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Hypoxia signaling in human health and diseases: implications
and prospects for therapeutics
Zhen Luo 1,2, Mingfu Tian1,3, Ge Yang2, Qiaoru Tan2, Yubing Chen4, Geng Li1,2, Qiwei Zhang 1,2, Yongkui Li1,2, Pin Wan2✉ and
Jianguo Wu 1,2,3✉

Molecular oxygen (O2) is essential for most biological reactions in mammalian cells. When the intracellular oxygen content decreases,
it is called hypoxia. The process of hypoxia is linked to several biological processes, including pathogenic microbe infection,
metabolic adaptation, cancer, acute and chronic diseases, and other stress responses. The mechanism underlying cells respond to
oxygen changes to mediate subsequent signal response is the central question during hypoxia. Hypoxia-inducible factors (HIFs)
sense hypoxia to regulate the expressions of a series of downstream genes expression, which participate in multiple processes
including cell metabolism, cell growth/death, cell proliferation, glycolysis, immune response, microbe infection, tumorigenesis, and
metastasis. Importantly, hypoxia signaling also interacts with other cellular pathways, such as phosphoinositide 3-kinase (PI3K)-
mammalian target of rapamycin (mTOR) signaling, nuclear factor kappa-B (NF-κB) pathway, extracellular signal-regulated kinases
(ERK) signaling, and endoplasmic reticulum (ER) stress. This paper systematically reviews the mechanisms of hypoxia signaling
activation, the control of HIF signaling, and the function of HIF signaling in human health and diseases. In addition, the therapeutic
targets involved in HIF signaling to balance health and diseases are summarized and highlighted, which would provide novel
strategies for the design and development of therapeutic drugs.
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INTRODUCTION
Molecular oxygen is an indispensable component in mammalian
cells. In the condition of normal oxygen, mammalian cell consumes
oxygen and nutrients to synthesize adenosine 5’-triphosphate
(ATP)1 It is also involved in various key biochemical reactions in the
cells. Therefore, mammalian cells maintain oxygen balance to
ensure their physiological function. Decreased oxygen concentra-
tion stimulates a variety of downstream signal responses in the
cells. In the presence of hypoxic pressure, mammalian cells will
activate a series of downstream pathways, mainly including
hypoxia-inducible factor (HIF), autophagy, energy metabolic path-
ways like the mTOR complex 1 (mTORC1), and cell stress pathways
such as ER stress;2,3 these pathways facilitate the cell’s response to
the hypoxia stress.
The central pathway of cell response to a low oxygen

environment involves HIF transcription factors, which are respon-
sible for sensing the hypoxic environment in the cells, inducing
metabolic changes, regulating cell proliferation, and controlling
inflammatory response and other functions.1,4 Simultaneously, HIF
signal is also proved the association with several diseases, such as
cardiovascular, metabolic, inflammatory, and infection-related
diseases.5–7. The discovery of this pathway provides a complete
molecular framework to explicate how cells perceive oxygen
changes, mediate downstream signal transduction, and provide
new therapeutic targets in various human diseases.
Here, we focused on how cells recognize oxygen changes and

mediate signal transduction, especially the role of HIFs in cells’

perception of hypoxia. Additionally, we comprehensively sum-
marized the role of HIF signaling in homeostasis of cells,
including the mechanism underlying upstream or downstream
activation or signal transduction of HIFs, the cross-talking of HIF
pathway, and other cellular pathways. Moreover, the roles of
HIFs pathway in human health and diseases, and the advances
and development of various drugs targeting HIFs pathway were
summarized.

HISTORY OF HIF PATHWAY
The study on HIF pathway has gained significant achievements
in the past 30 years (Fig. 1). In 1991, Semenza et al. demon-
strated that in the kidney or liver, hypoxic or ischemic conditions
induce the production of nuclear factors that promote erythro-
poietin (EPO) expression by binding to the enhancer elements
located 3’ to the human EPO gene,8 first reported as HIF. Ratcliffe
et al. then revealed the ubiquity of this oxygen-sensing system
in mammals.9 In their subsequent study, a regulatory effect of
HIF on glycolysis was identified. Their studies uncovered that the
expression of two genes associated with glycolysis, phospho-
glycerate kinase (PGK) along with lactate dehydrogenase (LDHA)
are elevated under hypoxia.10 In 1995, Semanza et al. isolated
and purified HIF-1 and confirmed that HIF-1 contains two
subunits: HIF-1α and HIF-1β.11,12 Other studies reported that
HIF-1α accumulation enhances the expression of vascular
endothelial growth factor (VEGF), whereas HIF-1α deficiency
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impairs the process of angiogenesis and eventually causes
embryonic death.13,14

Based on the discovery of HIF function in biological process,
the exact regulatory mechanism of HIF was elucidated. Kaelin
et al. identified a complex formed by von Hippel-Lindau (VHL)
tumor suppressor protein (pVHL) with Cullin2 (CUL2), Elongin B,
and Elongin C.15 Among these factors, VHL protein has a
negative regulatory effect on HIF,16 and the absence of VHL
prohibits HIF degradation and promotes tumor initiation.17

Accumulating evidence has clarified the regulatory role of HIF.
Under normoxia, HIF-1α undergoes hydroxylation to inhibit the
recruitment of transcriptional coactivators,18 while VHL recog-
nizes and binds to the hydroxylation sites and subsequently
degrades HIF-1α.19,20 In the next decade 1991–2001, emerging
enzymes related to HIF-1α hydroxylation are reported.21–23 For
their contributions to the discovery of how human and animal
cells perceive and adapt to oxygen supply, William Kaelin, Peter
Ratcliffe, and Gregg Semenza were awarded the 2019 Nobel
Prize in Physiology and Medicine.24

HIFS-MEDIATED SIGNAL TRANSDUCTION
HIF family
HIFs are the central factors that mediate downstream gene
expression in response to hypoxic stress. The HIF family contains
two different subunits: α and β. The α part composes of HIF-1α,
HIF-2α, and HIF-3α; the β part contains one protein (HIF-1β). HIF-
1α is widely expressed in all body tissues, while HIF-2α and HIF-
3α are only detected in a few specific tissues.25–27 The α-subunit
protein is regulated by cellular oxygen levels, whereas the β
subunit is constitutively expressed.26,28 Under normoxic condi-
tions, HIF-α proteins (HIF-1α, HIF-2α, and HIF-3α) undergo rapid
ubiquitination and sequent degradation by proteasome
through hydroxylation of prolyl residues (Fig. 2a). HIF- α proteins
contain an oxygen-dependent degradation domain with two
proline sites hydroxylated, by the oxygen-dependent proline
hydroxylase family (PHDs), including PHD1, PHD2, and
PHD3.20,29 Interestingly, this enzymatic activity requires oxygen,
iron, and 2-oxo-glutarate.19,29 After hydroxylation, HIF-α inter-
acts with pVHL and then promotes HIF-α ubiquitin-proteasome

Fig. 1 History and events of the studies on hypoxia signaling. A glance of the discoverty and advance of the knownlegment of hypoxia
signaling started from 1991. In 2019, the Nobel Prize in Physiology and Medicine was awarded for the discovery of cellular mechanisms for
oxygen sensing in animals
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degradation.19,30 However, under hypoxic conditions, the
enzymatic activity of PHD is inhibited, which prevents HIF-α
hydroxylation and ubiquitin-mediated proteasome degradation
(Fig. 2a). Subsequently, the HIF-α subunit interacts with HIF-1β
to form a transcriptional complex dimerization, then entering
the nucleus and combining with hypoxia-responsive elements
(HREs), inducing the expression of numerous downstream
genes.31,32 Notably, HIF-3α exerts an opposite role in the
induction of hypoxia-related gene expression. Also, the abun-
dant expression of HIF-3α reduces angiogenesis and restrains
cell proliferation.33

Cross-talk of pathways and HIF signal
In addition to the regulation at the protein level, multiple signaling
pathways are included in the transcription of HIFs, further
affecting the regulatory pathway (Fig. 2b). PI3K-mTOR signaling
promotes HIF-α mRNA expression, suggesting its activity upstream
of HIF-α.34,35 In addition, the upregulated PI3K-mTOR signaling in
cancer cells can facilitate HIF-α activity and induce the angiogenic
factors expression.36 Furthermore, signal transducer and activator
of transcription 3 (STAT3) was phosphorylated by mTORC1 in a
hypoxic environment, thereby inducing HIF-1α RNA expression.37

A study on T cell function showed that the activation of mTOR

Fig. 2 The underlying principles of hypoxia and cross-talk of HIF signal with multiple pathways. a Under normoxia, HIFs (α and β subunits)
undergo ubiquitination mediated by PHDs (oxygen-dependent proline hydroxylase family) and pVHL (von Hippel–Lindau tumor suppressor
protein). The enzymatic activity PHD is prohibited under hypoxia. HIFs are stabilized to promote downstream genes transcription. b The
interaction among HIF signal with multiple signaling pathways
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signal promotes HIF-α to drive metabolic reprogramming and
prolongs the T cell survival.38 These studies indicated that PI3K-
mTOR signaling regulates the mRNA level of HIF-α.
Mitochondria is a major energy metabolism organelle in a

mammalian cell and the powerhouse of oxygen consumption. It
plays a crucial role in the modulation of HIF-α via the enrichment
of reactive oxygen species (ROS) that enhances HIF stability
through inhibition of PHD function.39,40 Reportedly, interleukin-6
(IL-6) accelerates HIF-α expression by activating the downstream
Janus kinase (JAK)-STAT3 signaling pathway,41 which is similar to
the fact that STAT3 is phosphorylated by mTORC1, upregulating
the HIF-1α RNA expression.37 In addition, the activation of pattern
recognition receptors (PRRs) can trigger HIF-α transcription. The
activation of the Toll-like receptor (TLR) signal drives the down-
stream NF-κB pathway to promote HIF-α transcription. For
example, lipopolysaccharide (LPS) primes TLR4 signaling to induce
HIF-1α mRNA expression.42

The ERK pathway is another important pathway that induces
HIF-1α expression.43 Reportedly, hyperthermia promotes HIF-1α
expression through AKT and ERK pathways.44 Besides, photo-
dynamic therapy (PDT) induces HIF-1α expression through ROS-
ERK axis, which enhances the therapy resistance.45 Lastly, the
mitogen-activated protein kinase (MAPK) signaling activates of
HIF-1α pathway through regulating the p300/CBP protein com-
plex.46 These studies indicated that ERK signaling regulates the
mRNA level of HIF-1α to coordinate HIF signal.
In addition to the above signaling pathways, other pathways

including Wnt/β-catenin, Notch, and FAT1-ROS are also
involved in HIF signals. The Wnt/β-catenin could initiate PI3K/
Akt signaling and then adjust HIF-1α function.47 Wnt/β-catenin
cooperates with HIF-1α signal in cancer cells,48 while HIF-1α
signal also regulates Wnt/β-catenin pathway by calreticulin.49

Emerging studies manifest that the Notch/HIF-1α signaling
modulates liver regeneration, angiogenesis, and cancer
epithelial-mesenchymal-transition (EMT).50–52 The FAT1/ROS/
HIF-1α signaling cascade is found to participate in the growth
of glioblastoma (GBM).53

Based on the fact that mouse articular chondrocytes
promoted HIF-2α expression after treatment with IL-1β, a
stimulator of NF-κB pathway, NF-κB pathway could act as an
activator to regulate HIF-2α mRNA expression in osteoarthritic.54

Another study found that Icariin modulated NF-κB/HIF-2α axis
and reduced inflammation in chondrocyte.55 Since NF-κB and
mTOR signaling pathways regulate the expression of HIF-1α, the
above investigations imply that HIF-1α and HIF-2α may be
modulated by common pathways. Although the constitutive
expression of HIF-1β is independent of the cellular oxygen
level,28 one interesting study found that NF-κB signaling also
promotes HIF-1β expression.56

ER stress is one of the key stress pathways in the host cell in
the form of cellular unfolded protein response (UPR) through
activating a series of downstream factors, such as protein kinase
R-like ER kinase (PERK) and activating transcription factor 6
(ATF6).57,58 ER stress is strongly associated with hypoxia-related
pathways. HIF-1α induces ER stress response and promotes
alveolar epithelial cell apoptosis.59 Another study revealed that
HIF signaling downstream factor VEGF regulates the expression
of ATF6 and PERK,60 suggesting a regulatory action of HIF
signaling on ER stress. Besides, X-box binding protein 1 (XBP1),
a key protein in UPR, is induced in a hypoxia environment
and promotes tumor growth,61 implying that hypoxia coupled
with ER stress plays certain roles in tumor development.
Hypoxic pathway is recently found to interact with ER stress
to affect chemoresistance in tumor development.62 In addition,
ER stress could reduce the expression of hypoxia-related
factors, such as HIFs.63 Therefore, the interaction between
hypoxia pathway and ER stress serves an integral function in
diverse biological processes.

