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Abstract: The development of high-throughput approaches for the valid estimation of brain disposi-
tion is of great importance in the early drug screening of drug candidates. However, the complexity
of brain tissue, which is protected by a unique vasculature formation called the blood–brain barrier
(BBB), complicates the development of robust in silico models. In addition, most computational
approaches focus only on brain permeability data without considering the crucial factors of plasma
and tissue binding. In the present study, we combined experimental data obtained by HPLC using
three biomimetic columns, i.e., immobilized artificial membranes, human serum albumin, and α1-acid
glycoprotein, with molecular descriptors to model brain disposition of drugs. Kp,uu,brain, as the ratio
between the unbound drug concentration in the brain interstitial fluid to the corresponding plasma
concentration, brain permeability, the unbound fraction in the brain, and the brain unbound volume
of distribution, was collected from literature. Given the complexity of the investigated biological
processes, the extracted models displayed high statistical quality (R2 > 0.6), while in the case of
the brain fraction unbound, the models showed excellent performance (R2 > 0.9). All models were
thoroughly validated, and their applicability domain was estimated. Our approach highlighted the
importance of phospholipid, as well as tissue and protein, binding in balance with BBB permeability
in brain disposition and suggests biomimetic chromatography as a rapid and simple technique to
construct models with experimental evidence for the early evaluation of CNS drug candidates.

Keywords: biomimetic chromatography; brain disposition; prediction models; brain BBB fraction
unbound; brain unbound volume of distribution

1. Introduction

The brain disposition of drug candidates has been one of the major issues in the
pharmaceutical industry in recent decades. The development of novel compounds targeting
the central nervous system (CNS) is becoming more and more essential as a consequence of
the increasing incidence of neurological and neurodegenerative disorders (e.g., depression,
Parkinson disease, and Alzheimer disease). The high attrition rate and failures in the field
of CNS agents are current challenges that pharmaceutical companies have to face [1,2].
From this perspective, assessment of brain distribution in the early stages of the drug
development process is crucial for novel CNS drug candidates. The most important
obstacle for drug delivery in the brain is the blood-brain barrier (BBB), which is formed by
the endothelial cells lining the brain micro-vessels [3–5]. The presence of tight junctions
between the endothelial cells leads to limited fenestration, making passive diffusion the
dominant transport pathway inside the brain, while the paracellular path is of much lower
importance. Moreover, the brain transport of certain drugs may be facilitated or restricted
by the presence of membrane transport proteins in the BBB [6].
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The most common approach to quantifying the BBB permeability of molecules has
been the determination of the ratio between the total brain and the total plasma concen-
tration, mostly expressed as Kp,brain. However, the reliability of Kp,brain in quantitative
estimations of brain disposition has been criticized, as its determination is based on the
total concentrations, ignoring issues like plasma protein binding (PPB) and tissue binding.
According to the “free drug hypothesis”, only the unbound drug crosses the biological
membranes, thus constituting the unbound concentration (Cu) relevant for pharmacologi-
cal activity. From this perspective, the ratio between the unbound drug concentration in
the interstitial fluid of the brain to the corresponding plasma concentration, Kp,uu,brain, is
considered as a more representative measure [7–13].

Experimental determination of Kp,uu,brain through microdialysis exhibits certain limi-
tations as it is technically demanding, time-consuming, and inefficient for very lipophilic
compounds [7]. However, Kp,uu,brain can be derived from Kp,brain by combining the un-
bound fraction of the drug in the plasma (fu,p) and in the brain (fu,brain) or the unbound
brain volume of distribution, Vu,brain [7]. The brain homogenate method is used to estimate
the fu,brain, considered to reflect only nonspecific binding, while the brain slice method is ap-
plied for measuring the Vu,brain (mL/g brain), which quantifies the overall cellular uptake
of the drug, including active cellular membrane transport and pH partitioning [7,10,12,14].
The relevant equations are included in Section 3. Evidently, fu,p is obtained by standard
methods for plasma protein binding.

Kp,brain, usually converted into the logarithmic form and labeled as logBB, has been
widely used to establish in silico models in an effort to reveal the favorable physicochemical
and molecular properties for BBB permeability [15]. A number of QSAR models have been
reported in the literature, most of them involving calculated lipophilicity, expressed as
octanol–water partition or distribution coefficients (logP or logD), polar surface area, and
molecular weight [16–19]. However, to the best of our knowledge, analogous models for
fu,brain, Vu,brain, or Kp,uu,brain itself are rather limited [11,14,20].

A potential concern regarding in silico predictive models may arise in respect to
the reliability of calculated physicochemical properties of drugs, in particular for new
chemotypes. It has been reported that small errors in logP or logD predictions may cause
substantial errors in the estimation of biological end-points, particularly if limited datasets
are analyzed, while experimental lipophilicity requires a rather tedious and time-consuming
procedure [21,22]. On the other hand, user-friendly chromatographic techniques may offer
a challenging alternative to combining rapid measurements with theoretical descriptors for
the construction of ‘hybrid’ in silico models based on experimental evidence.

Biomimetic properties, defined as the retention outcome on HPLC stationary phases
containing a biologically relevant agent, have attracted considerable interest and are
currently used for the rapid evaluation of ADME properties in early drug discovery
phases. In particular, immobilized artificial membrane (IAM) chromatography, which uses
phospholipid-containing stationary phases, has been applied in investigating permeability
as an alternative to traditional octanol–water lipophilicity. Since, however, electrostatic
interactions have a strong contribution in retention mechanism, especially in the case of
protonated bases, IAM chromatography is considered as also reflecting drug–membrane
interactions and tissue binding [23,24]. IAM models for oral absorption, skin partitioning,
and brain penetration, mostly expressed as logBB, have been reported in the literature,
usually in combination with additional molecular descriptors [23–42]. Classification of
CNS+ and CNS− drugs has been suggested using the IAM retention factor divided by the
fourth root of molecular weight [43]. On the other hand, protein-based stationary phases,
incorporating human serum albumin (HSA) or α1 acid glycoprotein (AGP)-, simulate
binding to plasma proteins [25,26,39,44–46].

Immobilized HSA retains the characteristics of the protein in solution, as has been
proven by zone and frontal analysis experiments, permitting the safe estimation of binding
constants to human serum albumin in the plasma [47]. Less investigated is AGP reten-
tion due to the polymorphism of α1 acid glycoprotein and practical issues related to the
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immobilization on the silica skeleton of the column. It is well-established, however, that
protonated bases are more strongly retained on AGP columns, in agreement with the
same binding preference of AGP in solution [47]. In light of the above considerations,
HPLC-based biomimetic properties reflect the major factors which govern most biological
processes, e.g., passive diffusion and non-specific binding to phospholipids, tissue, or
plasma proteins. Accordingly, their combination may be suitable for the estimation of
composite pharmacokinetic data. Valko et al. used the weighted sum of IAM and HSA
retention to estimate the volume of distribution and tissue binding in different organs,
including brain tissue binding [39].

