
SYSTEMATIC REVIEW
published: 14 May 2020

doi: 10.3389/fneur.2020.00314

Frontiers in Neurology | www.frontiersin.org 1 May 2020 | Volume 11 | Article 314

Edited by:

Yu Zhang,

VA Palo Alto Health Care System,

United States

Reviewed by:

Guangwei Du,

Penn State Milton S. Hershey Medical

Center, United States

Niklas Lenfeldt,

Umeå University, Sweden

Masaaki Hori,

Toho University, Japan

Maria Eugenia Caligiuri,

University of Magna Graecia, Italy

*Correspondence:

Maurizio Bergamino

maurizio.bergamino@barrowneuro.org

Specialty section:

This article was submitted to

Applied Neuroimaging,

a section of the journal

Frontiers in Neurology

Received: 23 December 2019

Accepted: 31 March 2020

Published: 14 May 2020

Citation:

Bergamino M, Keeling EG, Mishra VR,

Stokes AM and Walsh RR (2020)

Assessing White Matter Pathology in

Early-Stage Parkinson Disease Using

Diffusion MRI: A Systematic Review.

Front. Neurol. 11:314.

doi: 10.3389/fneur.2020.00314

Assessing White Matter Pathology in
Early-Stage Parkinson Disease Using
Diffusion MRI: A Systematic Review
Maurizio Bergamino 1*, Elizabeth G. Keeling 1,2, Virendra R. Mishra 3, Ashley M. Stokes 1 and

Ryan R. Walsh 4

1Division of Neuroimaging Research, Barrow Neurological Institute, Phoenix, AZ, United States, 2 School of Life Sciences,

Arizona State University, Tempe, AZ, United States, 3 Imaging Research, Cleveland Clinic Lou Ruvo Center for Brain Health,

Las Vegas, NV, United States, 4Muhammad Ali Parkinson Center, Barrow Neurological Institute, Phoenix, AZ, United States

Structural brain white matter (WM) changes such as axonal caliber, density, myelination,

and orientation, along with WM-dependent structural connectivity, may be impacted

early in Parkinson disease (PD). Diffusion magnetic resonance imaging (dMRI) has

been used extensively to understand such pathological WM changes, and the focus

of this systematic review is to understand both the methods utilized and their

corresponding results in the context of early-stage PD. Diffusion tensor imaging

(DTI) is the most commonly utilized method to probe WM pathological changes.

Previous studies have suggested that DTI metrics are sensitive in capturing early

disease-associated WM changes in preclinical symptomatic regions such as olfactory

regions and the substantia nigra, which is considered to be a hallmark of PD pathology

and progression. Postprocessing analytic approaches include region of interest–based

analysis, voxel-based analysis, skeletonized approaches, and connectome analysis,

each with unique advantages and challenges. While DTI has been used extensively

to study WM disorganization in early-stage PD, it has several limitations, including

an inability to resolve multiple fiber orientations within each voxel and sensitivity to

partial volume effects. Given the subtle changes associated with early-stage PD, these

limitations result in inaccuracies that severely impact the reliability of DTI-based metrics

as potential biomarkers. To overcome these limitations, advanced dMRI acquisition and

analysis methods have been employed, including diffusion kurtosis imaging and q-space

diffeomorphic reconstruction. The combination of improved acquisition and analysis in

DTI may yield novel and accurate information related to WM-associated changes in

early-stage PD. In the current article, we present a systematic and critical review of

dMRI studies in early-stage PD, with a focus on recent advances in DTI methodology.

Yielding novel metrics, these advanced methods have been shown to detect diffuse WM

changes in early-stage PD. These findings support the notion of early axonal damage in

PD and suggest that WM pathology may go unrecognized until symptoms appear. Finally,

the advantages and disadvantages of different dMRI techniques, analysis methods, and

software employed are discussed in the context of PD-related pathology.

