hippocampus were
significantly increased in reserpine-treated mice but were
reduced in BTS and FXT mice (Figure 4). These data suggest
that BTS might be involved in various immune reactions in the
central nervous system.
A B

C D

FIGURE 2 | Effects of BTS on monoamines and serum levels of corticosterone in reserpine-induced depression in mice. (A) Serotonin, (B) dopamine, and (C)
norepinephrine levels in the brain were measured by electrospray ionization mass spectrometry. (D) Serum levels of corticosterone were determined by ELISA. The
data represent the mean ± SD of triplicate determinations (n = 6, one-way ANOVA: #p < 0.05, ##p < 0.01, ###p < 0.001 vs. control; *p < 0.05, **p < 0.01, ***p <
0.001 vs. reserpine-only).
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Effects of BTS on NO Production and Nos2
and Cox2 Expression in LPS-Stimulated
BV2 Microglia
In BV2 microglia, we first performed a 3-(4,5-dimethylthiazol-2-
yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H–
tetrazolium (MTS) assay to determine the cytotoxicity of BTS.
The result of this assay demonstrated that BTS is not cytotoxic at
concentrations of up to 800 mg/ml (data not shown). To
investigate the effects of BTS on NO production, BV2 cells
were treated with LPS (100 ng/ml) in presence or absence of
BTS. The production of NO was increased up to sevenfold
following LPS stimulation, and treatment with BTS at 50–400
mg/ml significantly blocked this a dose-dependent manner
(Figure 5A). iNOS protein levels were also dramatically
increased in LPS-treated cells; similar to the results for NO,
treatment with BTS at 200 or 400 mg/ml suppressed this increase
Frontiers in Pharmacology | www.frontiersin.org 7
(Figure 5B). Further, as shown in Figures 5C, D, Nos2 and Cox2
mRNA levels were significantly increased by LPS stimulation.
BTS at 400 mg/ml significantly suppressed these increases inNos2
and Cox2 gene expression. Furthermore, FXT at 10 mM, serving
as a positive control, also had inhibitory effects on NO
production and Nos2 and Cox2 gene expression. These data
suggest that BTS may inhibit NO production through the
downregulation of Nos2 and Cox2.

Effects of BTS on Pro-Inflammatory
Cytokine Production and mRNA
Expression in LPS-Stimulated BV2
Microglia
LPS-stimulated microglia produce high levels of cytokines, such
as IL-6, IL-1b, and TNF-a. The production of IL-6, IL-1b, and
TNF-a was markedly increased in LPS-treated control cells;
A

B

C

D

FIGURE 3 | Effects of BTS on BDNF and p-CREB/CREB expression and histology in the hippocampus of reserpine-induced depressed mice. Isolated
hippocampus lysates were analyzed by western blotting using (A) BDNF and (B) p-CREB/CREB antibodies. b-actin was used as the loading control. Frozen
hippocampus sections were analyzed by immunofluorescence using (C) BDNF and (D) p-CREB antibodies. DAPI was used as the loading control. The presented
data are representative of three independent experiments. The data represent the mean ± SD (one-way ANOVA: #p < 0.05, ##p < 0.01, ###p < 0.001 vs. control;
*p < 0.05, **p < 0.01, ***p < 0.001 vs. reserpine-only).
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however, pretreatment with BTS significantly inhibited increases
in cytokine levels in a dose-dependent manner (Figures 6A–C).
Furthermore, mRNA levels of Il6, Il1b, and Tnfa were
dramatically increased by LPS stimulation and significantly
decreased by BTS in a dose-dependent manner (Figures 6D–
F). FXT at 10 mM also showed inhibitory effects on the
production and mRNA levels of these cytokines.
Frontiers in Pharmacology | www.frontiersin.org 8
Effects of BTS on Activation of Mitogen-
Activated Protein Kinase (MAPK),
Phosphatidylinositol 3-Kinase (PI3K)/Akt,
and NF-kB Inflammatory Pathways in LPS-
Stimulated BV2 Microglia
MAPKs, PI3K/Akt, and NF-kB play important roles in signaling
pathways that induce a neuroinflammatory response in
microglia (Park et al., 2014). Given this, the effects of BTS on
the MAPK, PI3K/Akt, and NF-kB pathways were examined. As
shown in Figure 7A, levels of p-Erk in control cells were
minimal, whereas treatment with LPS dramatically increased
these levels. Additionally, BTS reduced p-Erk levels, while total
Erk levels were unchanged. Levels of p-p38 were dramatically
increased after LPS, and this was reversed by BTS treatment.
However, levels of p-JNK were unchanged by BTS treatment.
Furthermore, the phosphorylation of Akt was significantly
increased by LPS treatment, while total Akt was not affected.
Upon BTS treatment, levels of p-Akt were significantly reduced.
NF-kB is a key transcription factor that modulates iNOS and
pro-inflammatory cytokine gene expression in microglia.
Western blotting analyses using nuclear extracts from treated
and control BV2 cells indicated that expression of p65, a
component of NF-kB, significantly increased upon LPS
stimulation. Pretreatment with BTS significantly inhibited
expression of this factor in the nucleus (Figure 7B). These data
suggest that BTS may interfere with Erk, p38, and Akt to
facilitate altered NF-kB pathway signaling and inhibit neuronal
pro-inflammatory responses to LPS stimulation.

