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Abstract

Background: With the advancement of high-throughput technologies and enrichment of popular public databases,
more and more research focuses of bioinformatics research have been on computational integration of network and
gene expression profiles for extracting context-dependent active subnetworks. Many methods for subnetwork
searching have been developed. Scoring and searching algorithms present a range of computational considerations
and implementations. The primary goal of present study is to comprehensively evaluate the performance of different
subnetwork detection methods. Eleven popular methods were selected for comprehensive comparison.

Results: First, taking into account the dependence of genes given a protein-protein interaction (PPI) network, we
simulated microarray gene expression data under case and control conditions. Then each method was applied to
the simulated data for subnetwork identification. Second, a large microarray data set of prostate cancer was used
to assess the practical performance of each method. Using both simulation studies and a real data application,
we evaluated the performance of different methods in terms of recall and precision.

Conclusions: jActiveModules, PinnacleZ and WMAXC performed well in identifying subnetwork with relative high
precision and recall. BioNet performed very well only in precision. As none of methods outperformed other

methods overall, users should choose an appropriate method based on the purposes of their studies.
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Background

In system biology, analysis of large biological networks
has become major research topics in recent years. In
order to better understand complex biological processes,
diverse data sources revealing different aspect of biological
functions are required for effective integration of know-
ledge. One of the most successful approaches has been to
integrate protein—protein interaction (PPI) network with
gene expression profiles to identify sets of genes and
interactions that participate in a meaningful biological
function, that is 'active subnetworks (modules)' [1].
Gene expression profiles monitor the transcription activities
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of thousands of genes simultaneously in various tissues and
under diverse experimental conditions. PPI network,
naturally complement interaction data primarily de-
rived from experiments, provide a physical 'scaffold'
with process-specific information that is correlated
with cellular processes or disease states [2]. With the
development of popular public databases, more and
more research focuses of bioinformatics research have
been to computational integration of network and gene
expression profiles for extracting context-dependent active
subnetworks.

Searching for active subnetworks has been a computa-
tionally difficult problem, known as Non-deterministic
Polynomial-time (NP)-hard problem. Many methods for
subnetwork searching have been developed, presenting a
range of computational considerations and implementations.
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Different scoring functions have imposed scores on network
nodes or edges or both [2, 3]. Besides, high-scoring nodes
were prioritized as ‘seed genes’ for searching [4, 5]. Many
searching algorithms, such as greedy searching, simulated
annealing, genetic algorithms, have been proposed and
applied to identify active subnetworks in recent studies.
Because of the diversity of scoring functions and
searching algorithms, it is impossible to obtain identical
or similar subnetworks given the same input expression
profiles and PPI network.

The primary goal of present study is to comprehensively
evaluate the performance of different subnetwork detection
methods. 11 methods were selected for comprehensive
comparison. First, taking into account the dependence of
genes given a PPI network, we simulated microarray gene
expression data under case and control conditions. Then
each method was applied to the simulated data for subnet-
work identification. Second, an authoritative microarray
data set of prostate cancer was used to assess and compare
the performance of each method.

Methods
Subnetwork detection methods for comparison
As gene expression profiles can capture the transcription
activities of thousands of genes simultaneously correlated
with cellular or disease states, and PPI network provide a
physical 'scaffold’ with cell process-specific information,
the integration of PPI network with gene expression
profiles has become one of the most popular integrative
approaches for extracting context-dependent active sub-
networks. During the past decade various algorithms have
been specifically developed to identify subnetworks in PPI
network by integrating gene expression data and PPI
network. 11 subnetwork detection methods were selected
for comprehensive assessment based on the following rules.
The input for each algorithm must be a network and an ex-
pression matrix or a list of seed genes or summary statistics
based on the differential gene expression analysis. A brief
summary of each method were given in the Table 1.
JActiveModules is a plugin package in software Cytoscape.
From a molecular interaction network it conducts searches
of expression activated subnetworks [2], which show signifi-
cant changes in expression over different conditions. The
method combines a rigorous statistical measure for scoring
subnetworks for finding subnetworks with high score
through two different search algorithms: simulated anneal-
ing GAM_SA) and greedy search (JAM_GS). The simulated
annealing is aimed to search for the most highly scored
subnetwork and the greedy search extends a subnet-
work by adding one of its neighboring genes that maxi-
mizes a mutual information—based function. The input
of jActiveModules is p-values of genes in the differential
expression analysis between the two experimental con-
ditions. For both search algorithms in jActiveModule,
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Table 1 Description of subnetwork detection methods