Keywords: MRI diffusion, early-stage Parkinson disease, diffusion tensor imaging, diffusion kurtosis imaging,

q-space diffeomorphic reconstruction, fractional anisotropy, substantia nigra
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INTRODUCTION

Parkinson disease (PD) is a chronic progressive
neurodegenerative disease that affects more than 10 million
people worldwide (1–3). Parkinson disease pathology is
characterized by Lewy body aggregates and neurites (4, 5), which
play a causative role in degeneration of dopaminergic neurons in
the substantia nigra (SN); motor symptoms associated with PD
have been primarily attributed to this process (6). By the time
PD becomes symptomatic, an estimated 60% of dopaminergic
neurons have degenerated, representing a moderate to severe
state of disease (7). Biomarkers, including fluid and imaging
based, may play a critical role in understanding the natural
history of progression of PD and enable appropriate therapeutic
intervention, thereby optimizing preservation of neural health
(8). However, to date, no definitive biomarker exists for this
purpose, despite the clear need for one.

Imaging-based biomarkers for PD can yield insight into
atrophy, microstructural changes, neuronal activity, and vascular
hemodynamics. Magnetic resonance imaging (MRI) biomarkers,
both structural and functional, are increasingly used in PD
for more comprehensive evaluation of neuropathology. Subtle
brain atrophy has been demonstrated in PD using voxel-
based morphometry (VBM), which is an automated analysis
approach to characterize volumetric brain changes from three-
dimensional structural imaging (9–11). Altered patterns of
neuronal activation, measured via functional MRI (fMRI), have
been observed in multiple regions of the cortex in PD using a
range of motoric tasks (12–14). Resting-state fMRI is measured
in the absence of tasks and can identify abnormalities in
spontaneous neuronal activity (15). In particular, this approach
has revealed changes in the corticosubcortical functional
connectivity in PD compared with healthy controls (HCs) (16).

Diffusion MRI (dMRI) comprises a set of complementary
techniques to non-invasively probe microstructural
characteristics via diffusivity of water molecules in the brain.
As water predominantly diffuses along axons, dMRI can be
used to probe white matter (WM) changes such as axonal
caliber, density, myelination, and orientation. Diffusion tensor

Abbreviations: dMRI, Diffusion MRI; PD, Parkinson disease; SN, substantia

nigra; MRI, Magnetic resonance imaging; VBM, voxel-based morphometry;

fMRI, functional MRI; rs-fMRI, Resting-state-fMRI; HC, healthy controls; DTI,

Diffusion tensor imaging; WM, white matter; FA, fractional anisotropy; MD, mean

diffusivity; AxD, axial diffusivity; RD, radial diffusivity; DKI, diffusion kurtosis

imaging; H&Y, Hoehn & Yahr; PPMI, Parkinson’s Progression Markers Initiative;

NODDI, neurite orientation dispersion and density imaging; QSDR, Q-space

diffeomorphic reconstruction; ROI, region of interest; VBA, voxel-based analysis;

TBSS, Tract-Based Spatial Statistics; CSF, cerebrospinal fluid; ASL, arterial spin

labeling; CBF, cerebral blood flow; GM, gray matter; AP, atypical parkinsonism;

MK, mean kurtosis; RK, radial kurtosis; AK, axial kurtosis; UPDRS-III, Unified

Parkinson’s Disease Rating Scale; ODF, orientation distribution function; HARDI,

high angular resolution diffusion imaging; DSI, diffusion spectrum imaging;

SDF, spin distribution function; GQI, generalized Q-sampling imaging; QA,

quantitative anisotropy; PIGD, postural instability and gait difficulty; NBS,

network-based statistics; LLS, linear least squares; WLLS, weighted linear least

squares; RESTORE, robust estimation of tensors involving the outlier rejection;

TORTOISE, tolerably obsessive registration and tensor optimization indolent

software ensemble; AFNI, Analysis of Functional NeuroImages; Tracula, TRActs

Constrained by UnderLying Anatomy; BCT, Brain Connectivity Toolbox.