BIOLOGICAL FUNCTIONS OF HIF
HIFs participate in multiple biological processes: metabolism,
proliferation, cell growth and survival, glycolysis, immune response,
microbe infection, tumorigenesis, and metastasis (Fig. 3). The
activation of HIF-1 transcription complex induces significant gene
expression,64 including glucose transporter 1,3 (GLUT1,3), LDH-A,
VEGF, transforming growth factor-β (TGF-β), matrix metalloprotei-
nases (MMPs), and nitric oxide synthase (NOS), which in turn play a
critical part in cell metabolism, tumorigenesis, and many other
aspects.65–68 In addition, HIF signals interact with other cellular
pathways and regulate various biological processes.

Cell metabolism by hypoxia
The generation of ATP occurs in the majority of the cells through
oxidative phosphorylation. Conversely, HIF-1α stimulates PGK and
LDHA in the regulation of the glycolysis process under hypoxia
conditions.10 Anaerobic metabolism is also regulated by HIF-1α as
it induces anaerobic metabolism shift through multiple enzymes
related to glycolysis and glucose transporters, like pyruvate kinase
M (PKM), in turn producing energy.69 In addition to glucose
consumption and glycolysis, HIF-1α activation underlies lipid
metabolism or lipid anabolism,70–72 effectuating its pivotal role in
the liver and cardiac metabolism.

Cell proliferation by hypoxia
Cell viability and growth are reduced due to deprivation of
nutrients and dispossession of oxygen, termed hypoxia. In various
cell types, such as hematopoietic stem cells, keratinocytes,
lymphocytes, embryonic fibroblasts, embryonic stem cells, and a
wide variety of cancer cells, hypoxia inhibits cell proliferation.73

HIF-1α acts biological functions in tumor proliferation and
development in hypoxic conditions due to the extreme demands
of energy. The tumor survival is mediated by HIF-1α in a hypoxic
environment through inhibition of MYC, a transcriptional factor
regulating mitochondrial mass and oxygen consumption in
several human cancers. HIF-1α decreases the level of MYC by
inducing the transcription of MAX interactor 1 (MXI1) (a repressor
of MYC) in cancer cells and enhances mitochondrial respiration
but increases the glycolysis, leading to tumor growth and survival
in a low oxygen environment.74–76

Distinguishing to HIF-1α, HIF-2α is unable to compete with MYC
for specificity protein 1 (SP1) binding through protein kinase D1
(PKD1)-mediated phosphorylation of HIF-2α.77 In human micro-
vascular endothelial cells, HIF-2 α enhances SP1 activity and also
facilitates MYC function to drive IL-8 expression.78 In primary
mouse embryo fibroblasts and VHL−/− kidney tumor cells, MYC
activity is enhanced by HIF-2α.79,80 Moreover, HIF-2α triggers the
activation of MYC by way of the stabilization of the MYC/MAX
heterodimer complex under hypoxia. This effect is more exquisite
than the degradation of MYC mediated by HIF-1α in cancer cells.81

In cancer cells, MYC regulates the HIF-2α by binding to the HIF-2α
gene promoter and such regulation is facilitated by stem cell
factors in stem cell renewal and tumor.82

Hypoxia-mediated angiogenesis
HIF-1α plays a vital role in cell metabolism and physiological
homeostasis.83 Another major function of HIF-1α is to promote
angiogenesis through endothelial cell migration to a hypoxic
environment by the transcription of VEGF. A new blood vessel in
endothelial cells supplies oxygenated blood to a specific area.84,85

Hypoxia-induced autophagy
The orchestration of multiple stress response pathways including
unfolded protein response (UPR), HIF-1 signal, and autophagy, are
required for the tumor cells’ adaptation and survival. Hypoxia-
induced autophagy performs a certain function in tumor
progression.86 Several hypoxia-responsive genes’ transcription is
regulated by HIF-1 activation under hypoxia stress. Despite the
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complexities of regulation, the significance of autophagy-
associated HIF-1 in tumor growth has been identified previously.87

Recent evidence suggested that altered expression of many HIF-1
downstream genes regulates both selective and bulk autophagy.
Significantly, HIF-1 targets have been shown to have essential
autophagic machinery components, such as autophagy related 5
(ATG5), ATG7, and ATG9A.88–90

HIF-1 could reprogram glucose metabolism by regulating a
cluster of associated genes to indirectly modulate autophagy by
modifying glucose metabolism.87,91,92 Autophagy regulates glucose
uptake by controlling GLUT1 expression and function during oxygen
deprivation. Upon glutamate and oxygen deprivation, PGK1 initiates
autophagy via direct binding to ATGL14/VPS34/Beclin1. During
tumorigenesis, glycolysis and autophagy are regulated by protein
kinase activity of PGK1, which results in Beclin phosphorylation at
Ser30.93–95 Autophagy is blocked in human T cells deficient in 6-
phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFKFB3) by
converting glycolysis to pentose phosphate pathway (PPP), increas-
ing nicotinamide adenine dinucleotide phosphate (NADPH) gen-
eration and reducing ROS. On the other hand, the inhibition of
PFKFB3 restricts glucose uptake in colon adenocarcinoma cells and
induces autophagy.96–98 In acute myeloid leukemia (AML), the
interaction of pyruvate dehydrogenase kinase 1 (PDK1) between
unc-51-like autophagy-activating kinase 1 (UKL1) determines a
regulatory manner in autophagy. The inhibition of PDK1 with
dichloroacetopenone prevents this interaction and successively
suppresses autophagy.99 Besides, hypoxia promotes the location of
AKT in mitochondria, increasing phosphorylation of PDK1 on Thr346
and then inhibiting autophagy.100 Autophagy stimulation through
hexokinases 2 (HK2)-mediated repression of TORC1 has been
reported in glycose starvation neonatal rat ventricular myocytes

(NRVMs).101 Lastly, the mTOR together with PP2A controls PHD
function and further regulates HIF-1 signal and autophagy.102

Hypoxia in cell death
Programmed cell death (PCD) is a common biological process in
organisms that functions in the normal development of cells,
maintaining tissue homeostasis against foreign infection, activating
immunity, and clearing damaged cells.103,104 Presently, the common
ways of programmed cell death include apoptosis, pyroptosis,
necrosis, ferroptosis, autophagic death, and necroptosis.105 In
addition to affecting cell proliferation, metabolic reprogramming,
and autophagy, hypoxia-related pathways regulate the mode of cell
death. The function of hypoxia in PCD is discussed below.

Apoptosis. Apoptosis is a classic way of cell death, which play a
major role in plentiful biological processes that can be activated by
endogenous or exogenous signals.106,107 To date, the role of
hypoxia in apoptosis exerts a two-side effect. Hypoxia promotes cell
proliferation and inhibits the occurrence of apoptosis. A study
reveals that dictamnine decreases the protein expression of HIF-1α
and slug to promote cell apoptosis.108 Besides, the HIF-1α-BNIP3 (B-
cell lymphoma 2 (BCL2) and adenovirus E1B 19 kDa-interacting
protein 3) pathway mediates mitochondrial autophagy to inhibit
apoptosis and ROS production, exerting a protective effect in acute
renal injury.109 In addition to HIF-1α-reduced apoptosis in hepatoma
cell HepG2,110 HIF-2α inhibits apoptosis and autophagy of cervical
cancer cells under hypoxia.111 Accumulating evidence demon-
strated that hypoxia increases apoptosis. Typically, hypoxia reduces
the proliferation of embryonic stem cells and accelerates apoptosis
in response to HIF-1α knockdown.112 In addition, the inhibited
mitochondrial function under hypoxia promotes ROS production

Fig. 3 Biological functions of hypoxia signaling. Hypoxia signaling companied with the related genes participates in multiple biological
processes
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and mitochondrial damage that accelerates apoptosis.32 Notably,
these studies suggested that hypoxia can accelerate apoptosis
independent of HIFs. Conversely, hypoxia accelerates apoptosis
through HIF-dependent pathway. Several studies have identified
that Nix and BNIP3, two pro-apoptotic factors, play vital roles in HIF-
1 mediated apoptosis.5,113,114 P53 is a crucial tumor suppressor with
a key role in apoptosis. HIF-1α promotes p53-dependent apopto-
sis.115 In this process, HIF-1α stabilizes p53 in dephosphorylated
state and regulates p53-dependent apoptosis.116,117

Pyroptosis. A gasdermin (GSDM) family could program another
type of cell death called pyroptosis,118 containing five members
named GSDMA/B/C/D/E.119 Cell pyroptosis occurs after gasdermin
family is cleaved by caspase or other protein, and the N-terminal
pore-forming domain is located on cell membrane.120–122

Reportedly, hypoxia plays a key role in pyroptosis. Hou et al.
demonstrated that hypoxia mediates programmed death ligand 1
(PD-L1) into the nucleus and then induces the expression of
GSDMC gene to promote pyroptosis in tumor cells.123 Since the
tumor microenvironment is hypoxic, pyroptosis may have varied
roles in different tumors. Another study claimed that LPS induces
ROS generation to promote inflammasome activation and
pyroptosis in H9C2 cells.124 It was also confirmed that hypoxia
induces ROS generation to promote pyroptosis in an NF-κB/HIF-
1α-dependent pathway.125 Hypoxia/reoxygenation induces cardi-
omyocyte pyroptosis and IL-18 release, which is mediated by
caspase 11-mediated cleavage of GSDMD.126 Strikingly, HIF-1 plays
a key role in pyroptosis based on NLRP3 inflammasome.127–130

Based on the above findings on the role of hypoxia in inducing
pyroptosis, hypoxia-induced cell death is speculated as a vital
target for disease intervention.

Necroptosis. Necroptosis is another programmed cell death that
could be regulated by hypoxia, which is mediated by cell death
receptors and related to many inflammatory diseases.131 HIF-1α
accelerated necroptosis in macrophages through miR-210 and
miR-383.132 HIF-1α also participates in receptor interacting protein
1 (RIP1)-, RIP3-, and mixed lineage kinase domain-like protein
(MLKL)-induced necroptosis and deteriorates ischemic brain
injury.133 Conversely, a deficiency of HIF-1α and HIF-2α in the
myeloid leads to macrophage necroptosis in a myocardial
infarction model.134 These studies suggested varying roles of
hypoxia-related factors in necrosis.

Ferroptosis. The typical character of ferroptosis is iron-dependent
lipid peroxidation accumulation. Ferroptosis is associated with
various diseases, including those of the intestine, kidney, liver, and
tumors.135 Increasing evidence demonstrates a highly concerned
relationship between hypoxia and ferroptosis. Fan et al. demon-
strated that hypoxia restrains ferroptosis in hepatocellular
carcinoma (HCC) via HIF-1α/solute carrier family 7 member 11
(SLC7A11) axis.136. Another study showed that sorafenib reduces
CCl4-induced liver fibrosis through the induction of ferroptosis in
hepatic stellate cells via HIF-1α/SLC7A11 pathway.137 Moreover,
hypoxia stimulates SUMO/sentrin-specific peptidase 1 (SENP1)
protein to promote deSUMOylation of HIF-1α in H9C2 cells,
thereby inhibiting cardiomyocyte ferroptosis.138 Similar to the
treatment of di-(2-ethylhexyl) phthalate (DEHP), exposure to MEHP
(a major biometabolite of DEHP) results in HIF-1α accumulation
and transfer to the nucleus, followed by activation of HIF-1α/HO-
1 signaling pathway to promote ferroptosis.139 Altogether,
hypoxia-induced cell death is speculated as a major target for
disease intervention.

