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A

Apolipoprotein L1 (APOL1) risk variants G1 and G2 are known to result in risk for kidney disease in
patients of African ancestry. APOL1-associated nephropathy typically occurs in association with
certain environmental factors or systemic diseases. As such, there has been increasing evidence of the
role of interferon (IFN) pathways in the pathogenesis of APOL1-associated collapsing glomerulopathy
in patients with human immunodeficiency virus (HIV) infection and systemic lupus erythematosus, 2
conditions that are associated with high IFN levels. Collapsing glomerulopathy has also been
described in patients receiving exogenous IFN therapy administered for various medical conditions.
We describe a patient with a genetic condition that results in an increased IFN state, stimulator of IFN
genes (STING)-associated vasculopathy with onset in infancy (SAVI), who developed collapsing
glomerulopathy during a flare of his disease. The patient was found to have APOL1 G1 and G2 risk
variants. This case supports the role of IFN in inducing APOL1-associated collapsing glomerulopathy.
Introduction

Apolipoprotein L1 (APOL1), also known as the trypano-
lytic factor of human serum, confers protection against
African trypanosomiasis.1 Two commonly occurring risk
variants in the APOL1 gene (G1 and G2) result in significant
increase in the risk for kidney disease among patients of
recent African ancestry.1,2 The renal histopathologic
spectrum associated with APOL1-associated disease is
heterogeneous and includes various patterns of disease,
including focal segmental glomerulosclerosis; collapsing
glomerulopathy, a histologic variant of focal segmental
glomerulosclerosis; and nondiabetic kidney failure.3-5

APOL1 risk variants have incomplete penetrance, such
that most patients carrying a high-risk genotype never
develop meaningful kidney disease.5,6 This observation,
along with the frequent identification of environmental
factors and systemic diseases in patients with APOL1-
associated disease, has suggested the possibility of a
“2-hit” scenario.7 Commonly associated factors include
human immunodeficiency virus (HIV) infection,5 systemic
lupus erythematosus,4,8 and membranous glomerulop-
athy.9 Additionally, APOL1-associated nephropathy has
been described in patients undergoing interferon (IFN)
treatment, and IFN-induced increase in podocyte expres-
sion of APOL1 has been shown in vitro.10,11

Stimulator of interferon genes (STING)-associated vas-
culopathy with onset in infancy (SAVI) is a type I inter-
feronopathy syndrome first described in 2014.12 STING is
a critical protein in type 1 IFN response to viral double-
stranded DNA. In SAVI, gain-of-function mutations in
TMEM173, the gene encoding STING, cause its activation,
boosting synthesis of type 1 IFN.12 Type I IFN then trig-
gers a positive feedback loop leading to activation of Janus
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kinase 1 (JAK1) and signal transducers and activators of
transcription 1 (STAT 1) and 2 (STAT 2), and transcription
of proinflammatory IFN-stimulated genes.12 Clinically,
SAVI is characterized by neonatal-onset systemic inflam-
mation, severe cutaneous vasculopathy, and interstitial
lung disease.12-14 Kidney involvement associated with
SAVI has not been previously described.

We present a case of collapsing glomerulopathy in a
patient with 2 APOL1 risk alleles and endogenous over-
production of type 1 IFN secondary to SAVI in the absence
of other systemic diseases or environmental factors.

Case Report

An African American boy, one of fraternal twins, presented
at 4 weeks of age with swelling of a digit from his left
hand. He subsequently developed multiple recurrent skin
lesions, characterized by blisters that progressed to ulcers.
Skin biopsy was performed, showing dermal perivascular
and interstitial inflammation with vasculopathy. He also
developed recurrent ischemic changes of his digits and
toes. Initial laboratory evaluation showed persistently
elevated levels of inflammatory markers and unexplained
anemia (hemoglobin, 6.8-10.4 g/dL). He subsequently
developed thrombocytopenia (platelet count, 36-130 ×
103/μL), elevated ferritin level (630-21,804 ng/mL),
prolonged prothrombin time and partial thromboplastin
time, and low fibrinogen level (1.06-1.80 g/L) that was
concerning for macrophage activation syndrome.

