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Abstract 
Objectives: Phenotyping is a core task in observational health research utilizing electronic health records (EHRs). Developing an accurate algo-
rithm demands substantial input from domain experts, involving extensive literature review and evidence synthesis. This burdensome process 
limits scalability and delays knowledge discovery. We investigate the potential for leveraging large language models (LLMs) to enhance the effi-
ciency of EHR phenotyping by generating high-quality algorithm drafts.
Materials and Methods: We prompted four LLMs—GPT-4 and GPT-3.5 of ChatGPT, Claude 2, and Bard—in October 2023, asking them to gen-
erate executable phenotyping algorithms in the form of SQL queries adhering to a common data model (CDM) for three phenotypes (ie, type 2 
diabetes mellitus, dementia, and hypothyroidism). Three phenotyping experts evaluated the returned algorithms across several critical metrics. 
We further implemented the top-rated algorithms and compared them against clinician-validated phenotyping algorithms from the Electronic 
Medical Records and Genomics (eMERGE) network.
Results: GPT-4 and GPT-3.5 exhibited significantly higher overall expert evaluation scores in instruction following, algorithmic logic, and SQL 
executability, when compared to Claude 2 and Bard. Although GPT-4 and GPT-3.5 effectively identified relevant clinical concepts, they exhibited 
immature capability in organizing phenotyping criteria with the proper logic, leading to phenotyping algorithms that were either excessively 
restrictive (with low recall) or overly broad (with low positive predictive values).
Conclusion: GPT versions 3.5 and 4 are capable of drafting phenotyping algorithms by identifying relevant clinical criteria aligned with a CDM. 
However, expertise in informatics and clinical experience is still required to assess and further refine generated algorithms.
Key words: phenotyping; electronic health records; large language models; ChatGPT. 

Introduction
Electronic health record (EHR) phenotyping, which involves 
creating algorithms to identify and correctly classify a patient’s 
observable characteristics by integrating complex clinical data, 
has become pivotal in observational health research.1 Develop-
ing EHR phenotypes is an intricate and labor-intensive process 
that demands extensive expertise in both the clinical and 
informatics domains.2,3 While phenotyping includes the identi-
fication of individuals with specific characteristics, it also neces-
sitates the selection of suitable controls for meaningful 
comparisons with the identified cases.4

Rule-based computable phenotyping algorithms rely on 
clinical experts to select specialized criteria (eg, diagnosis 
codes, medications, and laboratory values) likely to define a 
phenotype of interest. When subjected to detailed refinement 
and thorough validation, these algorithms often exhibit 
enhanced performance compared to high-throughput 
methods, which typically employ machine learning or data 

mining-based approaches to provide automated and rapid 
categorization of numerous disease phenotypes.5–8 However, 
the iterative nature of this process often requires substantial 
literature review and discussions with clinical experts to gen-
erate a single phenotyping algorithm, thereby limiting the 
scalability of this approach in practice.2 Furthermore, imple-
mentation of phenotyping algorithms by secondary sites 
requires additional informatics expertise, manual effort, and 
time to adapt the existing code to different databases and 
EHR systems.

Recently, large language models (LLMs) have demon-
strated effectiveness in information extraction and summari-
zation,9 indicating a potential benefit in phenotyping by 
reducing the time required for literature review and synthesis 
during the phenotype generation process. Previous studies 
investigating the application of LLMs to phenotyping tasks 
have primarily evaluated the ability of LLMs to extract phe-
notypic information from unstructured clinical notes.10 For 
example, Alsentzer et al.11 found that the open-source LLM 
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Flan-T5 could effectively extract concepts from discharge 
summaries to create a postpartum hemorrhage phenotype. In 
this preliminary report, we investigate the novel application 
of LLMs for generating computable phenotyping algorithms 
to assess whether such tools can effectively expedite the 
development of EHR phenotypes based on structured data. 
We appraised four LLMs—GPT-4 (powering ChatGPT),12

GPT-3.5 (powering ChatGPT),13 Claude 2,14 and PaLM 2- 
powered Bard15—to generate phenotyping algorithms for 
three clinical phenotypes—type 2 diabetes mellitus (T2DM), 
dementia, and hypothyroidism. We subsequently imple-
mented the top-rated algorithms as adjudicated by phenotyp-
ing experts using multiple critical metrics from each LLM 
and compared them against the clinician-validated phenotyp-
ing algorithms from the Electronic Medical Records and 
Genomics (eMERGE) network.16,17