In the present study, we investigated the performance of biomimetic properties in
combination with molecular descriptors in the development of ‘hybrid’ models with exper-
imental evidence for the thorough analysis of composite Kp,uu,brain data, and the distinct
brain disposition components, Kp,brain, fu,brain, and Vu,brain. The aim was to bridge the gap
with pure in silico prediction models and to contribute to the perception of these crucial
experimental end-points for CNS-acting drug candidates. For this purpose, in-house re-
tention factors, determined for a number of pharmaceutical compounds on IAM, has, and
AGP stationary phases, were used together with physicochemical/molecular descriptors.
Lipophilicity, expressed as octanol–water partition coefficients (logP) or distribution coeffi-
cients at pH 7.4 (logD7.4) and pH 5.0 (logD5.0), was incorporated in the pool of descriptors,
and its implementation in the models was compared to that of IAM retention. Models
were constructed by applying multiple linear regression (MLR) and partial least squares
(PLS) analysis. MLR can provide simple models that are easily used by medicinal chemists,
while PLS, contributing complementary and supporting MLR models, may permit a deeper
insight into the factors underlying brain disposition of drugs. Attention was given to model
validation in respect to robustness and applicability domain to offset the drawback that
rather limited datasets were analyzed.

2. Results and Discussion

In the present study, we collected experimental biomimetic chromatographic data,
previously obtained in our laboratory, for a set of 55 pharmaceutical compounds belonging
to a wide range of pharmacological classes. (For further details, see the Section 3 and
Table S1.) The investigated compounds are small molecules within a molecular weight
(MW) range of ca 129 to 513 Da (Figure 1a). The dataset includes neutral, basic, and acidic
compounds; however, most molecules contain one basic ionizable group (Figure 1b).

Experimentally measured logBB, Kp,uu,brain, fu,brain, and Vu,brain values were col-
lected from the literature [10–12,48–54] (Table S2). The collected logBB values indicated
a sufficient range of BBB permeability, from highly permeable (logBB > > 1) to signifi-
cantly less permeable (logBB < < 0) compounds (Figure 1c). Nevertheless, the range of
logKp,uu,brain values suggested a lower extent of brain distribution of the studied molecules
(Figure 1e). The two measures showed a mediocre intercorrelation (Figure 1e), while fu,brain
and Vu,brain showed significant inverse intercorrelation on the basis of their logarithmic
values (Figure 1f–h).

For further statistical analysis, fu,brain values were converted to the thermodynamic
constant Kb [55] according to the relevant equation included in Section 3. Its logarithmic
form logKb was used throughout.

2.1. Data Overview with Unsupervised Data Analysis

To obtain an overview of the dataset, unsupervised principal component analysis
(PCA) was performed using the pool of descriptors and the response variables as an
X matrix. A 5-component PCA model was generated with R2 = 0.674 and Q2 = 0.462. The
score plot of the first two components shows a uniform distribution of the data in all
four quartiles, with one drug, candesartan, lying outside the Hoteling T2 ellipse (Figure 2a).
As depicted by the coloring of the scores based on the logkwIAM values, IAM retention is
a dominant parameter of the data distribution. The loadings plot reflects the correlations
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among the chromatographic data, the molecular and physicochemical descriptors, and the
experimental brain distribution data in a multilayered fashion (Figure 2b). The coloring of
the variables corresponds to their grouping according to hierarchical clustering based on
the five principal components. LogBB and logVu,brain are located in the same quartile with
chromatographic factors and lipophilicity parameters and belong to the same hierarchical
clustering group. Interestingly, logKp,uu,brain is also incorporated into the same group, but
its loading value in the first component is approximately zero. LogKb is located in the
opposite quartile in high proximity to hydrogen bonding parameters.
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Figure 1. Overview of the data. (a) Histogram showing the distribution of the molecular weight of
the investigated compounds; (b) Overlaid pie plots showing the number of ionizable groups (basic,
outer layer; acidic, inner layer) present in the investigated compounds; (c) Box plot showing the
distribution of the experimental logBB values collected from the literature; (d) Box plot showing the
distribution of the experimental logKp,uu,brain values collected from the literature; (e) Correlation
scatter plot between logBB and logKp,uu,brain values; (f) Box plot showing the distribution of the
experimental logfu,brain values collected from the literature; (g) Box plot showing the distribution of
the experimental logVu,brain values collected from the literature; (h) Correlation scatter plot between
logfu,brain and logVu,brain values.

2.2. Modeling logKp,uu,brain

LogKp,uu,brain is considered to be the most relevant measure of the rate and extent
of drug delivery in the brain, and as such, it was examined first. MLR analysis gave
poor statistics (R < 0.5). Polarity descriptors, e.g., tPSA, display the strongest negative
correlation (Figure 3a). Poor correlation was observed between logKp,uu,brain and logkwIAM,
logP or logD7.4. However, a relatively better correlation was found between logD5.0 and
IAM retention at pH 5.0 (Figure 3a).
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including computational descriptors; (c) Coefficient plot of the original variables of PLS Model 4.
Variables with VIP > 1 are highlighted in black.
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The above findings were further supported by Partial Least Squares analysis. PLS
analysis offers a number of advantages, tolerating intercorrelated variables and missing
values. Variables are treated simultaneously to extract the principal components as their
linear combinations. Using the entire pool of descriptors and performing variable selection
according to the variable importance to projection (VIP) criterion, no satisfactory PLS
models could be obtained, with R2 and Q2 not exceeding 0.52 and 0.32, respectively. In
agreement with MLR, polarity terms (TPSA) show the strongest impact with VIP values > 1
and negative contribution. Biomimetic properties and lipophilicity have positive contribu-
tions, albeit with considerably lower impacts. In agreement with MLR results, logD5.0 and
IAM retention at pH 5.0 show higher influence. In fact, VIP values decrease in the order of:
logD5.0 > logkwIAM,5.0 > logD7.4 > logk10,HSA > logkwAGP > logP > logkwIAM,7.4 (Table S3).
The better performance of IAM retention and lipophilicity at pH 5.0 may be explained by
the recently reported evidence of the interference of the endo-lysosomal system (lysosomes’
pH 5.0–4.5) in vitro blood–brain barrier models [56].