Effects of BTS on IL-10 and HO-1
Expression via Upregulation of NRF2/
CREB Pathway in BV2 Microglia
IL-10 and HO-1 act as anti-inflammatory modulators via the
upregulation of the NRF2/CREB pathway in microglia (Lee E.J.
et al., 2015). Given this, we examined the effect of BTS on IL-10
and HO-1 expression in LPS-treated and control BV2 cells.
Levels of IL-10 production increased in a dose-dependent
fashion following BTS treatment. LPS-treated cells produced
similar levels of IL-10 as those treated with BTS only (Figure
8A). Next, we examined the mRNA and protein expression of
HO-1, both of which were significantly increased in LPS-treated
control cells. BTS and LPS treatment increased HO-1 expression
over levels in BTS-only-treated cells (Figures 8B, C). CoPP at 20
mM was used as a positive control to induce HO-1 expression
(Figures 8B, C). Furthermore, BTS increased the nuclear
translocation of NRF2 and p-CREB, which act as upstream
modulators of HO-1 expression (Figure 8D). These data
suggest that BTS might upregulate HO-1 via the NRF2/CREB
pathway to induce neuroprotective effects in BV2 microglia.

HO-1 Mediates the Effects of BTS on NO
Production and Pro-Inflammatory
Cytokine mRNA Expression in BV2
Microglia
To confirm the mechanism by which BTS affects pro-
inflammatory signaling pathways, we examined whether HO-1
A

B

C

FIGURE 4 | Effects of BTS on Il1b, Il6, and Tnfa mRNA expression in the
hippocampus of mice with reserpine-induced depression. (A) mRNA levels of
Il1b, (B) Il6, and (C) Tnfa were determined by quantitative real-time PCR. The
data represent the mean ± SD of triplicate determinations (n = 6, one-way
ANOVA: #p < 0.05 vs. control; *p < 0.05, **p < 0.01 vs. reserpine-only).
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mediates the effects of BTS on NO production and pro-
inflammatory cytokine gene expression. This was assessed by
co-treating cells with SnPP, an inhibitor of HO-1 activity. We
found that BTS significantly reduced NO production and Nos2,
Cox2, and pro-inflammatory cytokine gene expression levels.
However, SnPP reversed the inhibitory effects of BTS on NO
production and Nos2, Cox2, and pro-inflammatory cytokine
mRNA levels (Figures 9A–F). Collectively, these results
suggest that BTS acts as an anti-neuroinflammatory and
neuroprotective agent in BV2 microglia via the upregulation of
HO-1.
DISCUSSION

Although the pathophysiology of depression has not yet been fully
elucidated, the typically assumedmolecular biologic causes include a
lack of monoamines such as serotonin, noradrenaline, and
Frontiers in Pharmacology | www.frontiersin.org 9
dopamine; hyperactivity of the hypothalamic-pituitary-adrenal
(HPA) axis (Stetler and Miller, 2011); neuroinflammation
(Schiepers et al., 2005); BDNF dysfunction; decreased gamma-
aminobutyric acid (GABA) activity; and glutamate system
dysfunction (Maletic et al., 2007; Hasler, 2010).

In our experiments, we used a model of depression induced by
reserpine-mediated depletion of monoamines in the brains of mice.
Reserpine has been shown to block amine storage processes, thereby
leading to increased hippocampal excitability and blood corticoid
levels, which are related to 5-hydroxytryptamine (5-HT) changes in
the brain (Revzin et al., 1962). The reserpine model represents the
first neurological model of depression and has been used in many
depression-related studies since the 1960s (Schildkraut, 1965). FST,
TST, and OFT are typical behavioral tests that show animal anxiety
and depression-related patterns (Deussing, 2006). They are mainly
used in screening tests for antidepressants. Mice with reserpine-
induced depression have been reported to show anxiety and
depression-related behaviors such as increased immobility time
A