Hypoxia and immune response
The immune system is an extremely complex defense system of
the body, responsible for preventing pathogen invasion, recogniz-
ing and removing damaged cells, malignant cells, or other harmful

components to maintain homeostasis. The immune system is
mainly divided into innate and adaptive immunity. Failure to
activate or excessive activation of the immune system leads to
dysfunction or autoimmune diseases.140 In addition, the hypoxic
environment is related to immune response, including innate and
adaptive immunity.141,142 In this chapter, the role of hypoxia in
immune response is summarized systematically.

Hypoxia in innate immunity. Innate immunity eliminates the
infection, responds rapidly, and activates adaptive immunity.142 It
is well explored that hypoxia-related factors regulate the innate
immunity pathway. NF-κB is a key inflammatory response pathway
that promotes HIF-α transcription.42 In turn, HIF-1α promotes LPS-
induced NF-κB pathway activation and downstream gene expres-
sion in a succinate-dependent manner.143 In addition, pyruvate
kinase M2 (PKM2) regulates HIF-1α function to mediate LPS-
induced IL-1β expression.144 HIF-1α also regulates the interferon
pathway. In hypoxic monocytes, HIF-1α negatively regulates the
interferon expression.145 Upon severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) infection, HIF-1α signaling pathway
activates the interferon and pro-inflammatory cytokines.146 In a
previous study, we revealed that SARS-CoV-2 infection induces
HIF-1α expression, thereby promoting viral replication and virus-
induced inflammatory responses.147 HIF-1α is widely expressed in
different innate immune cells, including macrophages, dendritic
cells (DCs), and neutrophils. It also mediates metabolic repro-
gramming to mainly control innate immune cell activation and
immune response.148–150

Hypoxia in adaptive immunity. In adaptive immune regulation,
HIF-1α affects the differentiation and function of T cell-like innate
immune cells, and T cells undergo metabolic reprogramming after
activation. Shi et al. illustrated a vital role of HIF-1α-dependent
glycolysis pathway in the differentiation of Th17 and Treg cells,
whereas loss of HIF-1α reduces Th17 differentiation but enhances
Treg cell differentiation.151 Another study showed that HIF-1
promotes the development of Th17 and inhibits the development
of Tregs,152 implying varying glycolysis-dependence of the two
cell subsets. In addition, Palazon et al. found that HIF-1α is
essential for CD8+ T cells in anti-cancer immunity.153 The above
studies explored that HIF exerts a regulatory role in different T cell
subsets. B cell is an important adaptive immune cell. This
phenomenon clarified that hypoxia plays a specific role in B cell
differentiation and function in a HIF-1α-dependent glycolysis
pathway.154,155 Additionally, HIF-1α stimulates the production of
IL-10 in B cells via HIF-1α-mediated glycolysis,156 thus regulating B
cell-related autoimmune diseases.

HYPOXIA SIGNALING IN HUMAN DISEASES
Metabolic diseases
Hypoxia signaling in diabetes. Diabetes, a heterogeneous meta-
bolic disease, is featured by the presence of hyperglycemia
because of either defective insulin function, impaired insulin
secretion or both.157 Diabetes is rapidly spreading worldwide,
and its complications cause kidney failure, blindness, cardiovas-
cular disease risk, and increased mortality in individuals with
diabetes.158–160 A broad consensus was observed on four
categories of diabetes: type 1 diabetes (T1D), T2D, hyperglycemia
in pregnancy, and diabetes with a specific etiology that may be
genetic defects or secondary to drugs, pancreatic factors, or other
illnesses.161,162 Type 1 and T2D are primary forms of diabetes.163

Increasing evidence demonstrates that it is hypoxic in diabetes,
wounds, pancreatic islets, and tissues (such as the kidney),
indicating that hypoxia is closely involved in the occurrence of
diabetes.164–166 Next, we described the major mechanisms
underlying hypoxia signaling-regulated diabetes and diabetic
complications.
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Hyperglycemia is a common indicator for diagnosing T1D and
T2D. High glucose levels suppress hypoxia-induced stabilization
of HIF-1α protein level against degradation in specific cells.167 A
series of studies have presented the suppressed stabilization and
function of HIF-1α in the kidney, wound, and the heart of animal
models of diabetes or diabetes patients.166,168,169 Different cell
types decide specific roles of HIF-1α activity and signaling in
diabetic kidney diseases. High glucose level activates HIF-1α
signaling in glomerular mesangial cells,170 however, in proximal
tubular HK-2 cells, HIF-1α signaling is suppressed by high glucose
levels.171

Typically, activating HIF-1α signaling prevents the develop-
ment of diabetic kidney disease in the T2D animal model.172

Inhibited HIF-1α signaling impairs wound healing, while activated
HIF-1α signaling increases fibroblast proliferation, migration, and
angiogenesis to promote wound healing in the diabetes animal
models.168,173,174 Properly activated HIF-1α signaling is critical for
diabetic heart disease.175 Pharmacologically, activating HIF-1α
signaling restores the hypoxic response and improves functional
recovery post-ischemia in diabetic heart diseases.176

Unlike HIF-1α, there are only a few studies focused on HIF-2α in
diabetes. Brunt et al. suggested that overexpression of HIF-2α
does not alter glucose homeostasis in pancreatic β cells.177

However, recent studies have described a critical role of HIF-2α in
hepatic glucose homeostasis.178,179 Taniguchi et al. uncovered
that the increased hepatic HIF-2α, but not HIF-1α, improves
glucose tolerance and insulin sensitivity to ameliorate dia-
betes.178 Similarly, Wei et al. demonstrated that increasing
hepatic HIF-2α ameliorates dyslipidemia, decreases hepatic
gluconeogenesis, and improves glucose tolerance and hepatic
insulin sensitivity in a HIF-2α-IRS-2-dependent manner.179

Hypoxia signaling in hypoglycemia. Hypoglycemia is defined by a
low plasma glucose level, the development of autonomic or
neuroglycopenic symptoms, and symptoms in response to the
administration of carbohydrates.180 Interestingly, the deprivation
of glucose is capable to lead to numerous cellular effects,
including cell cycle arrest, autophagy, and apoptosis.181,182 High
level of glucose can weaken HIF-1α signaling in several
mammalian cell types.183–185 Furthermore, it is important to
understand the correlation between hypoxia signaling and
glucose deprivation.
Limberg et al. demonstrated that hypoglycemia-impaired

cardiovascular and autonomic functions are worsened in adults
with type 1 diabetes when hypoglycemia is combined with
hypoxia signaling.186 Miro and Tirosh showed that hypoxic
treatment has a strong hypoglycemic effect, and cholesterol
could regulate a metabolic ketogenic shift to prevent hypoxia-
induced hypoglycemia.187 Zamudio et al. demonstrated that
altitude-induced hypoxia decreases fetal circulating glucose
concentration and consumption, which unrecovered the correla-
tion of hypoglycemia with the derivation of hypoxia-induced
decline in human fetal growth.188

Hypoxia signaling in non-alcoholic fatty liver disease (NAFLD).
NAFLD is a kind of the most prevalent chronic liver disease
globally,189 characterized by macrovesicular steatosis in hepato-
cytes (≥5%) in the absence of a secondary cause, such as drugs or
alcohol.190 In the absence of overdose alcohol intake, it is a
progressive disease that involves lipid accumulation and non-
alcoholic steatohepatitis that ultimately causes cirrhosis and
hepatocellular carcinoma.191–193 It is reported that the pathogen-
esis of NAFLD has been linked to hypoxia signaling.194,195 HIFs can
also regulate cellular metabolism in hypoxia. HIF-1α upregulates
the expression of genes encoding glycolytic enzymes (i.e., LDHA)
and promotes glucose consumption, while HIF-2α represses the
expression of genes associated with oxidative metabolisms (i.e.,
FAO) and regulates lipid storage.70,196–199

HIF-1α activation promotes glucose consumption and glycolysis
and affects lipid metabolism.70,71 HIF-1α is upregulated in
hepatocytes in NAFLD and is also a critical regulator of liver
fibrosis in NAFLD.200–202 Csak et al. observed that microRNA
(miRNA)-122 regulates HIF-1α in hepatocytes and is correlated
with fibrosis in methionine-choline-deficient (MCD) diet-induced
steatohepatitis. Wang et al. showed that palmitic acid induces HIF-
1α and impairs autophagic flux and autophagy via HIF-1α in
macrophages.203 HIF-1α also mediates activation of NF-κB and
production of monocyte chemoattractant protein-1 (MCP-1),
impairs autophagy, and increases IL-1β production. Both MCP-1
and IL-1β contribute to MCD diet-induced non-alcoholic steato-
hepatitis.203 Asai et al. showed that cholesterol induces HIF-1α
activation and liver steatosis, and HIF-1α reduces the expression of
hepatic aquaporin 8 (AQP8) and promotes cholesterol gallstone
formation.204 The high expression of hepatic HIF-1α is observed in
the livers of patients with NAFLD and gallstones than in those
without gallstones.204

HIF-1α and −2α affect lipid metabolism; however, HIF-2α is the
predominant subunit regulating lipid metabolism, which sup-
presses fatty acid oxidation and promotes the genes related to
fatty acid synthesis and lipid storage.194,205 Knockdown of HIF-2α
protein reverses lipid metabolism dysregulation by acute hypoxia
in the human hepatocellular carcinoma HepG2 cell line.206 Rankin
et al. demonstrated that constitutive HIF-2α activation impairs
fatty acid β-oxidation and increases lipid storage capacity, leading
to severe fatty liver disease in mice.205 Morello et al. found that
HIF-2α activation influences the severity of steatohepatitis and
fibrogenesis in human NAFLD by upregulating the expression of
histidine-rich glycoprotein (HRGP).194 Qu et al. revealed that HIF-
2α activation promotes the developmental progression of
steatohepatitis by increasing lipid accumulation, subsequent
inflammation, and eventually fibrosis.207

Hypoxia signaling in osteoporosis. Osteoporosis, a common
skeletal disease is featured by systemic impairment of bone mass,
strength, and microarchitecture, which increases the risk for
fragility fractures.208 Oxygen is required for the activity of
skeletogenic cells and many fundamental cellular processes that
are critical for normal fracture healing.209 In recent years, several
studies elucidated the mechanisms by which HIFs (HIF-1α and HIF-
2α) impact bone remodeling and pathologies.210 However, the
underlying correlations between hypoxia signaling and osteo-
porosis remain poorly understood.
Miyauchi et al. showed that estrogen receptor α (Erα) decreases

HIF-1α protein levels in osteoclasts, and osteoclast formation is
blocked by HIF-1α deficiency in hypoxic conditions.211 Impor-
tantly, HIF-1α is controlled by estrogen signaling in osteoclasts,
and thus, it may be a promising therapeutic target to treat
postmenopausal osteoporosis.211 Tando et al. illustrated that
mouse HIF-1α protein accumulates in osteoclasts following
orchidectomy in vivo and in osteoclasts cultured in hypoxic
conditions in vitro.212 The protein level is suppressed by
testosterone treatment in osteoclasts cultured in hypoxic condi-
tions, and HIF-1α inhibitor abrogates testosterone deficiency-
induced bone loss and osteoclast activation in orchidectomized
mice.212 This testosterone deficiency accelerates HIF-1α protein
accumulation, thereby promoting the development of male
osteoporosis.212 Zhao et al. suggested that the expression of
HIF-1α and HIF-2α was suppressed by pVHL in osteoblasts, and HIF
signaling activation in osteoblasts might prevent the bone loss
induced by ovariectomy and increased angiogenesis and osteo-
genesis in mice.213 Hence, HIF-1α protein may be a critical
therapeutic target for osteoporosis.211–213