Methods
We selected four LLMs in their default configurations to test 
their phenotyping algorithm generation capacity for three 
common clinical phenotypes. These LLMs were: (1) GPT-4 
and (2) GPT-3.5 (both powering ChatGPT by OpenAI),12,13

(3) Claude 2 (developed by Anthropic),14 and (4) Bard (cre-
ated by Google and based on PaLM 2).15 These models were 
chosen because of their widespread use, easy accessibility, 
extensive evaluation, robust computational capabilities, and 
proficiency in handling and generating lengthy texts—qual-
ities crucial for sustainably supporting phenotyping tasks.

This pilot study specifically focused on three clinical phe-
notypes: T2DM,18,19 dementia,20 and hypothyroidism.21,22

We chose these phenotypes because they have existing algo-
rithms that have undergone extensive validation processes 
and demonstrated highly accurate and consistent performan-
ces with well-documented results. Data collection via web- 
based interactions with the LLMs occurred in October 2023, 
with subsequent data analysis completed in November 2023. 
This study was approved by the institutional review boards 
at Vanderbilt University Medical Center (IRB #: 201434).

Figure 1 illustrates an overview of the study pipeline, which 
was comprised of two main components—prompting (steps 

1-3, highlighted in pink) and evaluating (steps 4-9, high-
lighted in blue) LLMs.

Prompting large language models to generate 
phenotyping algorithms
We prompted the LLMs to generate executable SQL queries 
to identify phenotype cases from structured EHR data organ-
ized according to the Observational Medical Outcomes Part-
nership (OMOP) Common Data Model (CDM), a standard 
EHR data framework that enables efficient data analysis and 
sharing across institutions.23,24 There are multiple methods 
to search for concepts in an OMOP database, including speci-
fying “concept_code”, “concept_name”, or “concept_id”. In 
this study, we focused on using International Classification of 
Diseases (ICD) codes as concept codes for diagnosis concepts 
and using concept names for non-diagnosis concepts. 
This design was based on our observations that LLMs were 
(1) able to generate ICD diagnosis codes that are relevant to 
the target phenotype; (2) less likely to identify meaningful 
non-diagnosis concepts using “concept_code” compared to 
using “concept_name”; and (3) unable to generate 
applicable“concept_id” in general. The variability in the 
capacity of LLMs to identify relevant concepts through dif-
ferent methods can be attributed to discrepancies in the 
amount of information they have encountered about these 
methods to during pretraining.

We designed two distinct prompting strategies, hereafter 
termed α-prompting and β-prompting. The α-prompting 
strategy (steps 1 and 2 in Figure 1) had two steps. The first 
step focused on obtaining a pseudocode version of the pheno-
typing algorithm (referred to as a pseudo-phenotyping algo-
rithm), which emphasized identifying and integrating critical 
phenotyping criteria, as well as determining the strategy for 
combining these criteria. We utilized the chain-of-thought 
(CoT) prompting strategy,25 an effective method for directing 
LLMs through a series of reasoning steps to resolve complex 
problems like humans. Specifically, we framed our instruc-
tion to guide reasoning as follows: “Let’s think step by step: 
(1) List the critical criteria to consider. (2) Determine how 
these criteria should be combined. (3) Derive the final algo-
rithm” (Supplementary Table S1). Additionally, multiple 

Figure 1. An architectural overview of the study pipeline.
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detailed instructions were specified so that the produced 
pseudo-phenotyping algorithm adhered to the OMOP con-
cepts, including diagnosis codes (in ICD-9-CM and ICD-10- 
CM), symptoms, procedures, laboratory tests, and medica-
tions (both generic and brand names). We also mandated 
that the pseudo-phenotyping algorithm maintain a style con-
sistent with the SQL logic, to facilitate generation of the SQL 
query in the second step.

Using the response of an LLM in the initial step, the second 
step involved converting the pseudo-phenotyping algorithm 
into an executable SQL query (referred to as an SQL- 
formatted phenotyping algorithm) for implementation in an 
OMOP CDM-based EHR database for subsequent validation 
(Supplementary Table S1). Due to the probabilistic nature of 
LLMs, variations in the generated phenotyping algorithms 
are guaranteed. Consequently, we executed α-prompting five 
times independently for each phenotype and for each LLM to 
account for response variability.