imaging (DTI), the most common dMRI model, can provide
measures such as fractional anisotropy (FA), mean diffusivity
(MD), axial diffusivity (AxD), and radial diffusivity (RD) (17)
that are sensitive to subtle WM microstructural organization.
Since the inception of DTI in the mid-1990s (18), significant
improvements have been made in both acquisition and analysis
methods. These advances include the implementation of
multishell and high-angular-resolution dMRI data, such as those
with more diffusion-encoding gradient directions, resulting
in the development of advanced algorithms to improve dMRI
postprocessing and overcome some of the known limitations of
DTI. The availability of standard software has further enabled
quantitative analysis of DTI and DTI-related metrics including
advanced dMRI models. At present, DTI represents one of the
most widely used neuroimaging methods, in both preclinical
animal and human studies, for its versatility and specificity to
WM microstructure (19). We encourage interested readers to
refer to References (9, 20–23) for a more in-depth understanding
of DTI.

White matter changes in PD vs. controls (healthy subjects;
HCs) have previously been evaluated by DTI using various
metrics, acquisitions, analyses, and software tools (24). More
specifically, a recent meta-analysis encompassing wide disease
durationDTI studies in PD found that both FA andMDwere able
to distinguish between PD and HC, with regional DTI changes
observed in the SN, corpus callosum, cingulate, and temporal
cortices. Considering the growing interest in defining the early
phases of PD through the use of neuroimaging biomarkers, the
focus of this systematic review is the current state of dMRI-based
biomarkers for understanding early-stage PD, with an emphasis
on the technical methodologies employed for dMRI. More
specifically, the basic theoretical background for standard DTI
will be provided, along with three more advanced methods that
go beyond standard DTI methods [diffusion kurtosis imaging
(DKI), neurite orientation dispersion and density imaging
(NODDI), and Q-space diffeomorphic reconstruction (QSDR)].
The relevant results in early-stage PD will be discussed for each
of thesemethods. Additionally, the advantages and disadvantages
of different dMRI acquisition techniques, analysis methods, and
software employed will be discussed in the context of early-stage
PD-related pathology. The commonalities and incongruences
in findings in early-stage PD will be contextualized between
the various dMRI methods. Finally, given the current state of
understanding of early-stage PD and known capabilities of dMRI
approaches, the outlook for future opportunities in dMRI to
improve pathophysiological characterization of early-stage PD
will be discussed.

METHODS

Following Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA) guidelines (25), we searched three
databases (Figure 1) for works that included at least one group
of early PD [defined as subjects with Hoehn & Yahr (H&Y)
stage ≤2 and/or disease duration <5 years] and where one
or more dMRI methods were used (see PRISMA diagram in
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FIGURE 1 | Search strategy based on PRISMA flow diagram.
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FIGURE 2 | Histograms for the publication years and dMRI techniques

included in this review.

Figure 1). To identify the articles for this systematic review, we
searched for publications on PubMed, Cochrane Library, and
Scopus databases by using the keywords “early Parkinson,” “MRI
diffusion,” and “DTI” without any temporal restriction. In total,
we found 349 records. After excluding duplicates (n = 254),
screening and eligibility further reduced the number to 62 articles
retained for this review.

While most studies used site-specific data, several studies
leveraged the open-access availability of data from the
Parkinson’s Progression Markers Initiative (PPMI) (http://
www.ppmi-info.org). Parkinson’s Progression Markers Initiative
is a multicenter international database of de novo individuals
with early idiopathic PD that includes clinical, imaging, and
biological data. Studies using PPMI and other shared datasets
will be denoted in the text. Histograms are shown in Figure 2 for
the publication years and dMRI techniques used in each article
included in this review. The complete list of the PD studies that
are included in this review is reported in Table 1.