Infectious diseases
Hypoxia and infectious pneumonia. Infectious pneumonia is an
acute inflammation of the lung tissue caused by large-scale
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pathogens including viral and bacterial infections.214 Patients
confirmed with infectious pneumonia are at a high risk of acute
lung injury (ALI), especially those with specific types of viral
pneumonia,215 including Streptococcus pneumoniae (S. pneumo-
niae), the most common cause of pneumonia, and influenza virus,
frequently leading to viral pneumonia. Notably, S. pneumoniae
usually infects nervous system to cause fatal bacterial meningitis,
and the course of the infection could be affected by hypoxia and
HIF-1.216 Hypoxia is the hallmark of SARS-CoV-2 pneumonia.217

Therefore, hypoxia signaling might be closely associated with the
occurrence and progression of SARS-CoV-2 pneumonia. Herein, we
described the correlation between coronavirus disease 2019
(COVID-19) and hypoxia signaling (Fig. 4).
Serebrovska et al. speculated that the activation of HIF-1α

decreases the expression of angiotensin converting enzyme-2
(ACE2) along with transmembrane serine protease 2 (TMPRSS2)
while increasing the expression of ADAM metallopeptidase
domain 17 (ADAM17) on the surface of alveolocytes under
hypoxic conditions, thereby decreasing the invasiveness of SARS-
CoV-2.218 The study also concluded that HIF-1α signaling
participates in severe hypoxia-induced activation of pro-
inflammatory cytokine expression and cytokine storm phase of
COVID-19.218 We have recently revealed that SARS-CoV-2 induces
expression of HIF-1α and secretion of inflammatory cytokines via
ORF3a, and conversely, HIF-1α facilitates SARS-CoV-2 replication
and aggravates inflammatory responses.147 HIF-1α also facilitates
the infections of other viruses, such as herpes simplex viruses 1
(HSV-1) and vesicular stomatitis virus (VSV).147 Codo et al. showed
that SARS-CoV-2 triggers mitochondrial ROS production, which
enhances HIF-1α stabilization and sustains SARS-CoV-2 replication
in monocytes.219 Mitochondrial ROS-mediated stabilization of HIF-
1α also sustains replication of SARS-CoV-2 in monocytes.219

However, Prieto-Fernández et al. have shown that hypoxia reduces
the binding of the SARS-CoV-2 spike (S) protein to epithelial cells

through decreasing ACE2, neuropilin-1 (NRP1), and cellular
heparan sulfate (HS) expression.220

Hypoxia and viral hepatitis. The term viral hepatitis means liver
inflammation induced by hepatic viral infections of mainly
hepatitis B virus (HBV) and hepatitis C virus (HCV).221 Viral hepatitis
is a global public health problem that leads to thousands of
patients dying of acute and chronic infections, liver cirrhosis, and
cancer.222 In 2000, Lee et al. demonstrated that the expression of
HBV X protein (HBx) was elevated when HBV-infected hepatoma
cells were cultured under hypoxic conditions. Concurrently, when
a reporter plasmid carrying HBV Enh1 was transfected into
hepatoma cells under hypoxia, the HBV enhancer 1 (Enh1) activity
was augmented.223

In hepatocarcinogenesis, HBx protein may be a critical mediator
of hypoxia-induced angiogenesis.223 It increases the transcrip-
tional and translational level and also stabilizes HIF-1α.224,225

Moreover, HBx promotes the HIF-1α transcription by activating
MAPK pathway.226 Yoo et al. have shown that HBx protein
increases the transcriptional level of metastasis associated 1
(MTA1) and histone deacetylase 1 (HDAC1), thereby enhancing
HIF-1α protein in hepatocellular carcinoma cells.227 HBV also
induces the HIF-2α expression via HBx protein, conversely, HBx
activates NF-κB signaling to increase HIF-2α expression.228

Hallez et al. found that DNase I, a cellular restriction factor of HBV,
is induced by HIF-1α.229 Wing et al. found that HIF-1α and HIF-2α
promote HBV replication via activating the HBV basal core
promoter.230 HIF1α stabilization offers a reservoir for HBV in
immune-active patients and impairs NF-κB-mediated A3B induction,
which is critical for eliminating HBV covalently closed circular DNA
(cccDNA).231 Consequently, HIF-1α is a potential target in anti-HBV
strategy in the context of immune-mediated A3B induction.
Furthermore, Ripoli et al. showed that HCV protein expression

stabilizes HIF-1α under normoxic conditions, and glycolytic enzymes

Fig. 4 Role of HIF-1α in hypixa signaling in COVID-19. When SARS-CoV-2 entering host cells, viral ORF3a protein induces HIF-1α expression
through triggering mitochondrial reactive oxygen species (ROS) activation. The accumulated HIF-1α stimulates Ca2+ release, promotes viral
replication and enhances glycolytic and inflammatory genes, which leads to a cytokine storm
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are upregulated by activated HIF-1α in HCV-infected cells.232 Under
hypoxic conditions, HCV core protein enhances HIF-1α protein
expression, which then elevates VEGF expression.233 Zhu et al. found
that HCV core protein enhances the HIF-1α expression and
stabilization, and subsequently, HIF-1α stimulates VEGF expression
in Huh7.5.1 cells.234 Both VEGF and HIF-1α are crucial angiogenic
factors. Hence, HIF-1α might be a new therapeutical target against
HCV-induced HCC.234

Apart from the above bacterial and viral infection, hypoxia is
found to be closely related to the pathogenesis of multiple
neurological infectious diseases, including enterovirus, mumps,
lymphocytic choriomeningitis, and type I and II scab viruses,235

the interconnection between hypoxia and infectious diseases in
nervous system is taken under consideration to a potential targeted
therapy in the following investigations.

Neoplastic diseases
Hypoxia in colon cancer. Colon cancer is one of the most
common cancers worldwide, with the highest mortality rate along
with breast, lung, and prostate cancers.236 The colon and rectum
are the final portions of the human digestive tract. Colon cancer
arises from the colonic epithelial cells that line the lumen of the
organ and results from a multistep process of colon neoplasia over
several years.237 Hypoxia is a typical feature of solid tumors in
common and it is related to the progression and metastasis of
colon cancer.238–240 For example, the expression of Orai1 is
induced by hypoxia in colon cancer, which promotes hypoxia-
induced invasion and angiogenesis.241 The correlation between
colon cancer and hypoxia is illustrated (Fig. 5).
HIF-1α was upregulated in colon cancer tissues.242 Santoyo-

Ramos et al. showed that HIF-1α and HIF-2α are expressed in human

colon cancer cells but not in non-malignant cells under normoxic
conditions.243 Jeon et al. revealed that protein S-glutathionylation
increases the protein level of HIF-1α in hypoxic colon cancer cells.244

Zheng et al. demonstrated that DJ-1 protein facilitates the survival of
human colon cancer cells by the increased HIF-1α protein
expression by means of PI3K-AKT signaling pathway.245

Under hypoxic stress, upregulated HIF-1α induces the expression
of phospholipase D2 (PLD2) in colon cancer cells, while down-
regulation of the protein significantly reduces the expression of
PLD2 and tumor volume.238 Hypoxia-induced elevated expression of
PLD2 facilitates cell proliferation by NF-κB signaling activation to
upregulate the expression of Cyclin D1 in colon cancer.246 Du et al.
have suggested that annexin A3 (ANXA3) expression is upregulated
by HIF-1α under hypoxic stress and promotes tumor growth in
colon cancer.247 The expression of HIF-1α and semaphorin 4D
(Sema4D) is closely related to lymphatic metastasis and specific
histological types in colon cancer. Mechanistically, in colon cancer,
tumor-associated macrophages (TAMs) may accelerate cell migra-
tion and invasion via upregulation of HIF-1α and Sema4D.248 Costa
et al. found that miR-675-5p is overexpressed in metastatic colon
cancer patients and is involved in tumor progression by promoting
HIF-1α-induced EMT.249 HIF-1α mediates hypoxia-induced apopto-
sis-inducing factor (AIF) inhibition, and downregulation of AIF
contributes to hypoxia-induced EMT of colon cancer.250 In a subset
of colon cancers, HIF-1α is a positive factor for non-hypoxia-
mediated cell proliferation in vitro and in vivo, and hypoxia-
mediated cell proliferation and survival in vitro but does not
contribute to the hypoxic tumor compartments in vivo.251

HIF-2α is essential in the inflammatory response and the
regeneration and proliferation capacity of the intestine following
an acute injury, and its chronic activation enhances the

Fig. 5 Summarized paticipation of HIF-1α in the tumorgenesis. The roles of HIF-1α in various kinds of human cancer. The tumorgenesis arises
by the regulation of HIF-1α with intermediator and effectors such as indicated protein, miRNAs, or lncRNAs
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proinflammatory response, intestinal injury, and colorectal cancer.252

Franovic et al. showed that suppression of HIF-2α restrains
tumorigenesis and the proliferation of genetically diverse human
cancer cells in vivo.253 Xue et al. suggested that HIF-2α activation
increases tumor progression in colon cancer, whereas the HIF-2α-
induced tumor formation is reduced upon low-iron treatment.254

Experimental evidence highlighted that apart from human colon
carcinoma cell lines, HIF-2α is also important for the survival of
patient-derived primary colon cancer cells.255 Different from HIF-1α,
HIF-2α plays an important role in resistance in colon malignant
cells.255 Cyclooxygenase 2 (COX2) expression is dependent on HIF-
2α in colon tumors, and its inhibition reduces HIF-2α-induced colon
tumor formation.256 Yes-associated protein 1 (YAP1) activity is
upregulated by HIF-2α in CRC-derived cell lines and mouse models;
HIF-2α also promotes colon cancer growth by upregulating the
activity of YAP1.257

Hypoxia signaling in lung cancer (LC). LC, a kind of malignant
tumor and a leading cause of death worldwide, is mostly classified
into two categories, namely small cell lung cancer (SCLC) and non-
small cell lung cancer (NSCLC).258–260 NSCLC is the major subtype
of LC and accounts for about 80% of all patients with LC.261 The
initiation of LC derives from a highly vascularized and oxygenated
tumor microenvironment, crucial for tumor progression.262,263

Current studies have found that hypoxia signaling is associated
with multiple processes in the occurrence and progression of
NSCLC and SCLC,264,265 which are controlled precisely and
differentially (Fig. 5).
Hypoxia elevates the HIF-1α level in LC cells.266 Moreover, HIF-

1α expression in LC is higher than in normal lungs. NSCLC patients
have a higher HIF-1α expression than SCLC patients, while
upregulation of HIF-1α is closely related to tumor growth and
survival rate of NSCLC.267–269 It is reported that long non-coding
RNA (lncRNA) PVT1 increases the expression of HIF-1α in NSCLC.270

Wu et al. found that fibroblast growth factor 11 (FGF11) is
upregulated in NSCLC tumor tissues and cell lines, and high
expression of FGF11 is related to a poor prognostic outcome in
NSCLC patients.271 miR-525-5p negatively regulates FGF11 while
FGF11 promotes the expression of HIF-1α for NSCLC progres-
sion.271 On the other hand, T-lymphokine-activated killer cell-
originated protein kinase (TOPK) positively regulates HIF-1α
expression and promotes Snail expression, leading to EMT and
invasion of NSCLC.272 In response to hypoxia, elevated lncRNA-
AC020978 accelerates proliferation and the glycolytic metabolism
of NSCLC by regulating PKM2-enhanced HIF-1α transactivation
activity.273 Overexpression of miR-622 mediated by forkhead box
O3 (FOXO3a) represses HIF-1α to hinder the migration and
invasion of LC cells.274 Gamma linolenic acid (GLA) inhibits
hypoxia-driven proliferation and invasion of NSCLC cells by
inhibition of HIF-1α-VEGF pathway in vitro.275 Subsequently, HIF-
1α inhibition suppresses the hypoxia-induced EMT phenotype and
increases the efficacy of immune checkpoint blockade in the
treatment of NSCLC.276

