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Background: There is currently no method to predict tyrosine kinase inhibitor (TKI)
-induced hepatotoxicity. The purpose of this study was to propose a risk scoring
system for hepatotoxicity induced within one year of TKI administration using machine
learning methods.

Methods: This retrospective, multi-center study analyzed individual data of patients
administered different types of TKIs (crizotinib, erlotinib, gefitinib, imatinib, and lapatinib)
selected in five previous studies. The odds ratio and adjusted odds ratio from univariate
and multivariate analyses were calculated using a chi-squared test and logistic regression
model. Machine learning methods, including five-fold cross-validated multivariate logistic
regression, elastic net, and random forest were utilized to predict risk factors for the
occurrence of hepatotoxicity. A risk scoring system was developed from the multivariate
and machine learning analyses.

Results: Data from 703 patients with grade II or higher hepatotoxicity within one year of
TKI administration were evaluated. In a multivariable analysis, male and liver metastasis
increased the risk of hepatotoxicity by 1.4-fold and 2.1-fold, respectively. The use of
anticancer drugs increased the risk of hepatotoxicity by 6.0-fold. Patients administered H2
blockers or PPIs had a 1.5-fold increased risk of hepatotoxicity. The area under the
receiver-operating curve (AUROC) values of machine learning methods ranged between
0.73-0.75. Based on multivariate and machine learning analyses, male (1 point), use of H2
blocker or PPI (1 point), presence of liver metastasis (2 points), and use of anticancer
drugs (4 points) were integrated into the risk scoring system. From a training set, patients
with 0, 1, 2-3, 4-7 point showed approximately 9.8%, 16.6%, 29.0% and 61.5% of risk of
hepatotoxicity, respectively. The AUROC of the scoring system was 0.755 (95% CI,
0.706-0.804).
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Conclusion: Our scoring system may be helpful for patient assessment and clinical
decisions when administering TKIs included in this study.
Keywords: tyrosine kinase inhibitor, hepatotoxicity, prediction, machine learning, risk scoring system
INTRODUCTION

Tyrosine kinase inhibitor (TKI) is a prominent cancer treatment.
Tyrosine kinase is a major enzyme involved in cell signaling,
growth, and division during cell signal transduction (1). TKI
inhibits tyrosine kinase, which is involved in cancer (2). Since the
U.S. Food and Drug Administration (FDA) approved imatinib
for the treatment of chronic myeloid leukemia in 2001, over 30
TKIs have been developed (3, 4).

Hepatotoxicity is a major safety concern when using tyrosine
kinase inhibitors (5). The FDA requires five TKIs (lapatinib,
pazopanib, ponatinib, regorafenib, and sunitinib) to have black
box warnings for liver damage (4, 6). Several studies have
investigated TKI-induced hepatotoxicity, mostly in patients
experiencing grade I-IV hepatotoxicity (7). However, it is
difficult to find clinically significant grade I cases as these
include mild and asymptomatic patients.

Since there are no reliable markers for the detection of
drug-induced hepatotoxicity, it is important to exclude other
possible causes (8, 9). The follow-up period should be limited,
as longer observation periods make it difficult to detect drug-
induced hepatotoxicity because other factors may come into
play (7, 10, 11). The period from TKI initiation to hepatotoxicity
onset varies widely, with the latency to the onset of hepatotoxicity
reported within two months for crizotinib and several days to
several months for lapatinib (12). A proper observation period for
hepatotoxicity has not been established, but one year (365 days)
may be appropriate.

Machine learning establishes computational modeling for
automatic learning based on existing data (13). Since the
machine learning approach can devise learning algorithms to
deduce clinical action and decision making, it has been applied in
various ways in the field of health science, including risk
prediction (14, 15). Utilizing various methods of machine
learning may build models with higher risk predictability that
can explain risk factors.

Risk scoring systems, such as the GerontoNet ADR risk score
for elderly patients and TIMI risk score for cardiovascular
disease, allow a rapid assessment of patients for medical
decision-making and patient management (16). They reveal
the relationship between patient risk factors and the incidence
of an adverse event and a disease (17). Although it may help
clinicians predict hepatotoxicity after TKI administration, a risk
scoring system has not yet been investigated.