Inspection of the plots of observed vs. predicted logKp,uu,brain and of DModY plots
(distance of observations to the Y model) revealed two strong outliers, quinidine and
theophylline, present in any PLS model (figure not shown). Upon exclusion of these drugs
from statistical analysis, acceptable PLS models were obtained. Using biomimetic properties
and lipophilicity in combination with computational descriptors, a 1-component PLS model
with 54 original descriptors was generated with the following statistics (PLS Model 1):

A = 1, n = 23, R2 = 0.694 Q2 = 0.518, RMSEE = 0.262 and RMSEcv = 0.315. (PLS Model 1)

The separate effect of IAM retention or lipophilicity is shown in PLS Models 2 and 3,
which include either IAM retention at pH 7.4 and 5.0 or lipophilicity measures (logP,
logD7.4 and logD5.0). PLS Models 2 and 3 denote equal performance of IAM retention and
traditional lipophilicity:

A = 1, n = 23, R2 = 0.693 Q2 = 0.529, RMSEE = 0.263 and RMSEcv = 0.311 (PLS Model 2)

A = 1, n = 23, R2 = 0.694 Q2 = 0.529, RMSEE = 0.263 and RMSEcv = 0.311 (PLS Model 3)

Finally, the use of only a few computational descriptors with high VIP values, in-
cluding polarity, flexibility, and shape indices, proved sufficient to produce an improved,
1-component PLS model (PLS Model 4):

A = 1, n = 23, R2 = 0.686 Q2 = 0.621, RMSEE = 0.266 and RMSEcv = 0.279 (PLS Model 4)

In Figure 3b,c the plot of observed vs. predicted logKp,uu,brain values generated by PLS
Model 4 and the coefficients of the original variables are depicted, respectively. The pre-
dicted logKp,uu,brain values are presented in Table S4. The applicability domain was defined
using DModY plot, and the doubled average DModY value, equal to 0.822 × 2 = 1.644, was
used as a critical value. Two drugs, acetaminophen and midazolam, exceed the critical
value (Figure S1).

PLS Model 4 was validated by permutation tests (Figure S2) and by dividing the
dataset into a training set and a test set, using 4 different training/test sets (see Section 3).
The external validation demonstrated robust statistics except for 1 iteration, in which the
drug acyclovir was included in the test set (Table 1). In Figure S3, a representative plot of
observed vs. predicted values is presented.
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Table 1. Ranges of statistical values for training and external test sets used for validation of model 4
for logKp,uu,brain.

Validated PLS Model: 4
Different Test Sets with n = 6 R2

train/Q2
train RMSEE R2

test RMSEP

PLS Model 4
(based on

computational descriptors)
0.687–0.831/0.597–0.736 0.212–0.276 0.212 *–0.824 0.229–0.407 *

R2
train, coefficient of determination of the training sets; R2

test, coefficient of determination of the test sets; Q2
train,

cross-validated coefficient of determination in PLS models; RMSEE, root mean square error of estimation; RMSEP,
root mean square error of prediction; * statistics deteriorated due to the presence of acyclovir in the test set.

In fact, the construction of PLS Model 4 indicates that biomimetic properties and
lipophilicity are less crucial in logKp,uu,brain modeling, as shown also by the failure to
generate successful MLR models. Previous studies have likewise identified the lack of
strong correlations between logKp,uu,brain and physicochemical descriptors, especially
lipophilicity, while hydrogen bonding has been found to be the strongest contributor [11,20].
Loryan, et al. reported a PLS model with two descriptors related to polarity (tPSA) and
hydrogen bonding capacity [14].

Considering the complex nature of Kp,uu,brain as the outcome of opposing brain dispo-
sition end-points and plasma binding [11] (see relevant equations in Section 3), modeling
Kp,brain, expressed as logBB, fu,brain, and Vu,brain, can indirectly assist in the exploration
of logKp,uu,brain. In the next sections, the generation and validation of the MLR and PLS
models of these distinct brain disposition end-points are discussed.

2.3. Modeling logBB
2.3.1. Multiple Linear Regression Models

Partial correlations between logBB, IAM retention, logD7.4, and physicochemical/molecular
properties revealed the crucial effect of polarity, with TPSA showing the highest correlation
coefficient (r = −0.777, p < 0.001), followed by the sum of nitrogen and oxygen atoms, NO
(r = −0.711, p < 0.001), and dipole moment (r = −0.693, p < 0.001), while for logkwIAM
and logD7.4 r = 0.617 (p < 0.001) and r = 0.687 (p < 0.001), respectively. Their combination
with TPSA led to Equations (1) and (2), respectively. The term h* in Equations (1) and (2)
expresses the critical leverage value, which defines the applicability domain (AD) [57].
(See Section 3.)

logBB = 0.16(±0.07) logkwIAM − 0.02(±0.003) TPSA +0.69(±0.27)

n = 41*, R = 0.806, R2 = 0.650, R2adj = 0.632, s = 0.472, F = 35.31, h* = 0.073

(* Piracetam did not have a logkwIAM measured value).
(1)

Eight drugs had h values higher than the threshold h* value and were beyond the AD
of the model, as also shown in a Williams plot (Figure S4).

logBB = 0.15(±0.05) logD7.4 − 0.02(±0.003) TPSA +0.72(±0.23)

n = 42, R = 0.816, R2 = 0.665, R2adj = 0.648, s = 0.456, F = 38.74, h* = 0.071 (2)

Six drugs were outside the AD of Equation (2) (Figure S4).
In both equations, TPSA had a higher significance than logkwIAM or logD7.4, with

Student’s test-t values of|tTPSA| = 5.4 and 4.8, respectively, while|tlogkwIAM| = 2.22,
and |tlogD7.4| = 2.69.

External validation of Equations (1) and (2) was performed by dividing the dataset into
a training set and a test set. This procedure was repeated up to six times for each equation.
Practically speaking, the same equations were generated with comparable statistical data
(Table 2). In all cases, observed vs. predicted values showed a 1:1 correlation. In Figure S5, a
representative plot of observed vs. predicted values from Equations (1) and (2) is illustrated.
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Table 2. Ranges of statistical values for training and external test sets for logBB validated models.

Validated MLR Models: 6 Different Test
Sets with

n = 7 or n = 6
R2

train strain R2
test stest

Equation (1)
(based on IAM retention) 0.626–0.705 0.388–0.499 0.583–0.932 0.167–0.669

Equation (2)
(based on lipophilicity) 0.639–692 0.416–0.472 0.532–0.848 0.244–0.510

Validated PLS Models: 5 Different Test
Sets with

n = 8 or n = 9
R2

train/Q2
train RMSEE R2

test RMSEP

PLS Model 5
(based on IAM retention)

0.850–0.863/
0.724–0.793 0.272–0.316 0.457 *–0.936 0.302–0.525 *

PLS Model 6
(based on lipophilicity)

0.850–0.865/
0.725–0.791 0.272–0.328 0.600 **–0.919 0.317–0.516 **

R2
train, coefficient of determination of the training sets; strain, standard deviation of the training sets; R2

test,
coefficient of determination of the test sets; stest, standard deviation of the test sets; Q2

train, cross-validated
coefficient of determination in PLS models; RMSEE, root mean square error of estimation; RMSEP, root mean
square error of prediction. * Deteriorated statistics due to the presence of quinidine. ** Deteriorated statistics due
to the presence of morphine.