Method  Algorithm Tool type Input
name
JAM_SA  Simulated annealing  Java;Cytoscape PPl and p-values
JAM_GS  Greedy search Java,Cytoscape PPl and p-values
BioNet integer-Linear R package PPl and p-values
Programming
BMRF Greedy search Matlab Gene expression
matrix, PP, label
and seed genes
FEM spin-glass algorithm R package PPl and t statistics
Cosine Genetic algorithm R package Gene expression
matrix and PPI
ClustEx  Clustering,shortest C PPl and seed genes
path
WMAXC  Continuous genetic Matlab Gene expression
algorithm and a matrix and PPI
projection procedure
PinnacleZ Greedy search Java,Cytoscape Gene expression
matrix, PPl and label
KR Klein-Ravi algorithm Python PPI, seed genes and
scores of all nodes
Kwalk Limited K-walks Python PPI, seed genes and

algorithm scores of all nodes

search depths from 1 to 3 were tested and maximum
number of modules was set as 1.

BioNet is an R package for detection of functional
modules through the integrative analysis of protein-protein
interaction networks and gene expression profile. First,
gene p-values calculated from the differential expression
analysis are assigned to the nodes of the network. Second,
based on gene p-values, scores are calculated by fitting a
beta-uniform mixture model and then overall scores of
network regions can be calculated. Third, subnetwork
detection is modeled as a Prize-Collecting Steiner Tree
(PCST) problem and an integer linear programming
algorithm identifies the maximum scoring subnetwork
[6, 7]. The BioNet allows for the fine tuning of the
signal noise decomposition by the false discovery rate
(FDR), therefore we scanned a range of FDRs to guar-
antee desirably sized modules and evaluated the ob-
tained solutions in terms of recall and precision.

Bagging Markov random field (BMRF) approach is a
BMRF-based method for subnetwork identification in
the integration PPI data and microarray data with two
different phenotypes (case/control). The BMRF approach
integrates gene expression and PPI data based on on a
framework of Markov random field modelling and max-
imum a posteriori estimation. It improves the subnet-
work identification with a modified simulated annealing
search algorithm and a so-called bagging aggregation
scheme [8]. In BMRE, the parameter T, which controls
the sharpness of the distribution of network score
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function, was set to 1 and the other parameter d dis-
tance was tested ranging from 1 to 3.

Functional epigenetic modules (FEM) algorithm is a func-
tional supervised algorithm. It encapsulates the strength of
associations of the genes with the phenotype in terms of
the edge weights, in order to identify modules (subnet-
works), where the edge weight density (called modularity)
is significantly higher than in the rest of the network
[9, 10]. An efficient spin-glass (SPG) module detection
algorithm was used to identify modules, as it maximizes a
relative weight density centered around specific seeds.
The statistical significance of any inferred modules was
assessed based on 1000 permutations, in which the node
statistics were randomly permuted over the network
followed by re-computation of the modularity values. One
main tunable parameter (M) in the FEM algorithm is used
to determine the size of the inferred modules. We tuned A
to yield modules in a size range and evaluated them in
terms of recall and precision.

Condition specific sub-network (COSINE) aims to identify
a single optimal subnetwork of genes showing maximal
alternation in terms of the expression pattern, given two or
more microarray expression profiles under different condi-
tions (case vs. control, etc.) [11]. In COSINE, a scoring
function is used to jointly measure the differential expres-
sion of each gene (node) and gene-gene co-expression
(edge). The parameter \ (0 <\ <1) is a weight parameter to
adjust for the size of the subnetwork in the PPI network. It
uses the genetic algorithm to search for the single optimal
subnetwork which maximizes the scoring function. A
simple empirical procedure is used to select weight
parameter A, making it adaptive to the specific datasets
being analyzed. As to the optimized choice of \, we
followed the procedure in the original paper [11].