Although TKI-induced hepatotoxicity is a significant clinical
concern, there is currently no tool to predict its development.
The purpose of this study is to identify risk factors for TKI-
induced hepatotoxicity of grade II or higher that occur within
one year of TKI initiation using machine learning methods and
to propose a risk scoring system of TKI-induced hepatotoxicity.
2

MATERIALS AND METHODS

Dataset
The dataset was constructed from five previous studies that
demonstrated factors affecting the hepatotoxicity of selected
TKIs (gefitinib, erlotinib, crizotinib, imatinib, and lapatinib).
The detailed methodology was reported in five published
studies. In a gefitinib study, patients with non-small cell lung
cancer (NSCLC) were orally administered 250 mg of gefitinib
per day (18). Patients with NSCLC or pancreatic cancer
were administered 150 mg or 100 mg of erlotinib, respectively
(19). Patients with NSCLC containing an anaplastic lymphoma
kinase (ALK) rearrangement or c-ros oncogene 1 (ROS1)
rearrangement were orally administered 250 mg of crizotinib
twice per day (20). Patients with Philadelphia chromosome-
positive acute lymphoblastic leukemia (ALL), chronic myeloid
leukemia (CML), gastrointestinal stromal tumors (GIST), or
other malignancies were orally administered imatinib (100-800
mg/day) (21). Patients with metastatic breast cancer were
orally administered lapatinib (750-1250 mg/day) (22). In all
five studies, aspartate aminotransferase (AST) and alanine
aminotransferase (ALT) levels were measured before initiation
of TKI therapy and then every two to three months thereafter.
Eligible patients were those who were followed up in a year.

The following baseline data were obtained: sex, age, body
weight, height, body surface area (BSA), alcohol history, underlying
disease, liver metastasis, HBsAg, and concomitant medications.
Concomitant drugs included cytochrome P450 (CYP) 3A4
inducers, CYP3A4 inhibitors, anticancer drugs, H2 blockers, and
proton pump inhibitors (PPIs). CYP3A4 inducers included
bosentan, carbamazepine, dexamethasone, efavirenz, ethosuximide,
etravirine, fosphenytoin, modafinil, nafcillin, oxcarbazepine,
phenobarbital, phenytoin, prednisolone, primidone, rifabutin, and
rifampicin (rifampin). CYP3A4 inhibitors were amiodarone,
aprepitant, atazanavir, cimetidine, ciprofloxacin, clarithromycin,
cyclosporine, danazol, diltiazem, erythromycin, fluconazole,
fluoxetine, fluvoxamine, grapefruit juice, itraconazole, ketoconazole,
nicardipine, nifedipine, posaconazole, ritonavir, tamoxifen, verapamil,
and voriconazole. Anticancer drugs included capecitabine, cisplatin,
cyclophosphamide, cytarabine, docetaxel, trastuzumab, vincristine,
and vinorelbine. H2 blockers were cimetidine, famotidine,
lafutidine, nizatidine, and ranitidine. PPIs included (es)omeprazole,
(dex)lansoprazole, pantoprazole, and rabeprazole.

Assessment of Hepatotoxicity
Serum AST and ALT values were assessed according to the
severity of hepatotoxicity. The hepatotoxicity grade was
determined using Common Terminology Criteria for Adverse
Events (CTCAE) version 4.0. The CTCAE defines grade I, grade
II, grade III, and grade IV toxicity levels of AST and ALT as 1-3
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times, 3-5 times, 5-20 times, and more than 20 times the upper
limit of normal, respectively. In this study, hepatotoxicity was
defined as grade II or higher.

Statistical Analysis
The chi-squared or Fisher’s exact test was performed to compare
categorical variables between patients with and without
hepatotoxicity. Multivariate logistic regression analysis was
performed to identify independent risk factors for
hepatotoxicity. Factors having a P-value < 0.05 from the
univariate analysis with strong confounding factors (age, BSA,
and sex) were included in the multivariate analysis. The odds
ratio (OR) and adjusted OR were calculated by univariate and
multivariate analyses, respectively.