The β-prompting strategy (step 3 in Figure 1) was designed 
to first present the LLM with the five SQL-formatted pheno-
typing algorithms generated from the α-prompting strategy 
and then instruct the LLM to assess the quality of these algo-
rithms and generate an improved one (Supplementary Table 
S1). This strategy, proven to effectively mitigate hallucina-
tions26–28 (ie, in the context of EHR phenotyping, generating 
column names that do not follow OMOP CDM or producing 
concept names, concept IDs, or even logics that are irrelevant 
to the target phenotype), leverages an LLM’s ability to evalu-
ate scientific texts based on the extensive knowledge encoded 
during model pretraining. As a result, the LLM can produce 
an updated version of the phenotyping algorithm through 
analytical reflections. We also deployed the CoT strategy in 
β-prompting, which involved initially identifying the correct, 
incorrect, and missing criteria for each previously generated 
algorithm. The β-prompting strategy was executed in an inde-
pendent session of the LLM (distinct from and subsequent to 
those used for α-prompting) and was executed only once.

Evaluating the quality of LLM-generated 
phenotyping algorithms
We then performed a comprehensive analysis, encompassing 
both qualitative and quantitative assessments, to evaluate the 
efficacy of the phenotyping algorithms generated by the four 
different LLMs on the three diseases of focus as described 
above. For the qualitative analysis, three experts (W.Q.W., 
M.E.G., and V.E.K.) in EHR phenotyping and clinical medi-
cine, each with significant experience in clinical and infor-
matics research, independently reviewed and rated the LLM- 
generated SQL-formatted phenotyping algorithms in a blind 
manner. All experts had authored numerous papers related to 
clinical phenotyping. We further compared the concepts uti-
lized in these algorithms with those found in clinician- 
validated phenotyping algorithms developed by the eMERGE 
network.16,17 The algorithms selected18–22 were developed 
among large patient populations, validated across multiple 
research centers, and widely recognized for their reliability. 
Specifically for dementia, the chosen eMERGE algorithm 
excludes mild cognitive impairment codes and does not filter 
out delirium diagnoses, reflecting the reality that dementia 
patients may also present with delirium. For quantitative 
assessment, we implemented the top-rated SQL-formatted 
phenotyping algorithms using EHR data from Vanderbilt 

University Medical Center (VUMC) and assessed their per-
formance against established eMERGE algorithms.18–22

Expert assessment
Each of the three experts conducted independent reviews for 
every SQL-formatted phenotyping algorithm (4 LLMs, 3 phe-
notypes, and 2 strategies, for 24 algorithms in total). The 
evaluation focused on three dimensions: (1) adherence to 
instructions, which assessed how well the LLM conformed to 
predefined formatting rules; (2) the generation of proficient 
phenotyping algorithms based on knowledge, which eval-
uated the LLM’s ability to synthesize and organize 
phenotyping-related information effectively; and (3) presen-
tation in executable SQL format, which measured the poten-
tial of an LLM to reduce the labor-intensive human efforts 
required for EHR implementation and validation. Detailed 
guidelines for expert evaluation can be found in Supplemen-
tary Table S2. Experts assigned categorical scores (“Good 
[3],” “Medium [2],” or “Poor [1]”) for each axis based on 
predefined criteria, providing justifications accordingly. 
Interrater reliability was assessed using the weighted Cohen’s 
Kappa score.29 We compared LLMs’ rated scores using the 
Wilcoxon signed-rank test30 with a significance level of 0.05.

Comparison of concept coverage with eMERGE phenotyping 
algorithms
This analysis provided a comprehensive comparison of the 
concepts within phenotyping algorithms generated by LLMs 
and established EHR algorithms. We systematically reviewed 
and compared all the concepts employed in the algorithms 
for diagnoses, laboratory tests, procedures, medications, 
symptoms, and exclusions, and then summarized the note-
worthy findings.