The study of the correlation between HIF-2α and LC has not
been elucidated clearly. Kong et al. showed a higher expression of
nuclear paraspeckle assembly transcript 1 (NEAT1) in NSCLC
tissues and cells than that in normal controls, and NEAT1
knockdown suppresses cell proliferation, migration, and invasion
in NSCLC.277 Interestingly, NEAT1 promotes EMT and NSCLC cell
metastasis under hypoxia in a HIF-2α-dependent manner.277 Wang
et al. demonstrated that lncRNA HIF2PUT was downregulated in
NSCLC tissues and cell lines, and its overexpression inhibits NSCLC
proliferation and invasion via HIF-2α pathway.278

Hypoxia signaling in gastric cancer (GC). GC is a high concern for
health globally and the second cause of cancer deaths after LC.279

The causes of GC are multifactorial, although Helicobacter pylori
infection is considered the main cause; its effects are modulated

by environmental, microbial, and host factors.280 Hypoxia is
closely related to the aggressive tumor phenotypes of gastric
carcinomas,281,282 including the metastatic ability of cancer
cells.283,284 For example, hypoxia increases GC malignancy
partially through transcriptional activation of lncRNA-GAPLINC
in a HIF-1α-dependent manner.285 Therefore, the factors under-
lying the correlation between GC and hypoxia need to be
investigated further (Fig. 5).
HIF-1α overexpression is a poor prognostic indicator for

patients with GC and is highly correlated with histology, depth
of invasion, and microvessel density.286 HIF-1α stimulates multi-
drug resistance in GC cells through stimulating the transcription
of miR-27a.287 HIF-1α-induced miRNA-421 promotes metastasis,
inhibits apoptosis, and induces cisplatin resistance by targeting
E-cadherin and caspase-3 in GC.288 Liu et al. suggested that HIF-
1α and Wnt/β-catenin signaling pathways promote the invasion
of hypoxic GC cells.48

Hypoxia increases the migration and invasion of GC cell line
BGC-823 by activating HIF-1α and inhibiting N-myc down-
regulated gene 2 (NDRG2)-associated signaling pathway.289 Xia
et al. demonstrated that hypoxia promotes the release of GC
exosome and the expression of miR-301a-3p; then, miR-301a-3p-
rich exosomes increase HIF-1α accumulation and promote GC
malignancy and metastasis.290 Ding et al. showed that collagen
triple helix repeat containing 1 (CTHRC1) overexpression
increases cell migration and invasion capacity in GC. CTHRC1
upregulated the expression of HIF-1α to increase CXC chemokine
receptor 4 (CXCR4) expression, ultimately promoting cell migra-
tion and invasion.291 Epigallocatechin gallate (EGCG) induces
apoptosis and impedes proliferation in GC SGC7901 cells by
downregulating the expression of HIF-1α and VEGF under
hypoxia.292 Downregulation of HIF-1α, leading to suppressing
the PI3K/AKT pathway and VEGF expression, might inhibit the
proliferation, migration, and invasion of GC.293

Hypoxia signaling in breast cancer (BC). BC is the most common
malignant tumor diagnosed in women.294 It is also the leading
cause of cancer-related deaths in women globally.279 Hypoxia
signaling serves an essential role in BC and an increased level of
HIF-1α has been documented in BC.295 Overexpression of HIF-1α
is significantly associated with poor disease-free and overall
survival in BC patients.296 Sun et al. have shown that HIF-1α is
closed to tumor differentiation, lymph node metastasis, and
clinical stage with respect to survival in BC patients.297 Next, the
correlation between BC and hypoxia was interpreted compre-
hensively (Fig. 5).
HIF-1α overexpression effectuates via different regulatory

pathways in BC: (a) hypoxia induces perinecrotic HIF-1α over-
expression with a robust expression of hypoxia-related genes
that are responsible for poor prognosis; (b) normoxia induces
diffuse HIF-1α overexpression lacking major hypoxia-associated
downstream effects, which is a favorable prognosis.298 Marton
et al. showed that HIF-1α overexpression indicates an unfavor-
able prognosis and could serve as an additional prognostic
factor in neuroendocrine BCs.299 Dales et al. demonstrated that
mRNA expression of HIF-1αTAG splice variant reflects a stage of
BC progression and is related to poor prognosis.300 Hoffmann
et al. found that hypoxia promotes BC cell invasion through HIF-
1α-mediated upregulation of cysteine-rich protein 2 (CSRP2), an
invadopodia actin-bundling protein.301 Choi et al. suggested
that HIF-1α promotes the MMP-9 expression under hypoxic
conditions, which affects BC cell invasion.302 HIF-1α signaling is
critical in ATP-driven chemoresistance and may serve as a
potential target for BC therapies.303

BC cells display phenotypic diversity in response to hypoxic or
normoxic microenvironments. HIF-1α induces the expression of
hematopoietic pre-B cell leukemia transcription factor-
interacting protein (HPIP) that establishes cell survival and
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promotes migration and invasion of cells, EMT, and metastatic
phenotypes under hypoxia. Accumulation of HPIP stabilizes HIF-
1α to support cell growth.304 Jia et al. demonstrated that claudin
6 (CLDN6) functions as a tumor suppressor in BC and is
upregulated by HIF-1α under hypoxia.305 Increased CLDN6
weakens the stability of HIF-1α protein by reducing the
expression of SENP1 and preventing the deSUMOylation of
HIF-1α; the negative feedback loop slows down the hypoxia-
induced BC metastasis.305 Hypoxia-responsive miR-141-3p is
involved in the progression of BC, which prevents hypoxia-
induced BC by inhibiting the high mobility group box 1
(HMGB1)/HIF-1α signaling pathway.306 Breast cancer metastasis
suppressor 1 (BRMS1), a novel metastasis suppressor protein
without the activity of anti-proliferation, attenuates TGF-β1-
induced EMT and invasion of BC cells through suppressing HIF-
1α expression.307

Similar to HIF-1α, Wang et al. suggested that HIF-2α
expression is significantly correlated with tumor size, lymph
node involvement, and metastasis, and high expression of the
protein is associated with poor overall survival in BC patients.308

Thus, HIF-2α could be a valuable biomarker of BC progression
and patient survival.308 It may promote the migration and
invasion of human BC MCF-7 cells under hypoxic conditions by
potentiating the Notch3 pathway.309 Bai et al. revealed that the
downregulation of HIF-2α suppresses the stemness of human BC
MDA-MB-231 cells and promotes apoptosis.310

Hypoxia signaling in pancreatic cancer. Pancreatic cancer is a fatal
malignancy, predominantly seen in men at an advanced age of
40–85 years. It ranks first among asymptomatic cancers.311

Pancreatic cancer is extremely difficult to detect as it lacks early
signs and spreads rapidly to the surrounding organs.311 The high
malignancy of pancreatic cancer is mostly attributed to the
hypoxic tumor microenvironment.312,313 Pancreatic cancer is
accompanied by HIF-1α overexpression.314,315 Herein, we sum-
marized the mechanism by which hypoxia signaling affects the
tumorigenesis and progression of pancreatic cancer (Fig. 5).
HIF-1α is overexpressed in pancreatic cancer patients, and it

regulates expression of various genes associated with pancreatic
cancer.315,316 HIF-1α overexpression induces EMT in an NF-κB
signaling pathway-dependent manner.317 Several findings dis-
covered that high expression of HIF-1α significantly enhances the
capacity of anti-apoptosis in pancreatic cancer cells.318,319

Upregulation of autophagy induced by HIF-1α improved the
malignancy of pancreatic cancer through potentiating EMT and
migration of pancreatic cancer stem cells.320 Yue et al. showed
that HIF-1α facilitates the expression of miR-212 and results in
the development of pancreatic ductal adenocarcinoma.321 Zeng
et al. demonstrated that MTA2 transcriptional regulator lncRNA
(MTA2TR) is overexpressed in pancreatic cancer patient tissues
compared to paired noncancerous tissues and promotes
pancreatic cancer cell proliferation and invasion in vitro and
in vivo.322 MTA2TR is transcriptionally regulated by HIF-1α under
hypoxic conditions.322 Furthermore, miRNAs regulate HIF-1α on
the EMT of pancreatic cancer cells. The level of miR-142 was
obviously lower in pancreatic cancer cell lines and tissues than
that in normal tissues. Downregulating the expression of miR-
142 increases HIF-1α expression to upregulate EMT-related
proteins, eventually enhancing the invasion and migration of
pancreatic cancer cells.323

Wang et al. showed that the mRNA levels of HIF-1α and HIF-2α
were upregulated in pancreatic cancer. However, their protein
expression patterns differed markedly with varied roles in
pancreatic cancer.324 HIF-1α serves as an unfavorable prognostic
indicator, whereas HIF-2α is a favorable prognostic indicator in
pancreatic cancer patients.324 MiR-301a was upregulated by HIF-
2α-dependent signaling pathway, and it promotes hypoxia-
induced EMT of pancreatic cancer cells.325 Yang et al. suggested

that HIF-2α promotes EMT by regulating Twist2 binding to the
E-cadherin promoter in pancreatic cancer.326 HIF-2α facilitates
the formation of vasculogenic mimic in pancreatic cancer by
regulating Twist1 binding to VE-cadherin promoter.327

Hypoxia signaling in prostate cancer. Prostate cancer is a major
disease in males around the world.328 It is the second most
common form of cancer in men, surpassed only by nonmelanoma
skin cancer.328 The incidence and mortality of prostate cancer are
correlated with the mean age at diagnosis is 66 years.329 Zhong
et al. found that expression of HIF-1α increases in human and rat
prostate cancer cell lines.330 Hypoxia signaling plays a vital role in
the tumorigenesis and progression of prostate cancer. Herein, we
illustrated the complex correlation between prostate cancer and
hypoxia (Fig. 5).
Hypoxia significantly enhances the invasiveness of prostate

cancer PC3 cells by upregulating HIF-1α expression and autocrine
tumor necrosis factor (TNF)-α production.331 HIF-1α cooperates
with TNF-α and stabilizes Snail, which in turn upregulates the
invasiveness-associated genes, MMP9, fibronectin, and vimen-
tin.331 Moreover, HIF-1α expression is associated with an increased
risk and clinicopathological significance in prostate cancer
patients.332 Xia et al. revealed that protein kinase CAMP-
dependent type II regulatory subunit beta (PRKAR2B) increases
HIF-1α expression, a key mediator of the Warburg effect.333

Interestingly, PRKAR2B-HIF-1α loop enhances the Warburg effect
that provides a growth advantage in prostate cancer.333

Cardiovascular diseases
Cardiovascular diseases are the leading threat to life and health
worldwide.334,335 The circulatory system, i.e., the organs and
tissues in the body that carry blood, primarily the heart and blood
vessels (arteries, veins, and capillaries), is involved in the series of
illnesses.336,337 Hypoxia is one of the most important pathogenic
factors of cardiovascular diseases.338–341 It heralds the onset of
many cardiovascular diseases, i.e., arteriosclerosis, pulmonary
hypertension, and heart failure.342 The occurrence and develop-
ment of cardiovascular diseases can be induced by sympathetic
excitation disorder, oxidative stress, inflammatory response,
endothelial injury, abnormal glucose, and lipid metabolism
caused by hypoxia.343–346

HIF-1α is the primary controller of physiological and pathological
hypoxia and is widely expressed in cardiovascular dis-
eases.141,216,347 Almost all genes related to hypoxia, including
glucose transporter (GLUT), VEGF, glycolytic enzymes, cell survival
factors, and cell surface receptors, are directly or indirectly
regulated by HIF-1.348 The levels of HIF-1α subunits increase
exponentially with the decrease in oxygen concentration to
regulate hypoxic adaptive response.349 During an oxidative stress
response, ROS promotes HIF-1α expression to activate the
transcription of several genes, such as endothelin-1 (ET-1); the
expression of ET-1 contributes to cardiovascular diseases.350

Previous studies have shown that the expression of HIF-1α
activates a series of profibrotic transcriptional genes, including
collagen I, III, IV, and lysyl oxidase, leading to myocardial
fibrosis.351–354 The different expressions of HIF-1α in the cardio-
vascular cell system, significantly affect the function of these cells
and performing a certain part in the diseases including athero-
sclerosis, pulmonary hypertension, cardiomyopathy, arrhythmia,
and congenital heart disease.