THEORY AND RESULTS

Diffusion Tensor Imaging: Theory,
Acquisition, and Analysis
Diffusion tensor imaging relies on motion-sensitizing gradients
to probe the displacement of water molecules, which is often
simplified using a Gaussian distribution model. The diffusion-
weighted signal intensity for this distribution can be described
by the following equation:

S = S0exp
[

−bD
]

(1)

where S0 is the signal intensity without the diffusion gradient, D
is the diffusion coefficient, and b is the diffusion-weighting factor,
where the b factor is largely dependent on the gradient waveform.
The diffusion can thus be represented by the following equation:

ln

[

S

S0

]

= −bgT D g (2)

where g is a three-element column vector representing a gradient
direction, gT is the transpose of g, and D is the apparent
diffusion tensor (3× 3 symmetric matrix).

Diffusion tensor imaging provides a direct relationship
between the chosen experimental parameters, such as b and g, the
MRmeasurements (S and S0), and the parameters of the diffusion
tensor model D.

Eigendecomposition of the diffusion matrix yields a
symmetric diffusion tensor:

D =
[

ǫ1 ǫ2 ǫ3
]

·





λ1 0 0
0 λ2 0
0 0 λ3



 ·





ǫ1
ǫ2
ǫ3



 (3)

where λ1, λ2, and λ3 are the eigenvalues (with λ1 ≥ λ2 ≥ λ3)
and ǫ1, ǫ2, and ǫ3 are the eigenvectors of D. The diffusion tensor
is completely characterized by these eigenvalues, which describe
the length of the three axes of the diffusion ellipsoid, and their
corresponding eigenvectors, which describe the orientation of
these axes in space. As the eigenvectors provide information
about the direction of water diffusion within a voxel, they form
the basis of brain fiber tracking (88, 89). The geometric shape
associated with the diffusion tensor is assumed to be a three-
dimensional ellipsoid with the length of the three orthogonal
principal axes proportional to the ordered tensor eigenvalues.

The first eigenvalue (λ1) represents water diffusivity along
the principal axis and is termed axial (or longitudinal or
parallel) diffusivity (λ‖ or AxD). The radial (or transverse
or perpendicular) diffusivity (λ⊥ or RD) represents water
diffusion perpendicular to the principal direction and is given
by the average of the remaining eigenvalues ((λ2 + λ3)/2). Axial
diffusivity has been associated with axonal damage, whereas
RD may be associated with myelin integrity, axonal diameter
and density, and fiber coherence (90, 91). Mean diffusivity is a
rotationally invariant metric, obtained from a simple average of
the diffusion eigenvectors ((λ1 + λ2 + λ3)/3), which describes
the overall size of the tensor.

Fractional anisotropy quantifies the degree of anisotropy of
the diffusion tensor and is the most common DTI-related index.
Fractional anisotropy ranges from 0 to 1, where 0 represents
isotropic diffusion and 1 represents completely anisotropic
diffusion. Fractional anisotropy can be calculated in each voxel
using the following equation:

FA =
√

1
2

√
(λ1−λ2)2+(λ2−λ3)2+(λ3−λ1)2√

λ21+λ22+λ23 (4)

While this index has often been interpreted as a quantitative
biomarker of WM disorganization, equating FA with WM
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TABLE 1 | Summary of diffusion studies in early-stage PD.

References Diffusion

method

Analysis method

(for diffusion)

Software PD subjects # Diffusion

directions/# b value(s)

Vriend et al. (26) DTI Connectivity FSL, BCT 23 early-stage PD (H&Y 1–3) 30/2

Arrigo et al. (27) DTI Connectivity SPM8, FSL, MRtrix,

Camino

20 newly diagnosed PD (H&Y = 1) 61/2

Tinaz et al. (28) DTI Connectivity BCT, FATCAT, 3dTrackID,

TORTOISE, AFNI

20 non-demented PD patients (H&Y = 2;

disease duration (year) = 7.1)

70/—

Peña-Nogales et al.