2.3.2. Partial Least Squares Models

Initially, PLS analysis was performed considering both biomimetic properties and
lipophilicity in the pool of descriptors, so as to rank their impact in modeling logBB.
Polarity descriptors (TPSA and dipole moment) were found to have the highest VIP values
(VIP = 1.2). AGP retention showed equally high impact, followed by logD7.4 (VIP = 1.05),
and IAM retention (VIP = 0.95). HSA retention and logP had a lower influence in the model
with VIP < 0.9.

Keeping AGP retention as the most influential parameter and including either logkwIAM
(PLS Model 5, Figure 4a,b) or logD7.4 (PLS Model 6, Figure 4c,d), 2 component PLS
models with 19 descriptors were obtained after variable selection, with practically equal
statistical quality:

A = 2, n = 42, R2 = 0.846, Q2 = 0.792, RMSEE = 0.313, RMSEcv = 0.351 (PLS Model 5)

A = 2, n = 42, R2 = 0.846, Q2 = 0.791, RMSEE = 0.313, RMSEcv = 0.351 (PLS Model 6)

The applicability domain was defined by the critical value DModY being 0.767 × 2 = 1.534
for Model 5 and 0.789 × 2 = 1.58 for Model 6 (Figure S6). A total of 4 drugs, i.e., atenolol,
candesartan, haloperidol, and maprotiline, were outside the AD of PLS Model 5. The same
drugs, plus indomethacin, were outside the AD of PLS Model 6 (Figure S6).

Considering the large percentage of missing logkwAGP values, and in order to con-
firm its essential contribution, PLS analysis was repeated including only drugs with
available logkwAGP data. The generated models proved the crucial contribution of AGP
retention (Figure S7).

The contribution of logkwAGP in logBB was further confirmed in MLR models for the
drugs with available data:

logBB = 0.467(±0.182) logkwAGP − 0.013 (±0.05)TPSA + 0.018(±0.483)

n = 19, R = 0.871, R2 = 0.758, R2 adj = 0.728, s = 0.431, F = 25.1 (3)
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Figure 4. PLS modeling of logBB based on chromatographic and lipophilicity data. (a) Observed vs.
predicted logBB values plot, based on PLS Model 5; (b) Coefficient plot of the original variables of
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plot of the original variables of PLS Model 6. In (a,c), the compounds are colored based on their TPSA
values. In (b,d), variables with VIP > 1 are highlighted with black.

The high impact of AGP retention may be related to the presence of a strong negative
charge in AGP stationary phases due to their high content in sialic acid. Brain cell mem-
branes are also the most anionic and have their lipids mostly exposed, thus explaining the
reason that lipophilic cationic compounds are more prone to cross the BBB.

PLS Models 5 and 6 were validated with permutation tests (Figure S8) and by external
validation upon dividing the dataset into 5 different training and test sets. Practically
speaking, the same models were generated by an external validation procedure, with
comparable statistical data (Table 2), with the exception of iteration, including quinidine
(PLS Model 5) and morphine (PLS Model 6). In all cases, observed vs. predicted values
showed a 1:1 correlation. In Figure S9, a representative plot of observed vs. predicted values
is illustrated. The predicted logBB values from the MLR and PLS models are provided
in Table S5.

2.4. Modeling logKb
2.4.1. Multiple Linear Regression

Since logKb is related to tissue binding, a satisfactory negative correlation with
logkw,IAM values was obtained. Strong IAM retention corresponds to high tissue phospho-
lipid binding and thereupon to a lower fraction being unbound:

logKb = −0.984(±0.059) logkw,IAM + 0.966(±0.131)

n = 39, R = 0.940, R2 = 0.884, R2adj = 0.881, s = 0.543, F = 281.786 (4)
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A negative correlation with inferior but still acceptable statistics was obtained using
HSA retention factors:

logKb = −1.291(±0.105) logk10,HSA − 0.551(±0.092)

n = 39, R = 0.897, R2 = 0.804, R2adj = 0.799, s = 0.543, F = 152.245 (5)

Further stepwise MLR analysis led to a three-parameter equation, combining the IAM
and HSA retention factors with the count of nitrogen and oxygen atoms present in the
molecule (NO):

logKb = −0.617(±0.093) logkw,IAM − 0.450(±0.126) logk10,HSA + 0.111(±0.034) NO − 0.026(±0.230)

n = 39, R = 0.966, R2 = 0.932, R2
adj = 0.927, s = 0.328, F = 160.776 (6)

The positive sign of the coefficient of NO indicated that a higher hydrogen bond
acceptor potential is not favorable for unspecific hydrophobic tissue and plasma protein
binding, increasing the amount of the unbound fraction. It should be mentioned that
logkw,IAM and logk10ACN,HSA showed a considerable degree of intercorrelation (r = 0.824).
To overcome the collinearity problem, and considering the low differentiation of regression
coefficients of logkw,IAM and logk10ACN,HSA in Equation (5) was within statistical limits,
their sum SumIAM-HSA was used instead:

logKb = −0.55(±0.03) SumIAM-HSA + 0.11(±0.03) NO − 0.14(±0.18)

n = 39, R = 0.965, R2 = 0.931, R2
adj = 0.927, s = 0.327, F = 243.095, h* = 0.231 (7)

All drugs were within the AD (Figure S10).
Satisfactory correlation was also obtained with AGP retention factors for 20 drugs

with available data:

logKb = −1.240(±0.133) logkw,AGP + 1.034(±0.264)

n = 20, R = 0.910, R2 = 0.827, R2
adj = 0.818, s = 0.458, F = 160.863 (8)

Hydrophobic binding, a major force in drug-tissue and drug-protein interactions,
was better simulated by logP of the neutral form than logD7.4. Thus, a satisfactory
logKb/logP relationship was obtained—although with a lower correlation coefficient,
compared to Equation (4):

logKb = −0.580(±0.042) logP + 0.614(±0.139)

n = 39, R = 0.915, R2 = 0.836, R2
adj = 0.832, s = 0.497, F = 189.249, h* = 0.153 (9)

Further stepwise regression did not lead to an improved equation.
Correlation with the distribution coefficient logD7.4 led to an inferior relationship:

logKb = −0.555(±0.042) logD7.4 − 0.147(±0.142)

n = 39, R = 0.823, R2 = 0.677, R2
adj = 0.668, s = 0.698, F = 77.626 (10)

Equation (10), however, can be improved if the fraction of the ionized molecular
species F+ and F− is introduced in combination with NO. The introduction of fractions
F+ and F− reflects the binding conditions in respect to basic and acidic drugs, the first
interacting stronger with phospholipids and the latter with serum albumin:

logKb = −0.54(±0.05) logD7.4 − 0.77(±0.18) F+ − 0.98(±0.30) F−7.4 +0.19(±0.05)NO − 0.30(±0.28)

n = 39, R = 0.931, R2 = 0.867, R2
adj = 0.852, s = 0.467, F = 55.57, h* = 0.307 (11)
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Evidently, all of the regression coefficients in Equation (11) had negative signs, ex-
cept NO, which contributed positively. Three drugs were outside the AD, as shown
in Figure S10.