Implementation of LLM-generated algorithms and perform-
ance evaluation
We deployed the highest-rated phenotyping algorithms for 
each phenotype in a research cohort at VUMC (n¼84 821). 
This cohort, extensively utilized in phenotyping research, has 
been a significant resource for phenotypic studies.5,31 We 
summarized implementation details in Supplementary section 
S.3, where we list the general edits we made as well as specific 
changes for each implemented algorithm (Supplementary 
Table S3). As a benchmark, we implemented three eMERGE 
algorithms updated with current ICD-10-CM codes5 to iden-
tify phenotype cases and controls. The cases and controls 
identified by the eMERGE algorithms served as a reference 
standard to assess the effectiveness of the LLM-generated 
algorithms. In our subsequent analysis, we excluded patients 
not categorized as either case or control by the eMERGE 
algorithm, as their data did not meet the criteria for either sit-
uation. Each of the top-rated LLM-generated algorithms 
required some modifications to be executable in a cloud- 
based platform to securely query VUMC’s research clinical 
databases that follow the OMOP CDM. We limited changes 
to technical domain knowledge, as opposed to clinical 
domain knowledge. For example, we edited the database 
names, but did not edit drug names or ICD codes.

We used the following metrics for evaluation: (1) positive 
predictive values (PPV), defined as the number of cases mutu-
ally identified by the eMERGE algorithm and an LLM over 
the total number of identified cases by the LLM; (2) recall, 
defined as the number of cases mutually identified by the 
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eMERGE algorithm and an LLM over the total number of 
cases identified by the eMERGE algorithm; and (3) false posi-
tive rate (FPR), defined as the number of patients identified 
as cases by an LLM but identified as controls by the 
eMERGE algorithm (false positives) over the sum of false 
positives and number of cases identified by the eMERGE 
algorithm.

Results
Expert assessments
The average interrater reliability was 0.59 [0.50-0.68], indi-
cating a moderate to substantial agreement among experts, 
considering the categorical nature of the data (rather than 
dichotomous) and the variations in scoring criteria among 
different experts.32

By mapping the experts’ assessments of “Good”, 
“Medium”, or “Poor” to numerical scores of 3, 2, and 1, 
respectively, GPT-4 (mean [95% confidence interval]: 2.57 
[2.40-2.75]) and GPT-3.5 (2.43 [2.25-2.60]) exhibited signif-
icantly higher overall expert evaluation scores than Claude 2 
(1.91 [1.68-2.13]) and Bard (1.20 [1.09-1.31]) (Figure 2A). 
GPT-4 marginally outperformed GPT-3.5, though the differ-
ences were not statistically significant. Moreover, the 
β-prompting strategy did not significantly differ from the 
α-prompting, according to experts’ evaluation (Figure 2B). 
Furthermore, experts assigned higher scores to LLMs for 
their effectiveness in generating phenotyping algorithms for 
T2DM and hypothyroidism compared to dementia 
(Figure 2C). The radar plot shown in Figure 2D displays the 
average scores for each involved LLM across the three axes 
of evaluation. There are two key findings. First, GPT-4 and 
GPT-3.5 were rated consistently rated better than Claude 2 
and Bard in following instructions, algorithmic logic, and 

SQL executability. Second, GPT-4 was considered to be on 
par with GPT-3.5 in its ability to follow instructions and 
SQL executability, yet it surpassed GPT-3.5 in its algorithmic 
logic. Based on these findings, we continued our investigation 
with GPT-4 and GPT-3.5.

Comparison with eMERGE phenotyping algorithms
Components
Table 1 summarizes the clinical concepts identified by 
the eMERGE phenotyping algorithms and LLM-produced 
algorithms. A full comparison of concepts can be found in 
Supplementary Table S4. Given that the phenotyping 
algorithms produced by both GPT-4 and GPT-3.5 from the 
β-prompting strategy were rated similarly to those from 
the α-prompting strategy, we focused further analyses on the 
β-prompting results.

There are several notable observations. For the T2DM phe-
notyping algorithm, GPT-4 and GPT-3.5 identified relevant 
diagnosis codes (both ICD-9-CM and ICD-10-CM), lab tests 
(hemoglobin A1c, fasting blood glucose), and two generic 
medications (metformin and glipizide) that were also used in 
the eMERGE phenotyping algorithm. The eMERGE pheno-
typing algorithm also included medications not identified by 
either GPT-4 or GPT-3.5 (n¼ 27). Only GPT-4 and GPT-3.5 
included symptoms; both eMERGE and GPT-4 provided 
exclusionary criteria (ICD codes). Notably, the GPT-3.5 
model incorrectly included ICD-9-CM codes for type 1 diabe-
tes and applied an incorrect cutoff value for fasting blood 
glucose (>6.5 mg/dL instead of >125 mg/dL).