B

C D

FIGURE 5 | Effect of BTS on NO production and iNOS and COX-2 expression in BV2 cells. BV2 cells were pretreated with BTS for 1 h and then stimulated with
LPS (100 ng/ml) for 24 h. (A) The levels of NO in the cell culture supernatant were measured by NO detection kit. (B) The level of iNOS was determined by western
blotting. b-actin was used as a loading control. The data represent three independent experiments. BV2 cells were pretreated with BTS for 1 h and then stimulated
with LPS (100 ng/ml) for 6 h. Levels of (C) Nos2 and (D) Cox2 mRNAs were determined by real-time PCR. Gapdh was used as a loading control. The data
represent the mean ± SD of triplicate determinations (one-way ANOVA: ###p < 0.001 vs. untreated control; *p < 0.05, **p < 0.01, ***p < 0.001 vs. LPS-treated
control).
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and decreased total travel distance in these behavioral tests
compared with those of normal mice (Tian et al., 2010). They
also exhibit increases in corticosterone blood levels (Revzin et al.,
1962) and pro-inflammatory cytokines in the brain (Szelenyi and
Vizi, 2007). In our experiments, BTS-treated mice showed
significant decreases in immobility time in the FST and TST and
an increase in total travel distance in the OFT compared with those
of reserpine-treated mice. Moreover, the serotonin level was
increased and corticosterone level was decreased in BTS-treated
mice compared with those in reserpine-treated mice.

BDNF and CREB have been reported to be involved in neuronal
differentiation and survival, as well as in synaptic plasticity
associated with learning and memory in various nervous system
disorders, including depression (Nair and Vaidya, 2006). Our
reserpine-induced mouse model showed depressive symptoms as
well as decreased BDNF levels and neurogenesis in the
hippocampus. Western blotting and immunofluorescence analysis
showed that the expression of BDNF and p-CREB in the
hippocampus was increased in BTS-treated mice compared to
those in reserpine-treated mice. In addition, in our reserpine-
induced animal model of depression, levels of IL-1b, IL-6, and
Frontiers in Pharmacology | www.frontiersin.org 10
TNF-a were significantly higher than those in control mice. The
extracellular catecholamine level balance is one of the key
modulators of inflammatory mediator production (Huang et al.,
2004; Szelenyi and Vizi, 2007). By measuring the mRNA levels of
pro-inflammatory cytokine genes in the hippocampus, we
confirmed that Il1b, Il6, and Tnfa mRNA levels in BTS mice were
reduced compared to those in reserpine-treated mice.

Microglia are involved in innate immunity and regulate cytokine
levels and inflammatory processes in the brain (Harry and Kraft,
2008). When activated by infection or tissue damage, microglia
produce inflammatory factors, including pro-inflammatory
cytokines and reactive oxygen species, which can cause neuronal
toxicity and degeneration (Graeber and Streit, 2010). To
complement our in vivo results, we performed in vitro analyses to
better understand the mechanisms underlying the anti-
neuroinflammatory effects of BTS. LPS stimulation of microglia
results in activation of Toll-like receptors (TLRs), phosphorylation
of MAPKs, and translocation of NF-kB p65, an inflammatory
transcription factor, into the nucleus via PI3K/Akt, where it
increases the production of various pro-inflammatory cytokines
and reactive oxygen species (Guo et al., 2016; Choi et al., 2017b). In
A

B

C

D

E

F

FIGURE 6 | Effect of BTS on expression of pro-inflammatory cytokines in BV2 cells. BV2 cells were pretreated with BTS for 1 h and then stimulated with LPS (100
ng/ml) for 6 h. mRNA expression levels of (A) Il6, (B) Il1b, and (C) Tnfa were determined by real-time PCR. Gapdh was used as a loading control. BV2 cells were
pretreated with BTS for 1 h and then stimulated with LPS (100 ng/ml) for 16 h. Levels of (D) IL-6, (E) IL-1b, and (F) TNF-a in the cell culture supernatant were
measured by ELISA. The data represent the mean ± SD of triplicate determinations (one-way ANOVA: ###p < 0.001 vs. untreated control; **p < 0.01, ***p < 0.001
vs. LPS-treated control).
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contrast, an increase in neuroprotective factors, such as NRF2,
CREB, and HO-1 can produce the anti-inflammatory cytokine IL-
10 and thus inhibit neuroinflammation.

In the present study, we found that BTS inhibited NO
production by suppressing the expression of iNOS and COX-2,
key enzymes in NO production. In addition, production and
mRNA expression levels of TNF-a, IL-1b, and IL-6 were
inhibited by BTS via suppression of the activation of NF-kB
and the phosphorylation of Erk and p-38 in specific MAPK
pathways and of Akt in LPS-stimulated BV2 cells. Our data
clearly demonstrated that BTS significantly increased HO-1
expression via increases in the nuclear translocation of NRF2
and phosphorylation of CREB. Furthermore, levels of IL-10, an
anti-inflammatory cytokine (Bozic et al., 2015), were increased
by BTS in both the presence and absence of LPS.
Frontiers in Pharmacology | www.frontiersin.org 11
Antidepressants, which are widely used in the treatment of
depression, are drugs that target monoamines (Mahar et al., 2014).
However, these drugs have many side effects, are difficult to use for
long periods, and are not effective in the 30%–40% of cases with
treatment-resistant depression (Kornstein and Schneider, 2001). In
addition, although the use of antipsychotic drugs and mood
stabilizers has enhanced the therapeutic response in treatment-
resistant depression, their efficacy is still limited (Nierenberg et al.,
2007). Therefore, new natural medicines that are safe and effective
have recently been attracting attention (Grosso, 2016). Several
studies reported that oxidative stress causes neuroinflammation
and consequent detrimental effects in major depression (Krishnan
and Nestler, 2008; Lang and Borgwardt, 2013; Bakunina et al.,
2015). In addition, inflammatory factors, produced during
neuroinflammation, affected glutamate and monoamine
A