ClustEx is a two-step method for identifying gene
modules by integrating gene expression and PPI [4]. In
the clustering step, the differentially expressed genes
(DEGs) were clustered and partitioned into different groups
by average linkage hierarchical clustering according to their
distances in gene networks. In the extending step, the final
gene modules were formed by adding intermediate genes
on the k-shortest paths between the DE genes. It requires a
seed gene set based on the DE analysis and the largest
output cluster will be considered as the final subnetwork.

Weighted maximum clique (WMAXC) method aims to
identify a condition-specific sub-network [12]. The weight
of nodes and edges in a PPI network are calculated by
scoring functions to measure differential expression of
genes and gene-gene co-expressions for given two condi-
tions. Then the maximal scoring subnetwork is identified
by an optimization model. In WMAXC, A weight par-
ameter )\ is chosen to be adaptive to the dataset being
analyzed and make the solution stable to the problem
through a optimization model [12].
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PinnacleZ is a Cytoscape plugin for classifying gene
expression data by integrating gene expression and PPI
network [13]. PinnacleZ requires three sources of input:
a gene expression matrix, a class file and a PPI network.
It scores subnetworks using the mutual information
between aggregated gene Z-scores and sample labels. A
greedy search is performed to find local subnetworks. In
PinnacleZ, search depths from 1 to 3 were tested to pro-
vide a sufficient number of neighbors while keeping the
search local.

Klein-Ravi (KR) algorithm will use a connected graph
from seed genes as an initial tree [5, 14]. The iteration of
the algorithm selects a non-tree node and a subset of at
least two of the current trees to minimize the ratio called
quotient cost. Once a node is selected, the shortest path is
used to merge node and trees into one. For more details
of the algorithm, please refer to the original paper [14].

The limited K-walks (kwalk) algorithm simulates random
walks on a graph by the Markov Chain model [5, 15]. The
relevance of an edge and a node in relation to the seed
genes is evaluated by the expected times random walk
passes starting from one seed to any of the others. A de-
tailed elaboration can be found in the original paper [15].

Results

Simulation studies

PPI data was downloaded from the database of HPRD
(Human Protein Reference Database, http://www.hprd.org/
download), Release 9, 2010. To reduce the computational
complexity, a subset PPI network containing 5,195 genes
and 18,158 interactions was extracted from HPRD database.
In this PPI network, 274 genes were randomly selected to
be considered as the ground truth subnetwork of inter-
actions. Given the PPI network and the ground truth
subnetwork, gene expression data was simulated through
two models considering the inter-dependence of genes in
the network.

First, an MRF model was employed to determine the
states of genes as ‘differentially expressed’ or ‘non-dif-
ferentially (equally) expressed’ in the PPI network
given the ground truth subnetwork. Let X be a binary
vector indicating the states of genes in a PPI network
G, 0 representing ‘equally expressed (EE)’ and 1 repre-
senting ‘differentially expressed (DE). The ground
truth differential subnetwork was denoted as Gy,
which means Xgo;=1 and X(g.goy =0. Then we can
sample the gene state according to the following prob-
ability based on a Markov random field model:
pi(k|-) < exp(yx - Bui(1 - k)), where y; and 8 were the
parameters predefined, and y;(1-k) denoted the num-
ber of neighbors of gene i having state 1-k, k=0, 1. To
introduce false positives in the sampled differential
subnetwork, one more parameter (w) was added to
control the probability of keeping initial states of
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ground truth DE genes and background EE genes.
Here p;(1-k) was defined as a function of parameter

o (1043 (1-x,)
JeN;
uill-k) = w+Z(X,1’k+Xf)
JeN

where X! =X, X% =1-X. Here we chose w at 50 to
generate simulation gene expression data set.