External validation of Equations (7) and (11) was performed by dividing the dataset
into the training set and the test set, using 5 different test sets (Table 3). In all training sets,
observed vs. predicted values showed a 1:1 correlation. In Figure S11, a representative plot
of observed vs. predicted values from Equations (7) and (11) is illustrated.

Table 3. Ranges of statistical values for the training and external test sets for logKb validated models.

Validated MLR Models:
5 Different Test Sets with n = 8

or n = 9
R2

train strain R2
test stest

Equation (7) (IAM retention) 0.924–0.937 0.306–0.341 0.823–0.966 0.270–0.377

Equation (11) (lipophilicity) 0.848–0.890 0.403–0.462 0.797–0.955 0.310–0.664

Validated PLS Models: 5 different
test sets with n = 8 or = 9 R2

train/Q2
train RMSEE R2

test RMSEP

PLS Model 8 (based on IAM retention) 0.919–0.946/
0.851–0.927 0.286–0.353 0.822–0.988 0.277–0.519

PLS Model 9 (based on lipophilicity) 0.751–0.931/
0.669–0.857 0.358–0.610 0.711–0.939 0.402–0.676

R2
train, coefficient of determination of the training sets; strain, standard deviation of the MLR models on the

training sets; R2
test, coefficient of determination of the test sets; stest, standard deviation of the test sets; Q2

train,
cross-validated coefficient of determination for PLS models: RMSEE, root mean square error of estimation; RMSEP,
root mean square error of prediction.

2.4.2. Partial Least Squares Models

Application of PLS to model logKb led to a two-component model (PLS Model 7) if
both biomimetic properties and lipophilicity were included in the pool of descriptors:

n = 39, A = 2, R2 = 0.929, Q2 = 0.904, RMSEE = 0.332, RMSEEcv = 0.371 (PLS Model 7)

Biomimetic properties and lipophilicity were the most crucial parameters (VIP> 1), with
decreasing importance following the order: logkAGP> logkwIAM> logP> logk10HSA> logD7.4
(Figure S12). In accordance with the MLR equations, the three biomimetic properties and
lipophilicity had negative contributions, while the hydrogen bonding acceptor descriptor
NO had a positive effect. More to the point, logP showed a higher impact in respect to
logD7.4 as a better lipophilicity expression for hydrophobic binding. Three bulk descriptors,
CMR, arC6, and nPSA, included in the model had a negative sign (Figure S12).

Including only biomimetic properties in the pool of descriptors, a 3-component model
(PLS Model 8) was obtained with improved statistics:

A = 3, n = 39, R2 = 0.938, Q2 = 0.913, RMSEE = 0.315, RMSEEcv = 0.353 (PLS Model 8)

As illustrated in Figure 5, the same signs were kept in PLS Model 8 for biomimetic
properties and NO, while a balance was observed between the non-polar descriptors, with
nPSA having a positive sign.

According to the DModY criterion (critical value = 0.812 × 2 = 1.624), three drugs,
i.e., fluoxetine, ranitidine, and theophylline were outside of the AD of the model (Figure S13).

Replacement of IAM retention by lipophilicity, expressed both as logP and logD7.4 led
to a 3-component model (PLS Model 9):

A = 3, n = 39, R2 = 0.925, Q2 = 0.844, RMSEE = 0.347, RMSEEcv = 0.478(PLS Model 9)
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Figure 5. PLS modeling of logKb, based on chromatographic data and lipophilicity parameters.
(a) Observed vs. predicted logKb values plot based on PLS Model 8; (b) Coefficient plot of the
original variables of PLS Model 8; (c) Plot of observed vs. predicted logKb values, based on PLS
Model 9; (d) Coefficient plot of the original variables of PLS Model 9; In (b,d), variables with VIP > 1
are highlighted in black.

Five drugs—acetaminophen, atenolol, neostigmine, propranolol, and theophylline—are
the beyond AD, with DModY being higher than the critical value (2 × 0.768) (Figure S13).

The logKb PLS Models 8 and 9 were validated with permutation tests (Figure S14),
and upon dividing the dataset into 5 different training and test sets. Robust statistical data
were obtained in all cases (Table 3). Representative plots of observed vs. predicted logKb
values from external validation are presented in Figure S15. The predicted logKb values
from the MLR and PLS models are presented in Table S6.

Back calculation of fu,brain values using the predicted logKb were successfully correlated
with the corresponding experimental values, approximating a 1:1 correlation (Table S7).

2.5. Unbound Volume of Distribution, Vu, Brain
2.5.1. Correlation between fraction unbound and unbound volume of distribution in the brain

The negative correlation of logVu,brain with logfu,brain, shown also in Figure 1h, is
reflected in Equation (12):

logVu,brain = −0.922(±0.091) logfu,brain + 0.386(±0.117)

n = 17, R = 0.934, R2 = 0.873, R2
adj = 0.864, s = 0.319, F = 102.678 (12)

Equation (12) is considerably improved upon the inclusion of F+, which has a positive
effect, indicating the importance of positive charge in the overall cellular uptake (Equation (13):

logVu,brain = −0.950(±0.049) logfu,brain + 0.632(±0.102) F+
7.4 − 0.113(±0.102)
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n = 17, R = 0.983, R2 = 0.966, R2
adj = 0.961, s = 0.167, F = 199.802 (13)

The high quality of Equation (13) permits the safe prediction of logVu,brain from logfu,brain.
We further attempted to construct models for the unbound volume of distribution

using biomimetic properties, lipophilicity, and computational descriptors although, in this
case, the dataset was limited, including only 17 drugs with available experimental data.