The patient was initially treated with high-dose cortico-
steroids followed by a slow tapering dose and 0.5 mg/kg
daily of sildenafil (3.7 mg per day), with partial response.
He continued to develop skin lesions associated with high
fevers and ischemic changes of his digits and had multiple
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admissions to the hospital for suspected sepsis in an
immunocompromised patient. He also had failure to thrive.
At 7 months of age, he developed respiratory symptoms and
was twice admitted to the hospital for pneumonia.
Computed tomography of the chest showed diffuse paren-
chymal and interstitial abnormalities and findings suggestive
of both acute and chronic inflammation.

The diagnosis of SAVI was made at the age of 8 months
by targeted genetic testing of TMEM173, which showed a
heterozygous variant predicted to lead to a valine to
leucine substitution at amino acid 147 (V147L), which has
been previously reported in SAVI.12 Genetic testing for
familial hemophagocytic lymphohistiocytosis (HLH), pe-
riodic fever syndromes, and deficiency of adenosine
deaminase 2 was negative. Based on these findings, the
patient was started on treatment with ruxolitinib, a JAK
inhibitor, 1 mg twice daily. The development of new skin
lesions became less frequent, as well as the frequency of
hospitalizations. The ruxolitinib dose was increased to
2.5 mg and the patient did well for a few months before an
acute episode of focal seizures. At that time, magnetic
resonance imaging of the brain revealed multiple areas
suggestive of gliosis in the superior vermis, occipital lobe,
and right thalamus from a prior event such as ischemia.
However, magnetic resonance angiography and magnetic
resonance venography results were normal. An electroen-
cephalogram was also unremarkable.

At the age of 14 months, the patient was admitted to the
hospital for fevers and poor oral intake after routine im-
munizations (Pediarix [GlaxoSmithKline], pneumococcal,
influenza, and Haemophilus influenzae type b). Before immu-
nizations, his ruxolitinib treatment had been on hold for
11 days. During this hospitalization, he developed blisters
and ulceration at the site of the immunizations, which later
worsened and became more diffuse. He also had wors-
ening digital ischemia leading to autoamputation. Workup
for infection included blood culture; urine culture; a res-
piratory polymerase chain reaction panel that included
influenza, parainfluenza, adenovirus, coronavirus, respi-
ratory syncytial virus, rhinovirus, enterovirus, Bordetella
pertussis, and Mycoplasma pneumoniae; and serologic testing for
cytomegalovirus, Epstein-Barr virus, and parvovirus. This
workup failed to show an infectious cause.

During this flare he developed generalized edema,
proteinuria, and serum albumin level of 0.8 to 1.9 g/dL,
consistent with nephrotic syndrome. Urinalysis showed
protein (3+), and protein-creatinine ratio was 34 mg/mg.
Before this hospitalization, he had had multiple urinalyses
performed that had never shown proteinuria. He also
developed high blood pressure, and treatment with
0.25 mg/kg daily of enalapril was started.

The patient was treated with methylprednisolone,
30 mg/kg daily, and treatment with ruxolitinib (2.5 mg
twice daily) was restarted. He continued to have nephrotic-
range proteinuria and a kidney biopsy was performed.

One core of renal cortex was available for light micro-
scopy; this contained 23 glomeruli, 2 of which were
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globally sclerotic. Nonsclerotic glomeruli frequently
showed collapse of the glomerular tuft associated with
prominent epithelial cell hyperplasia and hypertrophy (Fig
1A and B). Reactive epithelial cells showed numerous
cytoplasmic protein droplets. Additionally, focal glomeruli
showed areas of segmental glomerulosclerosis. Otherwise,
glomeruli showed no evidence of mesangial or endocapil-
lary hypercellularity. Moderate interstitial fibrosis and
tubular atrophy were present, involving 30% of the cortical
surface. Mild mixed tubulointerstitial inflammation was
noted predominantly within areas of scarring. Atrophic tu-
bules showed a thyroidization pattern of atrophy, with focal
microcystic tubular dilatation (Fig 1C and D). Nonatrophic
tubules showed marked swelling of the tubular epithelium
with large numbers of cytoplasmic protein resorption
droplets. Arteries and arterioles were unremarkable.

Six glomeruli were available for immunofluorescence,
none of which were globally sclerotic. All staining,
including for immunoglobulin A (IgA), IgG, IgM, C3,
C1q, fibrinogen, and κ and λ light chains, was negative
within glomeruli (stains were obtained from Kent Labo-
ratories, except those for fibrinogen and κ and λ light
chain, which were from Agilent). For IgG and κ and λ
light chain, the proximal tubule protein resorption drop-
lets stained strongly positive.