Hypoxia in atherosclerosis. Atherosclerosis, as the primary cause
of cardiovascular disease, leads to mortality and disability world-
wide. It is characterized by chronic inflammatory changes in large
and medium-sized arterial walls,355 including lipid deposition,
atheromatous plaque formation and rupture, inflammatory cell
infiltration, and endothelial function damage.356,357 The formation
mechanism of atherosclerosis includes oxidative stress, arterial
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endothelial injury and dysfunction, foam cell formation, and
subsequent lipid deposition and thrombosis.358 Arteriosclerosis
begins with endothelial dysfunction that induces mononuclear
cell infiltration.359 Cytokines released by mononuclear cells
stimulate the proliferation of smooth muscle cells in the media
of blood vessels and the new intima.360 In addition, mononuclear
cells activate into macrophages, during which smooth muscle cells
of the new intima ingest lipids to become foam cells, forming
atheromatous plaques.361,362

Atherogenesis is related to hypoxia. Under such conditions, the
extracellular nutrients and lipids induce the formation of hypoxic
areas in arterial plaques, especially in macrophages, vascular
smooth muscle cells, and endothelial cells.363,364 These cells
subsequently express HIF in response to hypoxia.364 HIF-1α is
expressed in 49% of carotid and 60% of femoral endarterectomy
patients, providing evidence of its involvement in atherogenesis.365

In addition, pimidazole is increased in hypoxic zones of athero-
sclerotic areas, indicating the involvement of hypoxia in ather-
ogenesis.366 ATP-binding cassette transporter A1 (ABCA1) and
apolipoprotein A1 (ApoA-1) contribute to monocyte-macrophage
infiltration and lipid deposition with plaque formation in the arterial
wall, respectively.367 HIF-1α interacts with NF-κB and promotes the
expression of ABCA1 to exert an anti-atherosclerotic role in the
pathogenesis of atherogenesis in THP-1.368 Once the oxygen
concentration in the cells is low, HIF-1α signaling participates in the
formation and rupture of atherosclerotic plaques by promoting the
expression of VEGF.13 Subsequently, VEGF stimulates neovascular-
ization, promotes atherogenesis, increases plaque instability, and
hastens plaque rupture.13

In human vascular smooth muscle cells, the expression of low-
density lipoprotein receptor-related protein (LRP1) was upregu-
lated by HIF-1α, promoting the deposition of lipids in plaques.369

Furthermore, lncRNAs are differentially expressed in patients
with non-ST-segment elevation myocardial infarction (NSTEMI)
and ST-segment elevation myocardial infarction (STEMI) through
the HIF-1α signaling pathway, which might become a serological
marker to distinguish between NSTEMI and STEMI.370 Previous
studies have shown that HIF-1α and HIF-2α are increased in
atherosclerosis, and lesions aggravate with the increase in HIF.364

Moreover, in a high-fat diet mice model, the selective deficiency
of HIF-1α in endothelial cells relieved the lesion formation in
6 weeks.371 In apolipoprotein E knockout mice (ApoE−/−) mice,
reduced HIF expression decreased VEGF activity and intimal
hyperplasia.372. Furthermore, the deletion of Hif-1α gene in
ApoE−/− mice reduced the atherosclerotic lesions, inflammation,
and the level of chemokines by upregulating miRNA-19a.371

Folco et al. demonstrated that when exposed to hypoxia, human
macrophages and foam cells had increased glucose uptake,
especially in macrophage-rich regions of the plaques.373 The
studies showed various regulations of atherosclerosis by HIF in
different types of cells, although the underlying mechanism
needs to be further investigated.

Hypoxia in pulmonary hypertension (PH). Pulmonary hyperten-
sion (PH) is characterized by hypoxia-induced pulmonary vessel
contraction, vascular remodeling, and increased pulmonary
circulation resistance, which results in elevated pulmonary artery
pressure.374 Subsequently, the disrupted pulmonary artery
endothelial cells (PAECs) produce substances that induce smooth
muscle cell proliferation, resulting in neointima development and
increased arterial thickening in PH. Compared to healthy controls,
proliferating PAECs generate more vasoconstrictors while produ-
cing less nitric oxide (NO) and prostacyclin.375 However, the
underlying mechanism is yet unknown. Reportedly, HIF is
associated with the pathophysiology of PH. Both heterozygous
HIF-1-deficient and HIF-2-deficient mice are protected from
chronic hypoxia-induced PH.376,377 The occurrence and develop-
ment of PH are influenced by inducible nitric oxide synthase

(iNOS) and ET-1.378,379 HIF-1 activates and boosts the expression
of iNOS and ET-1 under hypoxia,380,381 which might underlie the
mechanism of PH.
One of the primary enzymes involved in endothelial cell (EC)

proliferation and pulmonary dilation of blood vessels is arachi-
donate 5-lipoxygenase (ALOX5).382 When human PAECs are
exposed to hypoxia, ALOX5 pathway is activated, increasing
H2O2 generation and contributing to H2O2-dependent EC
proliferation.382 Furthermore, Su et al. found that ALOX5 promoter
harbors the potential binding sites for early growth response
protein 1 (EGR1) and SP1; both act as coregulators of
erythropoietin receptor expression in LC cells in collaboration
with HIF.383 Moreover, glucose absorption in idiopathic PAH
(IPAH) patients’ lungs and the ECs is dramatically elevated with
the decrease in mitochondrial concentration in EC and the
increase of EC proliferation,384–386 while knockdown of glycolytic
regulator PFKFB3 protects the mice against hypoxia-induced
PH.384 Consequently, HIF in ECs’ physiology might play a role in
PH formation. Notably, the mutual regulation of CD146 and HIF-
1α is a key factor in the pathological mechanism of vascular
reconstruction, remodeling, and PH formation.387 In addition,
CD146 and HIF-1α promote each other’s expression and
accelerate vascular remodeling and PH formation.387 Therefore,
the regulation of HIF expression might be a potential target for
the treatment of PH.

Hypoxia in cardiomyopathy. Cardiomyopathy is a category of
disorders that produces anatomical and functional problems in
the heart. It is classified as primary or secondary, with diverse
phenotypes, such as dilated, hypertrophic, or restricted.388

However, the prevalence and progression of cardiomyopathy are
not well understood. Chen et al. demonstrated that HIF-1α and
FoxO3a collectively contribute to increased expression of the
death factor BNIP3 and promote cardiac cell apoptosis in response
to a combined stimulation of high glucose plus hypoxia.389

Hypoxia-induced mitogenic factor (HIMF) overexpression
increases HIF-1α in neonatal rat cardiomyocytes, confirming the
role of HIMF in myocardial hypertrophy. Thus, the deletion of HIF-
1α reduces cardiomyocyte hypertrophy produced by HIMF and
suppresses myocardial hypertrophy, making it a potential target
for myocardial hypertrophy therapy.390 Reportedly, HIF-1α and
PPAR are major regulators of glycolysis and lipid anabolism; the
expression of these molecules is increased in hypertrophic
cardiomyopathy. Also, these molecules jointly regulate and
participate in the changes in cardiac metabolism, whereas HIF-1
accumulation is limited to pathological cardiac hypertrophy, but
not physiological hypertrophy, in humans and mice.72 Some
studies demonstrated that long-term intermittent hypoxia (IH)
exposure causes continual activation of HIF-1α, which is respon-
sible for the rise in infarct size.391,392 However, sustained heart-
specific HIF-1α overexpression is beneficial in mice in the short
term, causing cardiac insufficiency with age.393 An increased HIF-
1α expression is detected in cardiac samples from cardiomyopathy
patients, but a high level of plasma HIF-1α in patients with
decompensated heart failure is related to low ejection fraction and
survival.393–395 Taken together, the current study focuses on HIF-
1α in primary cardiomyopathy, which demonstrates that HIF-1α
has negative consequences, but its role and mechanism in
secondary cardiomyopathy require further exploration.

Hypoxia in arrhythmia. Arrhythmia is an irregular frequency and/
or rhythm of heartbeat ascribed to the origin and/or conduction
problem of cardiac activity. It comprises a significant category of
cardiovascular disorders that can occur alone or in conjunction
with other cardiovascular diseases. Atrial fibrillation (AF) is one of
the most frequent forms of human arrhythmias, with a significant
disability and fatality rate in patients.393,396,397 The etiology of AF is
linked to MMP-9; the increased activity of MMP-9 causes atrial
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fibrosis and induces AF.398 Another study demonstrated that HIF-
1α stimulates the downstream factor TGF-β1 by promoting the
expression of angiotensin II (Ang II), which causes high expression
of MMP-9.399 Conversely, the levels of TGF-β1 and MMP-9 are
lowered by inhibited HIF-1α expression, reducing the degree of
atrial fibrosis.399 Ogi et al. reported a high HIF-1α level in AF
patients. The study also postulated that the subsequent structural
remodeling is caused by cardiac hypoxia.400 HIF-1 has been
observed in peri-left atrial adipose and linked to fibrotic
remodeling, which creates a substrate for AF.401 Xu et al.
discovered that patients with permanent or persistent AF had
higher levels of HIF-1α expression in the left atrial biopsies
compared to patients with paroxysmal AF or patients in sinus
rhythm from left atrial samples, implying a significant role of the
protein in structural remodeling that supports AF initiation and
propagation.402 Also, an increasing number of target genes have
been discovered to play a role in various physiological and
pathological processes in HIF-mediated AF.403,404

Hypoxia in congenital heart disease (CHD). CHD is the most
common type of congenital deformity, classified into three types
based on hemodynamics: no shunt, left to right shunt, and right to
left shunt.405–407 Patients with cyanotic CHD (CCHD) might have a
hypoxic response, which leads to abnormalities in endothelial
function, vascular remodeling, and thrombosis after emergency
surgery.408 Prolyl-4-hydroxylase2 (PHDP2)/HIF-1α pathway is the
key regulator under hypoxia. PHD2 activates HIF-1α oxygen-
dependent hydroxylation of the internal oxygen-dependent
degradation domain in a normoxic environment. However, this
hydroxylation is inhibited during hypoxia, resulting in HIF-1α
accumulation and vascular remodeling.409 Thus, it has been
demonstrated that Egl-9 family hypoxia-inducible factor 1 (EGLN1)
mutation decreases the hypoxic response of CCHD via the PHD2/
HIF-1 pathway, which might be a viable target for CCHD
therapy.410 Liu et al. discovered that Cited2 functional loss causes
abnormalities in the heart and neural tube development, partially
due to the regulation of HIF-1α transcriptional activity in the
absence of Cited2,411 emphasizing its significant role in the
development of CHD.