For the dementia phenotyping algorithm, GPT-4 and GPT- 
3.5 included relevant diagnosis codes (ICD-9-CM and ICD- 
10-CM, as well as one ICD-10). While there were several 
overlapping diagnosis codes between each pair of phenotyp-
ing algorithms, no diagnosis codes were shared across all 

Figure 2. A comparative analysis based on expert evaluations focusing on (A) four large language models, (B) two prompting strategies, (C) three 
phenotypes, and (D) three individual evaluation axes. Numeric scores of 3, 2, and 1 correspond to expert assessments of “Good”, “Medium”, and 
“Poor”, respectively. ���, ��, and � denote P< .001, P< .01, and P< .05, respectively. ns¼not significant.
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three algorithms. GPT-4 and GPT-3.5 included symptoms 
potentially related to dementia while the eMERGE algorithm 
did not. All three phenotyping algorithms shared four medi-
cations (two generic: donepezil and memantine, and two 
brand names: Aricept and Namenda), although the eMERGE 
algorithm specified additional medications that did not 
appear in either LLM-generated algorithm (n¼7). Only the 

GPT-4 phenotyping algorithm included exclusion criteria (eg, 
vitamin B12 level).

For the hypothyroidism phenotyping algorithm, GPT-4 
and GPT-3.5 identified relevant diagnosis codes (both ICD-9- 
CM and ICD-10-CM), lab tests (thyroid stimulating hor-
mone), and medications (generic levothyroxine and brand 
name Synthroid) used in the eMERGE algorithm. Only the 

Table 1. Shared and non-shared concepts from the eMERGE, GPT-4 (β-prompting), and GPT-3.5 (β-prompting) phenotyping algorithms for T2DM, 
dementia, and hypothyroidism.

Type 2 diabetes mellitus

Concept Shared Unshared concept count (example)

Algorithm All eMERGE GPT-4 (β) GPT-3.5 (β)

Diagnoses 250.�0, 250.�2, E11.� 2 
(O24.11) 

0 31a 

(250.01) 
Lab tests or procedures HgbA1cb, Fasting BGc 1 Lab 

(Random BG >200)d 
1 Lab 

(Oral GTT >200)d 
1 Lab 

(BMI ≥25)d 

Medications Metformin, Glipizide 34 
(Exenatide)d 

7 
(Glucophage) 

1 
(Sitagliptin) 

Symptoms None 0 3 
(Polyuria) 

3 
(Polydipsia) 

Exclusion by type None 9 ICD 
(250.�1) 

3 ICD 
(250.�3) 

0

Dementia

Algorithm All eMERGE GPT-4 (β) GPT-3.5 (β)

Diagnoses None 45 
(290.0)d 

6 20

Lab tests or procedures None 0 4 Procedures 
(MMSE)d 

3 Procedures 
(MRI scan)d 

Medications Donepezil, Aricept, Mem-
antine, Namenda

11 
(Cognex)d 

4 
(Galantamine) 

0

Symptoms None 0 3 
(Impaired reasoning)d 

5 
(Cognitive impairment)d 

Exclusion by type None 0 3 Labs 
(B12 level)d 

0

Hypothyroidism

Algorithm All eMERGE GPT-4 (β) GPT-3.5 (β)

Diagnoses 244.9, E03.8, E03.9 18 
(244)d 

7 
(244.1)d 

6 
(E03.5)d 

Lab tests or procedures TSHe 4 Labs 
(Anti-TPO)d 

1 Lab 
(Serum free thyroxine) 

0

Medications Levothyroxine, Synthroid 9 
(Liothyronine)d 

15 
(Amiodarone)d,f 

0

Symptoms None 0 8 
(Hair loss)d 

8 
(Constipation)d 

Exclusion by type None 18 ICD 
(193�)d 

79 CPT 
(60240)d 

16 Medications 
(Amiodarone)d 

2 Proceduresg 

(Thyroid surgery) 
0

Abbreviations: BG, blood glucose; BMI, body mass index; CPT, current procedural terminology; GTT, glucose tolerance test; HgbA1c, hemoglobin A1c; 
ICD, International Classification of Diseases; MMSE, Mini-Mental State Exam; MRI, magnetic resonance imaging; TSH, thyroid stimulating hormone; TPO, 
thyroperoxidase.