Machine learning models were developed to predict the risk
factors for hepatotoxicity. Classification methods, such as five-
fold cross-validated multivariable logistic regression, elastic net,
and random forest (RF) were utilized with an R package caret.
For cross-validation, the dataset was randomly split into five
equal folds. After portioning one data sample into five subsets,
four subsets were used to construct machine learning models and
the other subset was used for model validation. Each cross-
validation iteration was repeated 100 times. The area under the
receiver-operating curve (AUROC) was developed to
predict hepatotoxicity.

A risk scoring system was developed from the multivariate
and machine learning analyses. We randomly divided the data by
a ratio of 7:3. Among a total of 703 samples included in this
study, data from 503 patients were used to construct a risk
scoring system, and the other 200 data were used to validate it.
For the risk score, each coefficient from the logistic regression
model was divided by the smallest one and rounded to the
nearest integer.

P-values less than 0.05 were considered statistically
significant. Univariate and multivariate analyses were
performed with the Statistical Package for Social Sciences
(SPSS) version 20.0 for Windows (SPSS Inc., Chicago, Illinois,
USA). Machine learning models were developed using R
software version 3.6.0 (RFoundation for Statistical Computing,
Vienna, Austria).
RESULTS

Among the 999 patients eligible in this study, patients were
excluded if they did not have AST/ALT value results before TKI
administration (n = 72), if they had elevated AST/ALT before
TKI administration (n = 123), and if they already had underlying
liver disease (n = 101). We analyzed data from 703 patients. For
the excluded patients, the mean age, proportion of patients ≥ 60
years, and proportion of males were 60.6 ± 13.1 years, 56.3%, and
47.8%, respectively. There were no significant differences in the
mean age or proportion of sex between the included and
excluded patients.

As shown in Table 1, 191 patients experienced the
hepatotoxicity induced by the selected TKIs during the study
Frontiers in Oncology | www.frontiersin.org 3
period. Around half (50.2%) of the patients were older than 60
years of age. Drugs concomitantly administered with TKI
included CYP3A4 inhibitors (n = 26), CYP3A4 inducers (n =
33), H2 blockers (n = 202), PPIs (n = 114), and anticancer drugs
(n = 161). In the univariate analysis, liver metastasis, CYP3A4
inhibitors, CYP3A4 inducers, anticancer drugs, H2 blockers,
PPIs, and H2 blockers or PPIs were significant factors
for hepatotoxicity.

Multivariate analysis demonstrated that male patients and
patients with liver metastasis had increased risk for TKI-induced
hepatotoxicity by 1.4-fold and 2.1-fold, respectively. The use of
anticancer drugs increased the risk of hepatotoxicity by 6.0-fold.
Patients using H2 blockers or PPIs had a 1.5-fold increased risk
of hepatotoxicity (Table 2).

Machine learning methods were utilized to construct a
prediction model for TKI-associated hepatotoxicity. The
AUROC values (mean, 95% CI) across 100 random iterations
using five-fold cross-validated multivariate logistic regression,
elastic net, and RF models were 0.75, 0.75, and 0.73, respectively
(Table 3). The ROC for five-fold cross-validated multivariate
logistic regression, elastic net, and RF are shown in Figure 1. The
hyperparameters and R code that we used are shown in Table 4
and Supplementary File 1, respectively.