Neurodegenerative diseases
Neurodegenerative disorders are characterized by the gradual
death of susceptible groups of neurons; the frequency of this
incidence increases rapidly with age.412 Three major neurodegen-
erative disorders are Alzheimer’s disease (AD), Parkinson’s disease
(PD), and amyotrophic lateral sclerosis (ALS). Here, we discuss the
function of hypoxia in neurodegenerative disorders.
AD is a serious neurodegenerative disease with a convoluted

etiology and varying periods of onset, which is one of the most
common neurodegenerative disorders.413 AD is distinguished by
two key features: amyloid beta-peptide (Aβ) accumulation in the
brain and the appearance of neurofibrillary tangles composed of
hyperphosphorylated tau protein.414 Cerebral hypoxia is strongly
related to AD, which is correlated to cardiovascular risk factors.415

Physical exercise lessens the incidence of AD, featured by
functioning of the neurovascular unit.416–418 HIF-1α levels in the
brain are lower in AD patients, which have been linked to
increased phosphorylation of tau protein and production of
neurofilament.419 Furthermore, the advancement of neurodegen-
eration is involved in an increase in the generation of ROS,
contributing to decreased expression of genes essential for
remaining nerve cell viability and synaptic transmission, especially
the HIF-1 gene.414

Another common age-related neurodegenerative disease is PD,
which affects the elderly and is characterized by the loss of
dopaminergic neurons and α-synuclein’s Lewy bodies (LB)
accumulation.420–423 Accumulating evidence confirmed that
mitochondrial malfunction and oxidative stress participate in the

etiology of PD.424 Furthermore, HIF-1 is required for differentiation
and survival of dopaminergic neuron, and a reduction in its
expression results in neuronal death throughout the progression
of PD.425 The in vitro and in vivo PD models revealed that the
activation of HIF-1 exerts protective effects in neurons via
expression of EPO and VEGF genes.197,426,427 Neuroprotective
neuropeptide orexin-A induces HIF-1α expression, consequently
activating VEGF and EPO in in-vitro PD models. Thus, HIF-1-
mediated downstream signaling has the potential for PD
treatment. In addition, the regulation of HIF-1 signaling by the
ubiquitin-dependent proteasome pathway or HIF-specific prolyl
hydroxylases is also able to avoid the neurons injury from
oxidative stress, thereby accelerating the progress of PD.401,428–430

Amyotrophic lateral sclerosis (ALS) is a chronic neuronal disease
caused by the injury to motor neurons in the motor cortex, spinal
cord, and sub-brainstem.431 ALS causes gradual muscular weak-
ening and atrophy of the muscles of the limbs, trunk, chest, and
abdomen, which affects movement, communication, swallowing,
and breathing, leading to death 3–4 years after the initial
diagnosis.432,433 The dysregulation of EPO and VEGF accompanied
by vascular changes, and blood flow disorder contributes to the
pathogenesis of ALS, resulting in the hypoxia of the tissue.434,435

Hypoxia in tissues increases ROS production, leading to cell
death.436 Thus, the uncontrolled hypoxia pathway is responsible
for motor neuron death in ALS.437 Nomura et al. demonstrated
that HIF-1α expression is dynamic in different stages of ALS,
indicating the participation of HIF-1α in ALS.438 Dysregulation of
the anti-hypoxic pathway induced by impaired HIF-1α activation
promotes the motor neuron decline in ALS.439,440 Similar to the
role in PD, HIF-1α activation protects the neurons in ALS. In an ALS
in vivo model, the induction of HIF-1α decreases hypoxia-caused
damage, protecting the neurons, reducing the inflammatory
response, and lessening motor neuron degeneration.438 Conver-
sely, decreased HIF-1α expression induced by ONO-1301-MS
increases motor neuron generation in the mice model of ALS.441

Nonetheless, these findings need to be investigated further with
respect to HIF-1α in ALS.

TARGET THERAPEUTICS BASED ON HYPOXIA
Oxygen balance ensures the normal progress of life activities.
Hypoxia affects the expression of many genes with clinicopatho-
logical significance in various human diseases.442 HIF-1 is deemed
as the core element in the hypoxia pathway. Based on the
advance in human health and diseases involved in hypoxia,
researchers have made a great effort to intervene in each step in
the hypoxia signaling pathway upon the occurrence of dis-
eases,443 to develop target therapeutics for hypoxia-associated
diseases (Table 1). Next, we summarize the hypoxia-targeted
therapeutics against major human diseases (Fig. 6).

Hypoxia-targeted therapeutics in cancer and tumor
In the tumor hypoxic microenvironment, HIF functions in many
aspects, such as improvement of glucose metabolism and
enhancement of VEGF expression for angiogenesis to help the
cells adapt to hypoxia. Abnormally high levels of angiogenesis,
inflammation, and anaerobic glycolysis promote tumorigenesis
and cause neoplastic diseases in the body.444 The stably
generated HIF activates the downstream target genes succes-
sively, triggering a series of tumor activities. Therefore, HIF is
considered one of the therapeutic targets of tumors.445 However,
it may have varied roles in different tumor types. For example, the
EGLN/HIF axis contributes to tumorigenesis in RCC,446 but has an
opposite effect in other types of cancer.447 Thus, elucidating the
exact role of HIFs in different conditions in the hypoxia-targeted
therapeutics against tumors is recommended.
ccRCC is one of the common kidney cancers. The occurrence of

pVHL tumor suppressor inactivation is a major event in ccRCC.448
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Inactivation of pVHL stabilizes HIF-1α and HIF-2α. Therefore,
several studies have focused on anti-caking agents for HIF-2α.
PT2399 is a small-molecule inhibitor that dissociates HIF-2 and
inhibits tumorigenesis in 56% of its congeners in human ccRCC
cells.449 Compared to untreated controls, the growth of orthotopic
tumors treated with PT2399 is arrested and regressed in mice.450

Another HIF2α-specific antagonist, PT2385, also inhibited the
expression of HIF-2α target genes in ccRCC cell lines and mouse
xenografts tumor model.450 PT2385 demonstrated a favorable
safety profile in phase I dose-escalation trial and established
the recommended phase II dose (RP2D) of 800 mg twice daily in
humans.451 However, some analyses showed that patients are not
benefitted clinically from PT2399.452 Belzutifan (MK-6482), a
second-generation HIF2α anti-nodal agent, is efficacious in RCC
and lung RCC in clinical trials and was subsequently approved for
the treatment of VHL-associated diseases in August 2021.453–455

Topotecan, a HIF-1α inhibitor,456 exhibits antitumor activity in
both in vivo and in vitro assays.457 Thus, it can be used for the
treatment of multiple types of cancer, such as SCLC and ovarian
cancer.458,459 The obvious decline in tumor blood flow and
permeability was observed in 7/10 patients treated with
topotecan over one treatment cycle.460.
Bortezomib (PS-341) is a proteasome inhibitor that inhibits

HIF-1α activity by inhibiting the recruitment of P300 coactiva-
tors.461 A phase II trial showed that Bortezomib is ineffective in
metastatic colon cancer but alters tumor response to hypoxia.462

The in vivo experiments of xenograft-bearing mice showed that
bortezomib strongly inhibits VEGF production by up to 90%. This
effect could be attributed to a decrease in HIF-1 transcriptional
activity during treatment.463 RO7070179 is another HIF-1α
inhibitor, shown in phase Ib clinical trial to reduce HIF-1α mRNA
level in patients with hepatocellular carcinoma, thereby indicat-
ing its potential clinical benefit.464 Oxaliplatin, an antitumor
drug, was used for the treatment of advanced CRC and GC.465

Several clinical trials have been conducted on oxaliplatin in
combination with other drugs.466–468 Some studies indicated
that the induction of HIF-1α degradation enhances the efficacy
of oxaliplatin in CRC therapy.469 In addition, regulating the
ubiquitination of HIF-1 is another strategy. Deubiquitinases
(DUBs) can remove the ubiquitination of substrates, and the
modulation of DUBs has now been identified as a promising
drug target.470 USP7, one of the DUB genes, induces tumors by
stabilizing HIF-1α.471 However, USP7 inhibitors slowed the tumor
development in Lewis LC mice.472

In addition to the regulation of HIFs, applying the hypoxic
properties of the tumor microenvironment to enhance the
specificity of drugs is another therapeutic strategy. This class of
drugs has minimal or no activity normoxically but can undergo
bioreduction hypoxically to produce metabolites, known as
hypoxia-activated prodrugs (HAPs), that are toxic to the cells.473

Evofosfamide (TH-302) is a HAP,474 which reduces tumor growth
in neuroendocrine prostate cancer (NEPC).475 Multiple trials
have investigated the antitumor efficacy of TH-302 in combina-
tion with other treatments. Data from a phase II trial in
advanced pancreatic cancer patients showed that the combina-
tion of gemcitabine plus TH-302 significantly improves the
progression-free survival (3.6 months in the gemcitabine group
vs. 5.6 months in the combination group) and tumor response
(3.6 months in the gemcitabine group vs. 5.6 months in the
combination group).476 In a transgenic mouse model of
adenocarcinoma, the combination of hypoxia-targeted therapy
and checkpoint blockade controls tumor progression more
significantly than either approach alone.477 The clinical data
from another phase II trial of joint use of TH-302 and
doxorubicin in advanced soft tissue sarcoma indicated that
the combination therapy was superior to other first-line
treatments, and TH-302 did not exhibit any hepatic, renal, or
cardiac toxicity.478 Nonetheless, phase III data showed thatTa
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compared to doxorubicin alone, the addition of TH-302 failed to
improve the overall survival.479

The ErbB receptor tyrosine kinase family members are
considered oncogenes in various cancers.480 Tarloxotinib is also
a HAP that effectuates by inhibiting the activation of four
members of the ErbB family. Also, it inhibits signaling and cell
proliferation in patient-derived cancer cells in vitro and tumor
growth in multiple mouse patient-derived xenograft models.481

Importantly, compared to 190 μmol/h/kg to the skin, the total
tumor exposure to the metabolite tarloxotinib was 595 μmol/h/
kg, indicating the specificity of this drug targeting tumor tissue.
However, cancer patients receiving EGFR-targeted HAP therapy
eventually develop drug resistance, including pancreatic or
metastatic LC.482 Thus, these issues on drug resistance require
further exploration.

Hypoxia-targeted therapeutics in cardiovascular diseases
Stabilization of HIF-1α is a prerequisite for normal cardiac
development.483 During the disease process, the expression of
HIF-1α may be disturbed or inhibited, thereby triggering cardiac
dysfunction.484 Ischemic preconditioning and reperfusion are
common cardioprotective strategies.485 Also, the modulation of
HIF-1α expression with drugs is one of the therapeutic
directions, facilitating hydroxylate of HIF-1α and ubiquitin-
dependent degradation.486

Molidustat stabilizes HIF-1α and its downstream target genes in
T2D cardiomyocytes. In T2D rats, oral administration of molidustat
increases the body’s HIF targets and improves the recovery of
ischemia-reperfusion by 27%.487 It also reduces fatty acid
metabolism in the heart, which is shown as a 70% reduction in
myocardial triglycerides.487 Several studies have assessed molidu-
stat for the therapy of chronic kidney disease and anemia.488–490

Thus, its potential in the treatment of cardiovascular diseases may
be investigated in future studies.

Raynaud’s syndrome is characterized by vasospasm that
restricts blood flow leading to hypoxia, with markedly elevated
levels of HIF-1α in both monocytes and serum. The combination of
prostaglandin E1 (PgE1) and the endothelin-1 blocker bosentan
can prevent its increase but not PgE1 administration alone.491

Data from previous studies suggested that PgE1 stimulates
neovascularization by upregulating VEGF in patients with ischemic
heart disease.492. PgE1 is a pulmonary vasodilator that needs to be
evaluated in neonatal hypoxic respiratory failure.493

In addition to removing factors that interfere with HIF-1α
expression, exogenous administration of HIF-1α may also achieve
therapeutic purposes. A study showed that exosomes (Exo)
modified with HIF-1α enhance the proliferation of human
umbilical vein endothelial cells injured by hypoxia precondition-
ing.494. Exo-HIF-1α significantly reduced left ventricular fibrosis
area ratio and inner peripheral fibrosis length compared to the
Exo group with upregulated pro-angiogenic factors.