a Inaccurately includes IC9-CM codes for type 1 diabetes mellitus with 250�.
b All three phenotyping algorithms use a HgbA1c cutoff >6.5.
c eMERGE and ChatGPT-4 use the correct fasting BG > 126 mg/dL and ChatGPT-3.5 incorrectly uses cutoff >6.5 mg/dL.
d This denotes a unique concept example not used in any other phenotyping algorithm.
e Different TSH cutoffs used by each phenotyping algorithm (eMERGE: >5, ChatGPT-4: >upper limit of normal; ChatGPT-3.5: >4.5).
f Inaccurately includes amiodarone, which can cause hypothyroidism, as a treatment for hypothyroidism.
g Rather than specifying specific procedure codes, queried the concept table for concepts exactly matching “Thyroid surgery” or “Radioactive iodine 

treatment” (returned five procedure codes including 2 SNOMED, 1 Nebraska Lexicon, 1 HemOnc, and 1 MeSH).
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eMERGE algorithm used thyroid autoantibodies (eg, thyroid 
antiperoxidase). Notably, the GPT-4 algorithm specified the 
largest number of medications (n¼15), including nine medi-
cations that were not included in either the eMERGE algo-
rithm or the GPT-3.5 algorithm. Once again, only GPT-4 
and GPT-3.5 included symptoms. The eMERGE algorithm 
included 113 exclusions, including 18 ICD codes, 79 CPT 
codes, and 16 medications, while GPT-4 and GPT-3.5 speci-
fied only 2 and 0 exclusions, respectively.

Implementation and evaluation in VUMC
Along with the eMERGE algorithms, we successfully 
deployed all algorithms generated by GPT-4 and GPT-3.5 
from the β-prompting strategy except the T2DM algorithm 
generated by GPT-3.5 (Table 2). The failure of this phenotyp-
ing algorithm stemmed from its restrictive logic which accu-
mulated LEFT JOINs across various tables, including the 
Person, Condition_Occurrence, Measurement, Drug_Expo-
sure, and Observation tables. The algorithm required a LEFT 
JOIN on a list of people who had a record of symptoms in 
the Observation table (Polyuria, Polydipsia, Unexplained 
weight loss) and had a value of zero in the 
“value_as_concept_id” column. A value of zero did not exist 
for these symptoms, therefore the algorithm could not iden-
tify any individuals who met this criterion for T2DM.

The case (and control) prevalences for the eMERGE algo-
rithms in our population were 10.9% (28.0%), 3.5% 
(91.5%), and 2.4% (30.4%) for T2DM, dementia, and hypo-
thyroidism, respectively. The GPT-4 generated dementia 
algorithm achieved the highest PPV of 96.3% at the expense 
of a low recall (24.4%). This result was primarily attributable 
to the relatively restrictive inclusion criteria, which required 
medication prescription coupled with the co-occurrence of 
either diagnosis codes, symptoms, or cognitive assessment 
tests or procedures. The GPT-4 generated algorithms for 
T2DM and hypothyroidism, as well as the GPT-3.5 gener-
ated algorithm for hypothyroidism, achieved high recall but 
at the cost of lower PPV. In contrast, the GPT-3.5 generated 
algorithm for dementia achieved balanced PPV and recall.

Discussion
EHR phenotyping is a critical area of modern observational 
clinical research, yet it commonly demands substantial 
resources. In this study, we explored the effectiveness of 
LLMs in creating preliminary versions of computable pheno-
typing algorithms, with the ultimate goal of streamlining the 
EHR phenotyping process.