For the construction of risk scoring system, male (1 point),
use of H2 blockers or PPIs (1 point), presence of liver metastasis
(2 points), and use of anticancer drugs (4 points) were integrated
into the analysis. From a training set, patients with 0, 1, 2-3, and
4-7 points showed approximately 9.8%, 16.6%, 29.0%, and 61.5%
risk of hepatotoxicity, respectively. The respective value of the
validation set was 10.2, 19.3, 30.8, and 57.1%. Although there
were only two patients who scored 8 points (100% risk), they
were all included in the training set. The logistic regression curve
by mapping the scores to risk scores is presented in Figure 2, and
the risk probability according to scores using logistic regression
is shown in Table 5. The AUROC of the scoring system was
0.755 (95% CI 0.706-0.804).
DISCUSSION

This study demonstrated that the use of H2 blockers or PPIs and
anticancer drugs increased the risk of the hepatotoxicity induced
by the TKIs selected in this study (crizotinib, erlotinib, gefitinib,
imatinib, and lapatinib) by 1.5-fold and 6.0-fold, respectively.
Patients with liver metastasis and male patients had an increased
risk of TKI-induced hepatotoxicity by 2.1-fold and by 1.4-fold,
respectively. Machine learning analyses indicated good
performance (higher than 0.7) of the constructed model.

In our study, the presence of liver metastasis was a significant
factor with the two-fold increase in hepatotoxicity by TKIs
included in this study. Because patients with elevated AST and
ALT were excluded, all patients had normal AST/ALT values at
the start of the study. The relationship between liver metastasis
and drug-induced hepatotoxicity has been rarely reported.
However, a retrospective observational study of pembrolizumab-
induced liver injury showed that patients with pre-existing liver
March 2022 | Volume 12 | Article 790343
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metastasis were at a 3.6-fold higher risk of developing
hepatotoxicity compared to patients with no liver metastasis
(23). As the main metabolic site for most TKIs is the liver, the
presence of liver metastasis may lead to asymptomatic liver
damage before TKI use and may amplify the effects of TKI-
induced hepatotoxicity.
Frontiers in Oncology | www.frontiersin.org 4
TKIs are often used in combination with other anticancer
drugs. Previous studies have reported hepatotoxicity by many
anticancer drugs, including methotrexate, cisplatin, gemcitabine,
and paclitaxel (24). Thus, anticancer drugs used in combination
with TKIs not only affect hepatotoxicity by themselves but may
further aggravate the severity of hepatotoxicity caused by TKIs.
TABLE 1 | Hepatotoxicity of TKI administration.

Characteristics No. (%)
(n=703)

Hepatotoxicity, No (%) P-value

Absence Presence
(n=512) (n=191)

Sex 0.980
Female 408 (58.0) 297 (58.0) 111 (58.1)
Male 295 (42.0) 215 (42.0) 80 (41.9)

Age, years 0.064
<60 350 (49.8) 244 (47.7) 106 (55.5)
≥60 353 (50.2) 268 (52.3) 85 (44.5)

BW, kga 0.253
<60 379 (54.6) 268 (53.3) 111 (58.1)
≥60 315 (45.4) 235 (46.7) 80 (41.9)

Height, cmb 0.540
<160 336 (48.5) 247 (49.2) 89 (46.6)
≥160 357 (51.5) 255 (50.8) 102 (53.4)

BSA, m2c 0.346
<1.6 321 (46.3) 227 (45.2) 94 (49.2)
≥1.6 372 (53.7) 275 (54.8) 97 (50.8)

Alcohol historyd 0.257
Yes 86 (27.7) 67 (29.4) 19 (22.9)
No 225 (72.3) 161 (70.6) 64 (77.1)

CVD or DM 0.289
Yes 254 (36.1) 191 (37.3) 63 (33.0)
No 449 (63.9) 321 (62.7) 128 (67.0)

Liver metastasis <0. 001
Yes 76 (10.8) 34 (6.6) 42 (22.0)
No 627 (89.2) 478 (93.4) 149 (78.0)

HBsAge 0.556
Yes 18 (2.6) 12 (2.4) 6 (3.2)
No 665 (97.4) 485 (97.6) 180 (96.8)

CYP3A4 inhibitors <0. 001
Yes 26 (3.7) 11 (2.1) 15 (7.9)
No 677 (96.3) 501 (97.9) 176 (92.1)

CYP3A4 inducers <0. 001
Yes 33 (4.7) 14 (2.7) 19 (9.9)
No 670 (95.3) 498 (97.3) 172 (90.1)