Ultrastructural examination of a glomerulus using
electron microscopy showed uniform glomerular base-
ment membranes of normal thickness. No immune
electron-dense deposits were present. Epithelial foot pro-
cesses were moderately effaced, involving 30% of available
capillary loops. Few endothelial tubuloreticular inclusions
were noted. Tubular basement membranes were unre-
markable (Fig 1E and F). Two glomeruli were examined
using electron microscopy and both showed a similar
degree of epithelial foot-process effacement.

DNA from the patient’s peripheral blood was genotyped
for APOL1 risk alleles using TaqMan primer/probe custom
design assays as previously described.4 One of the G1 risk
variants (rs73885319, encoding a serine to glycine substi-
tution at amino acid 342) and the G2 risk variant (the
insertion/deletion encoded by rs71785313) showed com-
pound heterozygosity.
Discussion

This case of a patient heterozygous for the G1 and G2 risk
alleles of APOL1 who has a high IFN state due to his un-
derlying condition of SAVI provides further support for
IFN as an inducer of collapsing glomerulopathy in in-
dividuals with the APOL1 high-risk genotype. IFNs are
molecules secreted in response to pathogens, and their
production results in an inflammatory state. As such, pa-
tients with type 1 interferonopathies who are affected by
the upregulation of type I IFN signaling have persistent
systemic inflammation. There is a growing body of evi-
dence implicating IFN pathways in the pathogenesis of
APOL1-associated collapsing glomerulopathy. Collapsing
AJKD Vol 75 | Iss 2 | February 2020



Figure 1. Collapsing glomerulopathy. (A, B) Collapse of the glomerular tuft associated with prominent epithelial cell hyperplasia and
hypertrophy (A: periodic acid–Schiff; B: Jones methenamine silver; A, B: original magnification, ×400). (C, D) Tubulointerstitial
changes with microcystic tubular dilatation, moderate interstitial fibrosis and tubular atrophy, and mild mixed interstitial inflammation
(C: periodic acid–Schiff; original magnification, ×100; D: Masson trichrome; original magnification, ×20). (E, F) Uniform glomerular
basement membranes with segmental epithelial foot-process effacement. At high magnification, endothelial tubuloreticular inclusions
are seen (arrow) (E, unstained; original magnification, ×8,000; F, unstained; original magnification, ×18,000).
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glomerulopathy is the most fulminant histopathologic
form of APOL1-associated nephropathy. This form of
glomerulopathy is well known to be associated with dis-
eases that have increased IFN levels, such as HIV infection
and systemic lupus erythematosus.4,5,9,15

Additionally, exogenous IFN therapy, administered for
variousmedical conditions, has been shown to be associated
with collapsing glomerulopathy in a case series of 11 pa-
tients.10 Among these patients, all 7 tested were homozy-
gous for APOL1 risk variants.11 Regardless of the associated
conditions, kidney biopsies from patients with APOL1-
associated nephropathy frequently show solidified and
disappearing-type glomerulosclerosis, thyroidization type
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of tubular atrophy, and microcystic tubular dilation.3 Some
of these features are evident in the case under discussion.

In vitro, IFNs increase APOL1 expression up to 200-
fold. This is pertinent because overexpression of APOL1
has been shown to be injurious to cells both in cell culture
and an animal model.11,16,17 Notably, overexpression of
APOL1 risk variants is more injurious to cells than over-
expression of the wild-type protein. Together, these
studies demonstrate an association between increased IFN
levels and APOL1-associated nephropathy.4

It is worth noting that although the presented case
highlights the potential of IFN to cause podocyte injury,
the severity of foot-process effacement in the examined
289
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glomeruli was discrete. Studies of patients with collapsing
glomerulopathy in various clinical settings have shown
significant variability in the degree of foot-process
effacement, with 15% to 62% of patients having absence
of severe effacement by electron microscopy.18,19

We report a case of APOL1-associated nephropathy in the
setting of the genetic disease SAVI, a type I interferonopathy
syndrome, which raises the possibility of increased risk for
kidney disease in African American patients with this dis-
ease. In addition, this case further establishes the pathogenic
role of IFN in patients with 2 APOL1 risk alleles. Similar to
patients with exogenous IFN therapy, this patient with a
condition that leads to increased endogenous IFN levels
developed the most fulminant form of APOL1-associated
nephropathy, collapsing glomerulopathy.
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