Not all LLMs we tested were well-suited for phenotyping. 
GPT-4 and GPT-3.5 significantly outperformed both Claude 
2 and Bard in their ability to generate executable and accu-
rately SQL-formatted phenotyping algorithms. One of the 

reasons for this discrepancy was Claude 2’s tendency to rep-
resent concepts using numerical concept codes, without speci-
fying what clinical criteria these concept codes were intended 
to capture. Five of the algorithms generated by Bard did not 
follow the OMOP CDM. Four of these algorithms referenced 
columns that did not exist in the OMOP CDM. These corre-
sponded to “patient_id” for both prompting strategies of 
dementia, “observation_fact” and “measurement_fact” for 
the α-prompting strategies of T2DM, and “occurrence_age” 
for the β-prompting strategy of T2DM. Additionally, two of 
the algorithms searched for concepts in the wrong tables. The 
α-prompting algorithm for dementia attempted to use the 
“person” table to extract all concepts, including diagnosis 
codes and medications, which would not be found in this 
table, whereas the β-prompting algorithm for hypothyroidism 
looked for signs and symptoms in the Measurement table. 
We consider these behaviors to be indicative of LLM halluci-
nations in the context of EHR phenotyping. Given the poor 
performance of the phenotyping algorithms generated by 
Claude 2 and Bard, we focused the remaining analysis on 
phenotyping algorithms generated by GPT-4 and GPT-3.5.

Both GPT models were able to follow instructions and 
identify relevant concepts for the three selected phenotypes. 
The phenotyping algorithms generated by these models con-
tained reasonably accurate diagnosis codes, related lab tests, 
and key medications. The concepts identified largely over-
lapped with the ones used by domain experts. We found that 
GPT-4 generally demonstrated slightly superior performance 
compared to GPT-3.5 by identifying more medications and 
providing more appropriate thresholds for lab values 
(Table 1). Moreover, the GPT-4 and GPT-3.5 generated algo-
rithms were able to identify additional potentially useful cri-
teria, including a variety of symptoms and clinical signs for 
each phenotype, which have not usually been incorporated in 
any eMERGE algorithms.

Despite the merits of GPT-4 and GPT-3.5, they produced 
phenotyping algorithms containing incorrect criteria. For 
example, both GPT-4 and GPT-3.5 erroneously considered 
the ICD-10 code F00 as a relevant diagnosis code for demen-
tia, whereas our prompts specifically required ICD-10-CM 
codes. Additionally, GPT-3.5 occasionally selected inap-
propriately broad ICD-9-CM codes, such as 250� for T2DM, 
inadvertently encompassing diagnoses related to other types 
of diabetes. Also, both GPT models missed some key ICD 
codes and medications. For example, while the query cor-
rectly identified patients with ICD-10-CM code G30 as 
dementia cases, they overlooked patients with more specific 
codes such as G30.0, G30.1, G30.8, and G30.9. The algo-
rithms produced by both GPT models generally generated a 
shorter list of medications compared to their corresponding 
eMERGE algorithms, with the exception of the GPT-4 pro-
duced algorithm for hypothyroidism. In this case, GPT-4 

Table 2. Performance of the phenotyping algorithms generated by GPT-4 and GPT-3.5 from the β-prompting strategy when applied to VUMC data, as 
measured against clinician-validated algorithms for the eMERGE phenotype cases and controls.

Disease
eMERGE GPT-4 GPT-3.5

True cases True controls TP FP PPV (%) Recall (%) FPR (%) TP FP PPV (%) Recall (%) FPR (%)

T2DM 9293 23 754 8978 578 53.3 96.6 2.4 0 0 – 0.0 0.0
Dementia 2985 77 575 729 11 96.3 24.4 0.01 2388 583 71.4 80.0 7.5
Hypo-thyroidism 2030 25 760 2029 258 9.6 99.9 1.0 2029 1065 10.7 99.9 4.1

TP, true positive; FP, false positive; FDR, false discovery rate; T2DM, type 2 diabetes mellitus.
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interpreted the hypothyroidism phenotype more broadly to 
include not only endogenous causes of hypothyroidism (as in 
the eMERGE algorithm) but also exogenous causes (not 
included in the eMERGE algorithm). As a result, the medica-
tions specified by the GPT-4 hypothyroidism algorithm 
included both drugs used for treatment of hypothyroidism 
and drugs with potential to cause hypothyroidism (ie, lith-
ium, amiodarone, Lithobid, Cordarone, Nexterone, Pacer-
one). Moreover, certain thresholds set for lab values were 
inaccurate, such as “fasting blood glucose ≥6.5” for T2DM.