H2 blockers 0.005
Yes 202 (28.7) 132 (25.8) 70 (36.6)
No 501 (71.3) 380 (74.2) 121 (63.4)

PPIs 0.021
Yes 114 (16.2) 73 (14.3) 41 (21.5)
No 589 (83.8) 439 (85.7) 150 (78.5)

H2 blockers/PPIs <0. 001
Yes 281 (40.0) 183 (35.7) 98 (51.3)
No 422 (60.0) 329 (64.3) 93 (48.7)

Anticancer drugs <0. 001
Yes 161 (22.9) 63 (12.3) 98 (51.3)
No 542 (77.1) 449 (87.7) 93 (48.7)
March 2022 | Volume 12 | Article
BW, body weight; BSA, body surface area; CVD, cardiovascular diseases; CYP3A4, cytochrome P450 3A4; DM, diabetes mellitus; PPI, proton pump inhibitor.
aBody weight data for 9 patients were missing.
bHeight data for 10 patients were missing.
cBody surface area data for 10 patients were missing.
dAlcohol history data for 392 patients were missing.
eHBsAg data for 20 patients were missing.
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For the construction of the risk scoring system, we included
all factors that remained in the final multivariate analysis model,
regardless of statistical significance. In addition to liver
metastasis and anticancer drugs, male and the use of H2
blockers/PPIs were included in the risk scoring system.
Contrary to our expectations, male sex increased the risk of
TKI-induced hepatotoxicity in our study. Several studies have
demonstrated that female patients generally had a higher risk of
adverse drug reactions compared to male patients, and these
results were similar for drug-induced hepatotoxicity (25, 26).
Physiological or biological differences which can affect drug
toxicity may contribute to these gender differences (27). Our
unexpected result is probably due to the effect of alcohol history.
Male patients accounted for the majority (70%) of patients with a
history of alcohol use, and 70% of these individuals had
hepatotoxicity. Considering that female patients accounted for
more than half of our study population, alcohol history may be
an influencing factor in the higher incidence of hepatotoxicity in
male patients.

Concomitant use of PPIs or H2 blockers increased the risk of
hepatotoxicity compared to non-users. ATP-binding cassette
superfamily G member 2 (ABCG2) and ATP-binding cassette
subfamily B member 1 (ABCB1) are drug efflux transporters
situated in the liver (28). Since PPIs are known as an ABCG2
inhibitors, concomitant use of ABCG2 substrates and PPIs can
increase the blood concentration of drugs that are ABCG2
substrates (18, 19). Among the five drugs included in our
study, gefitinib and erlotinib are substrates of ABCG2. Since
half of the total study population was patients administered these
drugs, this may have affected the analysis of PPIs as a
hepatotoxicity factor.
Frontiers in Oncology | www.frontiersin.org 5
Both H2 blockers and TKIs are ABCB1 substrates. Co-
administration of both ABCB1 substrates can cause
competitive efflux transport, meaning other ABCB1 substrates
such as TKIs remain in the liver instead of H2 blockers exiting.
This increases the risk of TKI-induced hepatotoxicity.

TKIs as a class with different mechanisms were included in
this study. Like differences between epidermal growth factor
receptor (EGFR) TKIs and non-receptor TKIs, differences in
mechanisms may affect the occurrence of TKI-induced toxicity
(29). However, this was not found in this study, probably because
many TKIs have multiple targets, as imatinib mainly targets bcr-
abl but also affects a receptor tyrosine kinase, platelet-derived
growth factor receptor (PDGFR).

TKIs included in this study were used as a single daily dose
(gefitinib 250 mg, crizotinib 250 mg, and lapatinib 1250 mg)
except for imatinib and erlotinib, and the effects of drug doses on
hepatotoxicity were not found in both drugs. In the case of
imatinib, the dose range was 100 to 800 mg daily; it was not a
significant factor for imatinib-induced hepatotoxicity in the
multivariate analysis. For erlotinib, the daily dose was either
100 mg or 150 mg, and the statistical significance was not found.
Since the three drugs among five TKIs in this study were used as
a single dose, the effect of drug doses on clinical efficacy and
safety should be further investigated.