Hypoxia-targeted therapeutics in metabolic diseases
Diabetes. HIF-1α plays a vital role in metabolic diseases in tissues
or organs.149 Diabetes is one of the most common metabolic
diseases, and 90–95% of adults with diabetes worldwide have
T2D.495 The regulation of HIF-1α in β-cell reserve and aryl
hydrocarbon receptor nuclear translocator expression in islets.
When HIF-1α in β cells was disrupted, mice exhibited glucose
intolerance and β-cell abnormality; these conditions were
improved when HIF-1α levels were restored, suggesting that HIF-
1α is a T2D β-cell potential therapeutic target for functional
disorders.496 Li et al. reported a HIF-1α stabilizer 1a that induces the
activation and accumulation of HIF-1α and its driving genes in a
diabetic mouse model.497 Intrarenal hypoxia is detected in diabetic
patients, and HIF-1 regulates the occurrence of tubulointerstitial
fibrosis. Sodium-glucose cotransporter 2 (SGLT2) inhibitor protects
the kidney by inhibiting HIF-1α expression.498 Luseogliflozin, an

Fig. 6 Developed drugs targeting hypoxia signaling in human diseases. The main human diseases in different organs are displayed with the
according the developed drugs targeting hypoxia signaling
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SGLT2 inhibitor, relieves renal tubular damage and interstitial
fibronectin in diabetic mice by inhibiting HIF-1α accumulation that
reduces mitochondrial oxygen consumption.499 The treatment with
luseogliflozin in mice with inhibited insulin and IGF-1 target
receptors showed improved β-cell proliferation and hyperglycemia,
but not hyperinsulinemia.500 Empagliflozin is a highly selective
SGLT2 inhibitor and well-tolerated in humans.501,502 In T2D
patients, the addition of empagliflozin to the standard of care
reduces the progression of kidney disease compared to placebo
(12.7% of the empagliflozin group vs. 18.8% of the placebo group).
Strikingly, renal replacement therapy was initiated in 0.3% of
patients receiving empagliflozin, compared to twice as high in the
control group.503 Notably, the oxidative stress involved in insulin
resistance needs to be considered.504

Chronic kidney disease (CKD). Erythropoiesis-stimulating agents
(ESAs) and prolyl hydroxylase inhibitors (PHIs) are commonly
used to treat CKD. However, statistical analysis demonstrated
that long-term ESA use might increase the risk of death.505

Therefore, lower doses should be used whenever possible in
CKD patients with cancer receiving ESA.506 Unlike ESA requiring
injection, PHI is a class of oral medications that reduce the cost
and risks of treatment for patients.507 Well-studied PHIs contain
vadadustat, roxadustat, and daprodustat. PHIs stabilize HIF and
stimulate EPO and erythropoiesis. In a phase III trial, vardarestat
was compared to darbepoetin alfa in ESA. The pooled analysis
showed that the hazard ratio for major adverse cardiovascular
events was 1.17, which did not meet the prespecified non-
inferiority of 1.25 but achieved the prespecified non-inferiority
for hematologic efficacy.508 Roxadustat has been authorized for
China in dialysis-dependent CKD anemia patients’ treatment. A
phase II trial showed hemoglobin levels increased by 1.9 ± 1.2 g/
dL in patients with CKD in the roxadustat group compared to the
baseline mean and a slight decrease in the placebo group.509

The level of total cholesterol was lower in the roxadustat group
than that in the placebo group.510 However, patients receiving
roxadustat were likely to develop hyperkalemia or metabolic
acidosis. A phase III trial in CKD patients with anemia showed
that roxadustat had a slightly higher (almost the same)
incidence of adverse events than the placebo group, whereas
roxadustat significantly reduced the risk of red blood cell
transfusion.511 Another phase III trial showed that roxadustat
was non-inferior to darbepoetin alfa in maintaining hemoglo-
bin.512 Daprodustat was also non-inferior to darbepoetin alfa in
terms of hazard ratios for adverse events and maintenance of
hemoglobin levels in anemic patients with or without dialy-
sis.513,514 In the above events, the data from clinical trials of PHIs
display the comparative efficacy of ESA.

Hypoxia-targeted therapeutics in infectious diseases
Respiratory system infection. In the most common infectious
respiratory diseases caused by influenza virus and coronavirus
infection, oxygen tension is considered a non-negligible factor in
viral replication.230 As mentioned, HIF-1α facilitates SARS-CoV-2
replication and amplifies inflammatory response,146,147 suggest-
ing that HIF regulation is a promising therapeutic target.
However, the roles of HIF vary at different stages of the viral
infection in COVID-19 patients. The evidence has shown that the
SARS-CoV-2 receptor ACE2 can be reduced by roxadustat through
a HIF-1α-dependent pathway, which inhibits virus entry and
replication.515 HIF-1α, on the other side, can boost the activity of
Cathepsin L which can cleave S protein. Early use of PHD may aid
viral replication.516 And it may also participate in the cytokine
storm generated by SARS-CoV-2 through its stimulating influence
on the expression of macrophage migration inhibitory factor
(MIF).517 It is reported that dexamethasone can break the link
between HIF and MIF.518 The expression of HIF-1α associated with
macrophage inflammation in COVID-19 patients is elevated.519

Upon viral infection, SARS-CoV-2 damages the mitochondria and
triggers ROS production, thereby inducing HIF-1α, promoting viral
replication, and aggravating the inflammatory response.146,147 In
conclusion, HIF-1α may have opposite effects on various aspects
of virus invasion activities, and it is necessary to carefully evaluate
the measures that need or can be taken according to the
conditions of patients.
The studies in influenza A virus (IAV)-infected mice showed

that after knockout of HIF-1α in lung epithelial cells, the mice
exhibited severe lung inflammation.520 Tissue macrophages
produce inflammatory mediators during pathogen infection,
which is regulated by β-catenin-HIF-1α signaling, and Wnt
promotes the interaction between these two signaling mole-
cules. Data from a mouse model of influenza virus pneumonia
showed that β-catenin-mediated inflammation in macrophages
increases acute host morbidity.519 Therefore, the role of HIF-1α
in different tissues should be reconsidered when targeting HIF-
1α therapeutically.

Digestive system infection. Hypoxic environment is not conducive
to virus replication, but studies have found that HBV can use
hypoxia signaling pathway to generate in hypoxic environment,521

Chronic stabilization of HIF exhibits deleterious effects on the
body.522 As mentioned above, in liver cancer cells, the activity of
HBV enh1 is enhanced.223 Therefore, in addition to using HIF
inhibitors to reduce the expression of HIF, this specific activity can
also be used to construct a specific expression system for targeted
gene therapy.
Helicobacter pylori (H. pylori) is associated with a large number

of gastrointestinal diseases,523 and is known as one of the leading
factors affecting the development of GC.524,525 Therefore, the
treatment of H. pylori is crucial for preventing GC. H. pylori
infection may trigger duodenal ulcers, a type of peptic ulcer that is
more common than gastric ulcers. Some studies demonstrated
that in the process of duodenal ulcer, ischemia induces HIF-1α
expression and angiogenesis factors production including
VEGF.526 Clinical trials demonstrated H. pylori eradication for the
treatment of H. pylori-associated duodenal ulcers.527 Reportedly, H.
pylori infection increases the expression of HIF-1α.528 Conse-
quently, the hypoxia signaling pathway may be one of the targets
of treatment and illuminates the research on the treatment of
other diseases caused by H. pylori. Therapies targeting the hypoxic
pathway may be useful in the treatment of pathogens infections
of the digestive system.

Nervous system infection. Hypoxia takes part in the pathogenesis
of many neurological diseases.235 Meningitis, encephalitis, and
even Alzheimer’s disease is a group of diseases caused by
infection or autoimmunity.529 Among most cases of viral
infection, enterovirus is the main agent,530 and mumps,
lymphocytic choriomeningitis, and type I and II scab viruses are
also common pathogens.531 Enterovirus 71 (EV71) is a common
enterovirus that causes neurological diseases in severe cases, and
hypoxia may be one of the participants in the neuropathogenesis
of EV71.532 In a consistent study, the constructed immunocom-
petent or immunodeficient mouse models have white plaques in
the muscles after infection with EV71, which are related to
hypoxia.533 Progressive multifocal leukoencephalopathy (PML) is
a kind of organic brain disease caused by Polyomavirus JC (JCV).
HIF-1α activates the JCV virus promoter, implying a cure for the
occurrence of PML.534

Furthermore, neurological diseases are also caused by bacterial
infection. For example, S. pneumoniae infection can cause fatal
bacterial meningitis.535 HIF-1α inhibitor echinomycin can
improve blood-brain barrier function and increase the survival
in S. pneumoniae-infected mice.536 In neuroinfection events, the
investigation of the role of HIF-1α might help to understand the
neuropathogenesis and develop treatment options.
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PROSPECTS IN THERAPEUTICS OF HYPOXIA-ASSOCIATED
DISEASES
Hypoxia signaling participates in events of cellular viability and
activity to respond to oxygen deprivation. HIF-1 is the central
regulator modulated from upstream signals or stimuli and induces
downstream gene transcription, which has been implicated in
several human diseases. Owing to its control of various diseases,
HIF-1 (mainly HIF-1α and HIF-1β) is preferred in the development
of targeted therapy. Several strategies are available for therapeu-
tics against hypoxia-associated diseases (Fig. 7). (1) Alteration of
HIF-1 transcription by the upstream signals or stimuli; (2)
Regulation of HIF-1 stability via interfering protein modification,
such as deSUMOylation and deubiquitination; (3) Control of HIF-1
function by disturbing related enzyme activity in the complex. The
above strategies are attributed to HIF intervention either directly
(the expression and activity) or indirectly (co-activator and
repressor). Therefore, the scope of drug screening or repurposing
in the development of therapeutics against hypoxia-associated
diseases has been clarified.
Hypoxia is the status of the microenvironment in the body.537

HIF-1 regulates various target genes in corresponding diseases.
Typically, the hypoxia-targeted therapies are discrepant and may
also have opposite effects in the treatment of various diseases. As
a result, the effect of hypoxia-targeted therapy interventions on
spatiotemporal behaviors in diseases is yet to be investigated. One
possible way to improve the efficiency of hypoxia-targeted
therapy could be the combination of specific drugs against the
diseases. The advantages of this approach are improving the drug
effects and eliminating drug resistance. Another aspect may be
the modification of the drug and the design of the delivery
system, thereby increasing effective hypoxia-targeted therapies.
For example, PEGylated biopharmaceuticals are used to improve
the physicochemical properties and biological responses of a
drug. The use of exosomes as the drug-delivery system would
reduce immunogenicity as the therapeutic tool for hypoxia-
associated diseases.
The tissue- or disease-specificity of targeted therapy must be

considered since improper regulation of HIF or its downstream
genes in normal tissues may have harmful consequences in cells

or tissues. Agent-targeted therapy does not appear to be very
selective, as the same drug can affect multiple organs. Roxadustat,
for example, is primarily used to treat anemia in individuals with
renal illness, but it has also been proven to affect hepatic
lipolysis.538,539 As a result, the danger that other non-diseased
tissues may carry during administration should be thoroughly
assessed. Even in the same tissue, HIF may play conflicting roles in
various disease processes. Stable HIF expression, for example,
protects against acute lung injury during hypoxia and promotes
pulmonary hypertension development.522 The hypoxic prodrug,
on the other hand, has a somewhat higher specificity because its
active form requires a certain oxygen concentration to activate.
Gene therapy can be also highly tissue-specific. Hypoxia-specific
expression system540 constructs an oxygen concentration-
dependent gene expression vector541 by inserting the hypoxia
response element HRE from different hypoxia-inducible genes into
the upstream of the SV40 minimal promoter. This is especially
important for solid tumors.
The hypoxic environment is a factor impacting the efficiency of

several tumor treatment techniques, yet this characteristic
environment is currently being utilized for tumor-targeted
therapy. The plasmid will be highly expressed selectively in
specific hypoxic locations in this way. Leaky expression is a
serious issue that requires immediate care.542 To improve tissue
specificity, a promoter that is active exclusively in a certain
tissue or place, such as human tumor cells, can be added to the
expression system. For instance, the survivin promoter is the sole
one,87,543 which could increase the target selectivity of some
HIF-1 oxygen-independent cancer therapies.
Among several HIFs, HIF-1α is the primary option to develop

target drugs in hypoxia-associated diseases. Most developed
drugs in clinical trials are designed on the basis of the direct and
indirect regulation of HIF-1α (Table 2). Fortunately, emerging
agents targeting HIF-2α are promising anti-tumor therapeutics,
providing alternative candidates for hypoxia-targeted drugs
when all HIFs beyond HIF-1α are taken into consideration.
Finally, with the concerted help of updated basic research on
hypoxia-related diseases and advances in multidisciplinary
fields, such as structural biology, medicine, chemistry, and

Fig. 7 The principle of therapeutics targeting hypoxia signaling. The stratigies of therapeutics targeting hypoxia signaling are classified in (1)
HIF-1α regulator; (2) Enzyme activity regulator; (3) deubiquinases regulator; (4) hypoxia-activated prodrug; and (5) P300 regulator
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pharmacy, therapeutics against hypoxia-associated diseases
have novel avenues.
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