Second, based on the states of the genes, the gene
expression levels were modeled in a Gamma-Gamma
(GG) model, in which the observed variable y (gene
expression level) follows a Gamma distribution hav-
ing shape parameter a>0 and scale parameter f,,
with a mean value py,=ap, Mathematically, the
probability density function of the GG model is defined
by: p(y|cr7 /)’g) = %. To finally generate simula-
tion data, we fist sampled the scale parameter 3, based on
Gamma distribution (a5 v) and then sampled gene ex-
pression levels using parameters (a, f,) given the states of
genes. The parameters were the same as those in Newton
et al. [16] (=10, ap = 0.9 and v = 0.5). Based on the differ-
ential state and gene dependency, the gene expression
data were simulated with 50 samples in each phenotype
(100 samples in total).

w as follows:

Subnetwork identification performance assessment

As some methods do not prioritize genes in the subnet-
work, we cannot use the area under the receiver operat-
ing characteristic (ROC) curve (AUC) as a criterion to
evaluate the performance. Therefore, recall, precision
and the combined F-measure were used to evaluate the
performance of different methods. Precision and recall
were defined as follows: Precision = (Syecovered N Sground)/
Srecovered = TP/TP + FP; Recall = (Srecovered n Sground)/
Seround = TP/TP + FN, where true positive (TP) denotes
the number of correctly identified genes, false positive
(FP) denotes the number of falsely identified genes
and false negative (FN) denotes the number of falsely
unidentified genes. Siecovered indicated the number of
genes in the recovered subnetwork after applying each
subnetwork identification method and Sgrouna indi-
cated the number of genes in the ground truth subnet-
work. The traditional F-measure or balanced F-score
(Fp-score) is the harmonic mean of precision and re-
call, and can be used as a measure of total accuracy
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when equal importance is attached to recall and
precision.

Performance comparisons of these methods were shown
in Table 2. We can see that BioNet had the highest preci-
sion result, followed by JAM_GS and WMAXC. This is in-
teresting because BioNet does not depend on a seed gene
set but the significance of the gene expression. jJAM_SA
had the highest recall, followed by PinnacleZ, because
JAM_SA used simulated annealing search. Different from
other methods, ClustEx needed two-steps for subnetwork
identification based on the assumption that a group of
closely-connected differential genes were the signatures of
the subnetworks. ClustEx had poorest performance
among all the methods. Another poorest method is
Cosine, possibly because it searched for the single op-
timal sub-network which jointly measures the changes
of nodes as well as edges.

Comparison on real data set with integration of PPIs

The performance of each method was tested using real
data integrated with PPI network. Prostate cancer (PC)
gene expression data was used (GSE3933), which con-
tained the gene expression profiles of 71 prostate tumor
and 41 normal samples [17]. Missing values in probes
were imputed by the mean of observations and then data
were standardized. Mean value of multiple probes mapped
to a gene was computed as the expression level for that
gene. Genes, which were contained both in PC gene
expression profiles and HPRD PPI network, were included
in the subsequent network analysis. After excluding
self-interactions, there were 5335 genes (nodes) and
18234 interactions (edges). For the method evaluation,
703 genes related to PC from the Dragon Database of
Genes associated with Prostate Cancer (DDPC) were
used as reference genes [18]. This database comprehen-
sively included genes all experimentally verified to be asso-
ciated with PC. Among the 703 genes, 400 were included
in the 5335 genes.

Fold enrichment was used to evaluate the performance
of the methods and was calculated as (# of recovered
genes)*5335/400*(# of selected genes), where selected
genes were genes selected by the method, recovered
genes were genes recovered by the method among the
400 reference genes, and 5335 represented the number
of all genes in the entire network.