2.5.2. Multiple Linear Regression

Direct correlation of logVu,brain with logkw,IAM led to Equation (14), with moderate statistics:

logVu,brain = 0.624(±0.093) logkw,IAM + 0.226(±0.190)

n = 17, R = 0.866, R2 = 0.750, R2
adj = 0.734, s = 0.446, F = 45.043 (14)

Using stepwise regression, a considerably improved regression equation was obtained
upon inclusion of the count of the hydrogen bond acceptors (HBA) as an additional
parameter (Equation (15)):

logVu,brain = 0.623(±0.071) logkw,IAM − 0.214(±0.062) HBA + 0.958(±0.256)

n = 17, R = 0.930, R2 = 0.865, R2
adj = 0.846, s = 0.339, F = 44.983, h* = 0.53 (15)

All compounds were within the AD of Equation (15) (Figure S16).
HSA retention was not significant, while AGP retention led to a very good correlation

for the limited dataset of seven compounds:

logVu,brain = 0.822(±0.155) logkwAGP + 0.127(±0.280)

n = 7, R = 0.921, R2 = 0.849, R2
adj = 0.819, s = 0.284, F = 28.07 (16)

Replacing logkw,IAM with lipophilicity, a moderate regression equation was obtained
(Equation (17)), with logP in combination with the fraction protonated, including F+ as an
additional parameter:

logVu,brain = 0.336(±0.054) logP + 0.859(±0. 285) F+
7.4 − 0.115(±0.290)

n = 17, R = 0.864, R2 = 0.746, R2
adj = 0.710, s = 0.465, F = 20.61, h* = 0.53 (17)

All compounds were within the AD of Equation (17) (Figure S16).
The combination of logP with the fraction protonated at pH7.4, both with a positive

contribution, has previously been reported for a PLS model of the apparent volume of
distribution [58].

Owing to the reduced dataset, test sets for the external validation of Equations (15) and (17)
contained 4 to 6 compounds. Robust statistical data were obtained for validated equa-
tions, except when metformin was included in the test set, for both Equations (15) and (17)
(Table 4). In Figure S17, a representative plot of observed vs. predicted values from
Equations (15) and (17) is illustrated:
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Table 4. Ranges of statistical values for the training and external test sets for models validated by logVu,brain.

Validated MLR Model: 3 Different
Test Sets with n = 4–6 R2

train Strain R2
test stest

Equation (15) (IAM retention) 0.686–0.923 0.262–0.376 0.433 *–0.920 0.257–0.434

Equation (17) (lipophilicity) 0.526 *–0.852 0.364–0.485 0.437 *–0. 0.950 0.132–0.429

Validated PLS Model: 2 different
test sets with n = 8–9 R2

train/Q2
train RMSEE R2

test RMSEP

PLS Model 10 (based on
IAM retention)

0.927, 0.962/
0.690, 0.922 0.160, 0.268 0.718, 0.956 0.316, 0.656

PLS Model 11 (based on lipophilicity) 0.747, 0.962/
0.747, 0.880 0.160, 0.251 0.718, 0.782 0.650, 0.656

R2
train, coefficient of determination of the training sets; strain, standard deviation of the MLR models on the

training sets; R2
test, coefficient of determination of the test sets; stest, standard deviation of the test sets; Q2

train,
cross-validated coefficient of determination in PLS models; RMSEE, root mean square error of estimation; RMSEP,
root mean square error of prediction; * Deteriorated statistics due to the presence of metformin.

2.5.3. Partial Least Squares (PLS) Models

A one-component PLS model, based on IAM retention, was obtained after variable
selection with very good statistics (Figure 6a,b):

A = 1, n = 17, R2 = 0.932, Q2 = 0.901, RMSEE = 0.232, RMSEEcv = 0.264 (PLS Model 10)
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the original variables of PLS Model 10; (c) Observed vs. predicted logVu,brain values plot based on
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VIP > 1 are highlighted in black.
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In agreement with the MLR models, IAM and AGP retention were the most influential
variables with a positive contribution, while HSA retention factors were not included in
the final model. Most polar descriptors had a negative effect, and the opposite was true for
non-polar descriptors.

According to the DModY criterion (critical value: 0.802 × 2 = 1.604), 2 drugs (met-
formin and propranolol) were outside the AD of the model (Figure S18).

The use of logP in place of biomimetic properties led to a three-component model
with satisfactory statistics although they had inferior cross-validation results (Figure 6c,d):

A = 3, n = 17, R2 = 0.912, Q2 = 0.723, RMSEE = 0.285, RMSEEcv = 0.403 (PLS Model 11)

According to the DModY criterion (critical value 1.524), 2 drugs (pindolol and propra-
nolol) were outside the AD of the model (Figure S18).

The lower Q2 and higher RMSEEcv indicate inferior predictability, reflected also in the
higher intercepts of the corresponding permutation tests (Figure S19). The PLS models were
also validated by external validation, dividing the dataset into two training and test sets.
In Table 4, the statistical data of the new models are given. In Figure S20, representative
plots of observed vs. predicted logVu,brain are provided. The predicted logVu,brain values
from the MLR and PLS models are presented in Table S8.

Considering the potential of Equation (13) for safe predictions of logVu,brain, we used
Equation (13) in order to extend the dataset. Drugs with predicted logVu,brain were used as
a blind test set. As illustrated in Figure S21, the blind test set was well accommodated in the
model with the exception of two drugs, clomipramine and fluoxetine, which were strong
outliers. Excluding clomipramine and fluoxetine, the combination of the blind test set with
the training set led to PLS Model 12, which was practically the same as PLS Model 10:

A = 1, n = 37, R2 = 0.858, Q2 = 0.845, RMSEE = 0.355, RMSEEcv = 0.361 (PLS Model 12)

For 4 drugs, DModY exceeded the critical value of 1.45, being outside the AD (Figure S22).

3. Materials and Methods
3.1. Dataset and Chromatographic Data

A dataset of 55 pharmaceutical compounds, belonging to a wide range of pharma-
cological classes, was used in the present investigation. The dataset exhibited adequate
structural diversity, consisting of acidic, neutral, basic, and zwitterionic molecules. The
compounds had been previously studied in our laboratory with respect to their retention
profiles in 3 biomimetic chromatographic columns, namely an IAM.PC.DD2 (Regis Tech-
nology, Morton Grove, IL, USA), a ChromTech CHIRAL-HSA column (50 mm × 4 mm i.d.),
and a ChromTech CHIRAL-AGP column (50 × 4 mm i.d.), under experimental conditions
as described in the corresponding references [23,24,27,29,45].