As noted above, compared to the eMERGE algorithms, 
both GPT-4 and GPT-3.5 introduced some new concepts, 
including signs and symptoms such as fatigue, cold intoler-
ance, and weight gain. Many of these concepts are infre-
quently used by domain experts in algorithm generation due 
to their low specificity. Including these low-specificity con-
cepts might not substantially enhance the recall of the algo-
rithms and could potentially diminish the algorithm’s PPV. 
Despite this, they showed promise in identifying noteworthy 
concepts, such as the Mini-Mental State Examination and 
Montreal Cognitive Assessment for dementia.

Finally, the evaluated LLMs exhibited immature capability 
in organizing phenotyping criteria with the proper logic. The 
SQL queries generated by GPT-4 and GPT-3.5 were predomi-
nantly characterized by a single logical operator (AND or 
OR), resulting in phenotyping algorithms that were either 
excessively restrictive or overly broad.

Collectively, our findings highlight that LLMs have the 
potential to produce helpful preliminary phenotyping algo-
rithms by identifying relevant clinical concepts and criteria. 
As a result, we believe they have the potential to accelerate 
the creation of EHR-based phenotypes; however, clinical 
phenotyping expertise, familiarity with EHR data models, 
and SQL programming skills remain critical for assessing and 
subsequently enhancing the efficacy of LLM-produced algo-
rithms. At present, LLMs fall short of creating ready-to-use 
algorithms without revision. Therefore, incorporating a 
human-in-the-loop approach is necessary at this stage to 
ensure the algorithms’ practical applicability and accuracy. 
Still, this preliminary step would allow for a shift from tradi-
tional approaches where domain experts independently con-
duct comprehensive literature review and evidence 
synthesis—a process that is both time-intensive and challeng-
ing—to a more efficient and manageable model, where the 
domain experts’ role evolves to assessing and refining algo-
rithms generated by LLMs.

Limitations and future work
Several limitations need to be highlighted as potential oppor-
tunities for future improvement. First, this pilot study was 
limited in scope and did not investigate all the possible tools, 
options, and capabilities of the LLMs listed here. Addition-
ally, we did not fully explore the improvements, if any, of dif-
ferent prompt-engineering strategies, in-context learning, or 
fine-tuning. We are reporting initial observations from using 
the most basic and widely accessible version of these LLMs, 
ie, the chat box interface with default settings available 
through the websites of each of the LLMs. Using an API 
would allow for selection of additional parameters, which 
may affect performance. Second, as a pilot study, this 
research focused on prompting LLMs to generate algorithms 
for identifying phenotype cases. The capability of LLMs in 
generating algorithms to identify controls also needs to be 

evaluated. Third, we tested solely on proprietary models and 
their default configurations. It is important to assess both 
proprietary models and the leading open-source models (eg, 
Llama 2), especially when they are enhanced with fine-tuning 
capabilities and knowledge integration. Fourth, our design of 
prompts did not consider optimizing for execution efficiency 
of the SQL queries. Consequently, LLMs often produced 
SQL queries with suboptimal query structures. Fifth, this 
study only considered phenotypes for three common diseases. 
Phenotyping rare diseases may present different challenges 
particularly when there is limited relevant online content for 
a particular disease. Sixth, there is a chance that the pheno-
typing algorithms produced by LLMs might include clinical 
concepts that are not universally adopted by the OMOP data-
bases of all healthcare organizations. As a result, this could 
lead to uncertainty in the algorithms’ effectiveness in patient 
identification in such situations. Nevertheless, we believe this 
issue can be addressed through a human-in-the-loop 
approach, which involves initially determining the concepts 
that are either not implemented or included, followed by re- 
prompting the LLMs to fine-tune the algorithm to exclude 
these concepts. Seventh, the consistency of responses 
generated by proprietary LLMs varies over time, warranting 
consideration for potential future investigations. New 
LLMs are being rapidly deployed, and our future efforts will 
involve exploring alternative advanced models, such as 
ResearchGPT33 and Google Gemini.34 Additionally, we will 
be delving into more refined control and customization in the 
generation process through prompt engineering to achieve 
desired performance levels.

Conclusion
GPT-4 and GPT-3.5 of ChatGPT are capable of producing 
phenotyping algorithm drafts that align with a standard 
CDM. These models can reasonably identify relevant clinical 
inclusion and exclusion criteria that can be used in an initial 
draft phenotype algorithm. Nevertheless, expertise in infor-
matics and clinical experience is still required to assess and 
further refine LLM-generated phenotyping algorithms for 
improving EHR phenotyping accuracy.
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