The AUROC values of machine learning methods ranged
between 0.73-0.75. The machine learning methods that showed
the best AUROC values were the five-fold multivariable logistic
regression model and the elastic net model, a penalized linear
regression model that combined the penalties of the lasso and
ridge methods (30). The constructed risk scoring system showed
good performance with the AUROC value of 0.75.
TABLE 2 | Univariate and multivariate analyses to identify predictors for hepatotoxicity related to TKI administration.

Characteristics Unadjusted OR Adjusted OR
(95% CI) (95% CI)

Male 0.996 (0.711-1.394) 1.418 (0.962-2.090)
Age ≥ 60 years 0.730 (0.523-1.020)
BSA ≥ 1.6 0.852 (0.610-1.189)
Liver metastasis 3.963 (2.432-6.457)** 2.146 (1.224-3.762)**
CYP3A4 inhibitors 3.882 (1.750-8.611)**
CYP3A4 inducers 3.929 (1.928-8.007)**
Anticancer drugs 7.510 (5.098-11.063)** 6.002 (3.956-9.107)**
H2 blockers 1.665 (1.168-2.375)**
PPIs 1.644 (1.075-2.514)*
H2 blockers/PPIs 1.894 (1.353-2.652)** 1.461 (0.987-2.163)
March 2022 | Volum
BSA, body surface area; CYP3A4, cytochrome P450 3A4; OR, odds ratio; PPI, proton pump inhibitor.
*P < 0.05, **P < 0.01.
TABLE 3 | Machine learning models’ performance.

Model AUROC (95% CI) Sensitivity Specificity

Multivariate logistic regression 0.75 (0.701 - 0.804) 0.601 0.836
Elastic net 0.75 (0.703 - 0.805) 0.601 0.838
Random forest 0.73 (0.681 - 0.775) 0.601 0.838
e 12 | Art
AUROC, area under the receiver-operating curve; CI, confidence interval.
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FIGURE 1 | The receiver-operating curves (ROC) for five-fold cross-validated multivariate logistic regression, elastic net, and random forest (RF).
TABLE 4 | Machine learning model specifics.

Method Hyperparameter

Model specification and search grids Selected values

Elastic net l: 100 equally spaced values in logarithmic scale between 10-4 and 0 l: 0.03511192
a: 0, 0.2, 0.4, 0.6, 0.8, 1 a: 0

Random forests mtry: 1-4 mtry: 1
Frontiers in Oncology | www.frontiersin.org
 March 2022 | Volume 126
SVM, Support vector machine.
FIGURE 2 | The logistic regression curve of the probability of hepatotoxicity versus the proposed scoring scale.
| Article 790343
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There are several limitations to this study. The main
limitation is the retrospective design of our study. It was
impossible to obtain the patient’s drug concentration to assess
the relationship with the onset of hepatotoxicity or the patient’s
tissue to analyze the pattern of hepatotoxicity. In addition, not all
TKIs were included in this study; especially, only one TKI among
five TKIs with black box warning for hepatotoxicity was
analyzed, Therefore, it needs to be cautious to apply this result
to other TKIs. Since a relatively large number of patients were
excluded according to the exclusion criteria, it is possible that
real-world data could be different. However, the characteristics
between included patients and excluded patients were not
significantly different. Despite several shortcomings, our study
is significant because it is the first to develop a risk scoring system
for the hepatotoxicity caused by the selected TKIs in cancer
patients. Furthermore, machine learning models were used to
predict the increased risk of hepatotoxicity.

In conclusion, our study demonstrated that the presence of
liver metastasis and the concurrent use of PPIs or H2 blockers
were related to TKI-induced hepatotoxicity. Male patients and
patients administered anticancer drugs experienced an increased
risk of hepatotoxicity. Before applying these results to clinical
settings, it is necessary to consider other factors that may affect the
efficacy and safety of the TKIs, such as daily dose, drug interaction,
and genetic factors. Considering our retrospective study design
and only five selected TKIs were included in this study, further
prospective studies are needed to validate our findings.
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