For IAM chromatography, retention factors logkwIAM corresponding to a 100% aque-
ous mobile phase were used. PBS was used as a buffer at two pH values, i.e., the physiolog-
ical pH 7.4 (data labeled as logkwIAM) and pH 5.0 (data labeled as logkwIAM5.0), with the
latter being associated with intestinal absorption and lysosomal trapping [59]. In the case
of HSA chromatography, isocratic logk values, measured in the presence of 10% acetonitrile
(ACN), were used (logk10,HSA), as they showed a highly significant 1:1 correlation with
plasma protein binding data in our previous study [45]. Logk10,HSA data were available
for 37 compounds in the dataset. For the remaining compounds, logk10ACN,HSA values
were calculated based on the highly significant equation reported in the same study [45].
LogkwAGP retention factors corresponding to a 100% aqueous mobile phase were available
for 28 drugs. Thus, they could be used in the MLR models only for restricted datasets.
However, their performance could be evaluated in PLS models since this type of analysis
tolerates missing values. All chromatographic indices are included in Table S1.
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3.2. Brain Disposition Data

Experimental Kp,uu,brain values measured in rat brain tissue were collected for
22 compounds [10–12,60,61] and converted to the logarithmic form. Experimentally de-
termined Kp,brain values for 42 compounds were obtained from the literature and were
converted to logBB. They preferably referred to rat studies in order to achieve homogeneity
in the data [19,31,32]. Experimental fu,brain values were available from the literature for
39 compounds in the dataset [10,50–53,62]. When more than one value was available, the
average was calculated. Most values were determined on rats. Since there are only small
inter-species differences, values from species other than rats were included (seven cases)
for compounds where rat values were not provided. The fu,brain values were converted to
the thermodynamic constant Kb according to the following equation [55]:

Kb =
fu, brain

1.001− fu, brain

The denominator was set to 1.001-fu,brain in the case of compounds exhibiting an fu,brain
value equal to unity. The decimal logarithm of Kb, logKb, was used for the development of
the models.

Vu,brain values, determined using the brain slice method, were collected from the
literature for 17 compounds in the dataset and converted to the corresponding logarithm,
logVu,brain [10,12].

Kp,brain, Kp,uu,brain, fu,brain, and Vu,brain values are presented in Table S2. They
span a sufficient range and are evenly distributed, including drugs with different brain
distribution profiles.

Kp,uu,brain can be derived from Kp,brain by combining the unbound fractions of the drug
in the plasma (fu,p) and in the brain (fu,brain) or the unbound brain volume of distribution,
Vu,brain [7]:

Kp, uu, brain ∼ Kp, brain
Vu, brain× fu, plasma

Vu,brain shows an inverse relation to Vu,brain shows an inverse relation to fu,brain approxi-
mating under circumstances [63]. fu,brain∼[1/Vu,brain]range 0-1.

3.3. Physicochemical and Molecular Descriptors

A pool of 121 descriptors, including 1D, 2D and 3D descriptors, was calculated using
appropriate software. The software ADME Boxes 3.0 was used to calculate the topological
polar surface area (TPSA), hydrogen bond acceptor and donor sites (HBA and HBD),
the rotatable bonds (RB), the number of ionizable groups, and the fraction of molecular
species at pH 7.4 (with the fraction of negatively charged species being F−7.4 and that of
positively charged species being F+

7.4). The Abraham’s solvation parameters (hydrogen
bond acidity (A), hydrogen bond basicity (B), excess molar refraction (E), McGowan’s
volume (V), and dipolarity/polarizability (S)) were calculated with the module ABSOLV
implemented using the same software. Topological indices and electrotopological state
indices [64] were computed with Molconn-Z (v4.12 eduSoft, LC, La Jolla, CA 92037 USA)
software Hyperchem v.5.0/Chemplus v.1.6 software (HYPERCUBE Inc., Waterloo, ON,
Canada) was used for the calculation of 3D descriptors. Molecular size descriptors, energy
parameters, and dipole moment were calculated using the lowest energetic conformation.
Descriptors based on essential structural characteristics, such as the total number of rings
(nRings), the number of phenyl rings, the number of heteroatoms inside the rings (Nr, Or,
Sr), the number of heteroatoms outside of the rings (Nnr, Onr, and Snr), or the sum of
them (N, O, and S), the number of different halogens (Cl, F, I, and Br) and the sum of them
(halogen), and the number of double bonds between carbon atoms were derived manually.

Experimental lipophilicity data, logP, logD7.4, and logD5.0, were taken from references [23,27,29]
and the therein-cited literature sources. They are included in Table S1.
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3.4. Statistical Analysis

Multiple linear regression analysis (MLR) was performed using SPSS v.22.0 software.
Variable selection was performed by applying the stepwise algorithm, first in groups of
descriptors, classified according to their physicochemical content, in order to exclude the
less-relevant variables for the final selection. Variables with zero or very small variance
were excluded, as were collinear variables, considering a correlation coefficient lower than
0.8. The models were evaluated by considering the values of R, R2, s (standard deviation),
and F- test. For the significance of each individual variable, a t-test value of |t|≥ 2 was
considered. The applicability domain (AD) of the regression equations was defined by
calculating the critical leverage h* according to the formula h* = 3 (p + 1)/n, where p is the
number of parameters, and n is the number of compounds [65].

Models were validated by dividing the dataset into different training and test sets of 5
to 9 drugs, depending on the overall sample size. The test sets were randomly selected,
taking however into account to cover all four quartiles of the PCA scores plot. Subsequently,
each model derived by the training set was used to predict the response variable of the
corresponding test set. The R, R2, and s for both the training and test sets were considered
and compared to the original model. In addition, models were evaluated by the proximity
of the relation of observed vs. predicted values to a 1:1 correlation, reflected by a slope
close to 1 and an intercept close to 0.

Multivariate data analysis was performed using Simca-P 14.1 (Sartorius Stedim
Biotech, Umeå, Sweden,). Prior to analysis, data were scaled to unit variance. Princi-
pal component analysis (PCA) was performed, considering all columns of the table as
X variables. PCA is a projection method resulting in dimensional reduction. The principal
components, derived through projection, represent the new (latent) variables that summa-
rize the information included in the initial set of descriptors. A PCA scores plot provides
a useful data overview, which was also considered for the test set selection. Partial least
squares analysis (PLS), a regression extension of PCA, was applied in order to construct pre-
diction models. The variable selection was based on the values of the variable’s influence to
projection (VIP), the weight (w) in the loadings plot, and the size of coefficients. From this
perspective, variables with variables with VIP < 0.8, low weight in the loading plot or low
coefficient. Moreover, between descriptors encoding the same information, those which
performed better were chosen. It should be mentioned, however, that PLS, as a projection
method, can tolerate intercorrelated variables, as compared to multiple linear regression.
The predictive ability and robustness of the models was evaluated using cross-validation
as an internal validation according to the seven-fold option of Simca-P. The sum of the
squared differences between the measured response and the predicted value of the omit-
ted data, defined as predicting residuals sum of squares (PRESS), is used to calculate the
cross-validated correlation coefficient, Q2: Q2 = 1 − PRESS/SSY, with SSY representing the
variation in Y after mean centering and scaling. Permutation tests (100 permutations) were
applied by randomly re-ordering the response variables, and the newly derived R2 and
Q2 were plotted against the degree of correlation between the permuted and the original
data. The models were validated by external test sets, as already described for multiple
linear regression. The root mean square error of prediction (RMSEP) was considered as
an index of the predictability of the models. The applicability domain was defined using
the double of the average value of the distance of observation to model Y (DModY) as the
critical value.