B

FIGURE 7 | Effect of BTS on the phosphorylation of MAPKs and Akt and NF-kB activity in BV2 cells. (A) BV2 cells were pretreated with BTS for 1 h and then
stimulated with LPS (100 ng/ml) for 15 min. Levels of p-JNK, JNK, p-Erk, Erk, p-p38, p38, p-Akt, and Akt were determined by western blotting. b-actin was used as
a loading control. (B) BV2 cells were pretreated with BTS for 1 h and then stimulated with LPS (100 ng/ml) for 1 h. Nuclear extracts were analyzed by western
blotting using NF-kB p65 antibody. PCNA was used as a loading control. The data represent three independent experiments. The data are expressed as the mean ±
SD (one-way ANOVA: ###p < 0.001 vs. untreated control; *p < 0.05, **p < 0.01, ***p < 0.001 vs. LPS-treated control).
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neurotransmission, glucocorticoid receptor resistance, and
hippocampal neurogenesis (Krishnadas and Cavanagh, 2012;
Zhang et al., 2018). Therefore, we explored the antidepressant
effects of BTS in an in vivo reserpine-induced depression model.
Wedemonstratethat indeedneuroinflammationisoneofthefactors
contributing to depression. Furthermore, we also show that the
antidepressant effectofBTS isprobably theconsequenceof its action
in microglia as an anti-neuroinflammatory agent. Toxicity studies
have reported that BTS is safe regardless of sex at concentrations of
up to 2000 mg/kg/day, and standardization results in accordance
with MFDS specifications have already been reported (Lee M.Y.
et al., 2012). Thus, BTS is a promising candidate for the treatment
Frontiers in Pharmacology | www.frontiersin.org 12
of depression. In summary, our data show that BTS is effective
against reserpine-induced depression in preclinical models.
Mechanistically, as observed in vitro after LPS stimulation, BTS
exerts anti-neuroinflammatory andneuroprotective effects through
the upregulationofHO-1 or IL-10.Our research canprovide a basis
for the clinical application of BTS for managing conditions such as
major depression by targeting an unusual depression mechanism,
neuroinflammation in the future. We can further expect clinical
effective minimum dose of BTS or consequently decrease of the
associated adverse side effects when taken long-term. This
hypothesis should be tested and then translated to the clinical
context, provided the results are promising.
A

B

C

D

FIGURE 8 | Effect of BTS on IL-10 production and HO-1 expression in BV2 cells. (A) BV2 cells were pretreated with BTS for 1 h and then stimulated with LPS (100
ng/ml) for 16 h. Levels of IL-10 in the cell culture supernatant were measured by ELISA. (B) BV2 cells were pretreated with BTS for 1 h and then stimulated with LPS
(100 ng/ml) for 6 h. Hmox1 mRNA levels were determined by real-time PCR. Gapdh was used as a loading control. (C) BV2 cells were pretreated with BTS for 1 h
and then stimulated with LPS (100 ng/ml) for 12 h. The level of HO-1 was determined by western blotting. b-actin was used as a loading control. (D) BV2 cells were
pretreated with BTS for 6 h, and nuclear extracts were analyzed by western blotting using an NRF2 antibody. PCNA was used as a loading control. BV2 cells were
pretreated with BTS for 30 min, and levels of p-CREB and CREB were determined by western blotting. b-actin was used as a loading control. The data represent
three independent experiments. The data are expressed as the mean ± SD of triplicate determinations (one-way ANOVA: ##p < 0.01, ###p < 0.001 vs. untreated
control; **p < 0.01, ***p < 0.001 vs. LPS-treated control).
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CONCLUSIONS

Taken together, our results show that administration of BTS can
induce an antidepressant-like effect in reserpine-induced depression.
Furthermore,ourresultssuggestthatBTSmayactasaneuroprotective
agent by downregulating neuroinflammation in activated, cultured
microglia. Specifically, since BTS is composed of several herbs, our
results also suggest that a multi-targeted approach could improve
treatment for depression. Further studies will be needed at the
molecular level to investigate the regulatory effects of BTS on
neuroinflammation andHPA-axis hyperactivity.
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