Table 3 showed the results of method comparison in
real data set. The subnetwork size ranged from 196 to

Table 2 Performance comparison on the simulated data for the subnetwork detection methods

Method BioNet JAM_GR JAM_SA Cosine BMRF WMAXC FEM PinnacleZ KR Kwalk ClustEx
Precision 0.931 0.583 0.084 0.042 0.353 0498 0.196 0.382 0444 0314 0.018
Recall 0.181 0381 0.863 0.052 0447 048 0424 0512 0489 0.54 0.073
F-meausre 0.303 0461 0.153 0.046 0.394 0489 0.268 0438 0.465 0.397 0.029
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Table 3 Performance comparison on prostate cancer gene expression data and PPI for the subnetwork detection methods

Method BioNet jAM_GS JAM_SA  Cosine BMRF  WMAXC FEM PinnacleZ KR Kwalk  ClustEx
Number of nodes selected 196 316 1559 243 601 539 233 246 328 466 419
Number of edges in the subnetwork 275 715 2987 102 1179 1698 292 503 472 771 495
Number of PC genes recovered 24 48 132 23 94 95 2 46 38 42 26
Fold enrichment 1.633 1773 1.129 1.262 2086 235 0114 2494 1545 1202  0.828

1559. For example WMAXC extracted a subnetwork of
the size 539 and resulted in a fold enrichment of 2.35.
PinnacleZ had the highest fold enrichment of 2.49 with
a subnetwork size of 246. It indicated that PinnacleZ
outperformed all the other methods, although in the
simulation data set, PinnacleZ had similar F-measure
with jJAM_GS and WMAXC.

Computational complexity and program usability

Apart from accuracy, another important attribute for
each method is computational complexity. When dealing
with a large high-dimensional data set, some methods
may become unfeasible. BMRF and jAM_SA may cause
such concerns. Most other methods would finish comput-
ing within reasonable time on standard desktop hardware
even for large data sets. The usability of each method is
determined by users’ familiarity with a particular platform
(R, Matlab, JAVA and Python). jActiveModules and
PinnacleZ are Cytoscape plugins, which offered notable
user-friendly features with network analysis as well as con-
venient visualization functions. Similarly, BioNet will also
provide analysis and visualization functions.

Discussion
In the present study, we have performed a comprehensive
assessment of various methods for subnetwork detection
using simulation data and prostate cancer data. The key
conclusion in this study can be summarized as follows.
First, although each of the methods was claimed to be
effective in their original publications, based on the
simulation scheme and read data sets they used. The
subnetwork detection problem still needs further inves-
tigation. jActiveModules, PinnacleZ and WMAXC per-
formed well in identifying subnetwork with relative
high precision and recall. BioNet performed very well
only in precision. As none of methods outperformed
other methods overall, users should choose an appro-
priate method based on the purposes of their studies.
Among the above four methods, for example, if only
the summary statistics and p values are available in the
study, BioNet will be a best choice of giving an exact
functional module. If the study is interested in identifying
subnetworks from selected genes/nodes, the best solution
is jActiveModules, which provides options for searching
from selected nodes and search depth. We suggest that in-
vestigators could use a combination of several different

methods based on different principles. We suggest that a
combination of BioNet, jActiveModules and PinnacleZ
could be used.

Second, in terms of ease of use, some of the methods
do not offer use-friendly interface or visualization
functions for identified subnetworks. It is worth mention-
ing that the java plugins jActiveModules and PinnacleZ
facilitate the analysis and visualization of subnetworks
within an interface to Cytoscape.

Third, we found that the BMRF and jAM_SA were not
applicable to large data sets, because of the computa-
tional complexity as well as the memory requirements
for both methods increase greatly as the number of
seeds increases.

Lastly, we suggest that interactome data (PPI) can be
dissected and reorganized using high-level structures,
such as pathways and GO terms. Those high-level struc-
tures can make sure that the output subnetworks are
biologically meaningful and guide subnetwork detection
methods to prune a global network without losing the
important biological structures.

Conclusion

In summary, the present study evaluated the performance
of eleven different subnetwork detection methods. Using
both simulation studies and a real data application, we
evaluated the performance of different methods in terms
of recall and precision. jActiveModules, PinnacleZ and
WMAXC performed well in identifying subnetwork with
relative high precision and recall. BioNet performed very
well only in precision. As none of methods outperformed
other methods overall, users should choose an appropriate
method based on the purposes of their studies.
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