4. Conclusions

In the present study, we combined bio-chromatographic retention factors, determined
on IAM, has, and AGP stationary phases, with computed descriptors to develop MLR/PLS
models for the rapid estimation of drug brain disposition. Our aim was to suggest a novel
‘hybrid’ modelling approach which combines high-throughput experimental accuracy with
theoretical descriptors. At the same time, the well-investigated information content of the
individual biomimetic properties [24,29,44,45] permitted a deeper insight into the underly-
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ing mechanisms of biological processes. In this sense, diverse aspects of drug disposition
in the CNS were explored, including the modeling of experimental logKp,uu,brain, logBB,
fu,brain, and Vu,brain data, upon the application of two statistical techniques, considered as
contributing in a complementary way. MLR led to simple models that are easy to use by
the medicinal chemist, whereas PLS served to strengthen the MLR models and to further
scrutinize the biological issues inherent in brain disposition measurements.

LogKp,uu,brain, as the outcome of contradictory factors related to permeability and
tissue and plasma binding could not be efficiently modeled by biomimetic properties and
lipophilicity, while computational descriptors alone were sufficient for model construction.
Yet, PLS analysis revealed the greater effect of IAM, HSA, and AGP retention factors, as
well as logD, if measured at pH 5.0, supporting the potential interference of the endo-
lysosomic system in vitro brain penetration models. In regard to logBB, which measures
permeability to CNS, traditional lipophilicity and IAM retention showed equal performance
with positive contributions. However, in the cases of both logKb and logVubrain, which
also depend on binding, IAM retention performed better than lipophilicity. More to the
point, a lesser number of total descriptors was required in the corresponding PLS models,
reflecting the higher information content of IAM retention. HSA retention was found to be
important in logKb modeling, while AGP retention influenced all brain disposition data,
confirming the role of basicity as an essential CNS-drug-like characteristic. Polarity and
hydrogen bond descriptors proved crucial in all models, with an opposite effect in regard
to biomimetic properties and lipophilicity.

In view of the above findings, biomimetic properties are well-justified in modeling
distinct brain disposition data as they reflect the major factors which govern biological
processes, e.g., passive diffusion and binding. More to the point, IAM retention performs
equally well or better than traditional lipophilicity. Hence, biomimetic chromatography can
be suggested as a rapid and simple tool for the early evaluation of CNS drug candidates,
permitting the construction of evidence-based ‘hybrid’ models and bridging the gap with
in silico modeling, built solely on theoretical descriptors.

The ‘hybrid ‘complementary models constructed in this study can be further applied
to, and validated with, a wider range of pharmaceutical compounds. Combined with
relevant plasma protein binding models also based on biomimetic properties [45], they can
serve as a sound basis for exploring the composite brain disposition end-points.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27123668/s1: Figure S1: DmodY bar plot for PLS
Model 4 of logKp,uu,brain, including computational descriptors; Figure S2: Permutation test (based
on 100 permutations) for PLS Model 4 of logKp,uu,brain; Figure S3: Representative plot of observed vs.
predicted logKp,uu,brain values from the external validation of PLS Model 4; Figure S4: Williams plots
of standardized residuals vs. the leverage; Figure S5: Representative plot of observed vs. predicted
logBB values from external validation of (a) Equation (1) and (b) Equation (2); Figure S6: (a) DmodY
bar plot for PLS Model 5 of logBB prediction, including IAM retention factors; (b) DmodY bar plot
for PLS Model 6 of logBB prediction, including logD7.4; Figure S7: PLS models of logBB prediction
including only the compounds with experimental logkwAGP values; Figure S8: Permutation tests for
the PLS models of logBB prediction; Figure S9: Representative plot of observed vs. predicted logBB
values from the external validation of the PLS model; Figure S10: Williams plots of standardized
residuals vs. the leverage; Figure S11: Representative plot of observed vs. predicted logKb values
from external validation of (a) Equation (7) and (b) Equation (11); Figure S12: (a) Variable Importance
ranking and (b) Coefficient plot of the original variables in PLS Model 7; Figure S13: (a) DmodY bar
plot for PLS Model 8 of logKb prediction, including IAM retention factors and (b) DmodY bar plot
for PLS Model 9 of logKb prediction, including logP and logD7.4; Figure S14: Permutation tests for
the PLS models of logKb prediction; Figure S15: Representative plot of observed vs. predicted logKb
values from the external validation of the PLS model; Figure S16: Williams plots of standardized
residuals vs. the leverage; Figure S17: Representative plot of observed vs. predicted logVu,brain
values from the external validation of (a) Equation (15) and (b) Equation (17); Figure S18: (a) DmodY
bar plot for PLS Model 10 of logVu,brain prediction, including IAM retention factors; (b) DmodY
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bar plot for PLS Model 11 of logVu,brain prediction, including logP; Figure S19: Permutation
tests for the PLS models of logVu,brain prediction; Figure S20: Representative plot of observed vs.
predicted logVu,brain values from the external validation of the PLS model; Figure S21: Plot of
observed vs. predicted logVu,brain values from PLS Model 12; Figure S22: DmodY bar plot for PLS
Model 12 of logVu,brain. Table S1: Compounds included in the dataset: pharmaceutical classification,
chromatographic data, and lipophilicity parameters; Table S2: Brain disposition data, i.e., Kp,brain,
Kp,uu,brain, fu,brain, and Vu,brain for the investigated compounds; Table S3: Variable Importance
to Projection (VIP) values in PLS Model 4 for logKp,uu,brain on the basis of biomimetic properties,
lipophilicity, and computational descriptors; Table S4: Observed and predicted logKp,uu,brain values
by PLS Model 4, based on computational descriptors; Table S5: Experimental and predicted logBB
values by MLR and PLS models; Table S6: Experimental and predicted logKb values by MLR and
PLS models; Table S7: Observed vs. predicted fu,brain correlation: fu,brain = a × fu,brain,pred + b;
Table S8: Experimental and predicted logVu,brain values by MLR and PLS models.
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