(29)

DTI Connectivity FSL–MRtrix PPMI subjects 64/2

Nigro et al. (30) DTI Connectivity PANDA (Matlab)

–BCT–FSL

H&Y = 1.5 and disease duration = 19.28

months

27/2

Tessa et al. (31) DTI Histogram FSL 27 patients with de novo drug-naive PD

[tremor-dominant type (n = 13), akinetic-rigid

type (n = 11), and mixed type (n = 3)]–H&Y =
1.2 and 1

6/2

Knossalla et al. (32) DTI ROI — 10 early-stage PD (H&Y = 1–2) 20/2

Joshi et al. (33) DTI ROI FSL 24 early-stage PD (disease duration average

2.94 years, SD 2.93 years; nine HY1 patients,

13 HY2, two unknown)

55/—

Wang et al. (34) DTI ROI Siemens Syngo MR

Neuro 3D, SPM8, FSL

27 early-stage PD (H&Y = 1–2; duration of

disease = 1.7 Y)

60/2

Aquino et al. (35) DTI ROI FSL 22 early-stage PD (Duration of disease = 4.0

years) and 20 late PD

64/—

Vaillancourt et al. (36) DTI ROI AFNI 14 with early stage PD (H&Y = 1–2; duration of

disease = <34 months)

27/2

Gattellaro et al. (37) DTI ROI ImageJ (for ROI) 10 PD without dementia (H&Y = 1–2) 12/2

Du et al. (38) DTI ROI DTIPrep, Matlab 15 early-stage PD (disease duration ≤1 years),

14 midstage PD (duration 2–5 years), and 11

late-stage (duration >5 years)

42/2

Loane et al. (39) DTI ROI ExploreDTI 18 early stage PD (treated) [avg (SD) disease

duration (years): 3.9 (2.2); no H&Y provided]

64/2

Schuff et al. (40) DTI ROI Processed from PPMI PPMI subjects 64/2

Pelizzari et al. (41) DTI ROI FSL, ANTs 26 PD (H&Y = 1–1.6; duration of disease = 3.0

years)

64/2

Guan et al. (42) DKI ROI GE adw 4.6 The PD divided into an advanced-stage PD

group and an early-stage PD group

15/3

Liu et al. (43) DTI ROI Probably Scanner

software

early diagnosis of Parkinson disease 25/2

Mangia et al. (44) DTI ROI FSL Nine early-diagnosed PD 93/2

Klein et al. (45) DTI ROI — 20 early-stage PD patients (disease duration

1.9 ± 0.97 years, H&Y 1–2)

60/2

Planetta et al. (46) DTI ROI, tractography DTI Studio, AFNI, 20 with early stage PD (Duration of disease =
12 months)

27/2

Wei et al. (47) DTI ROI, tractography GE adw 4.5 21 early (H&Y <2) and 22 mid–late PD (H&Y

≥2)

25/2

Li et al. (48) DTI TBSS FSL 31 early-stage PD (H&Y = 1–2) 32/2

Rolheiser et al. (49) DTI TBSS FSL 14 early stage PD (H&Y = 1–2; duration of

disease <72 months)

31/2

Ibarretxe-Bilbao et al.

(50)

DTI TBSS FSL 24 early-stage PD (H&Y = 1–2) 30/2

Minett et al. (51) DTI TBSS FSL 120 early stage PD [27 with mild cognitive

impairment (H&Y = 2.3) and 93 with normal

cognition (H&Y = 1.9)]; duration of disease

5.6–6.4 months (longitudinal study)

64/2

(Continued)
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TABLE 1 | Continued

References Diffusion

method

Analysis method

(for diffusion)

Software PD subjects # Diffusion

directions/# b value(s)

Duncan et al. (52) DTI TBSS FSL 125 non-demented PD (H&Y = 2.0; average

duration of disease = 6.15)

64/2

Lacey et al. (53) DTI TBSS FSL PPMI subjects 64/2

Pozorski et al. (54) DTI TBSS FSL–DTIprep–DTI_TK H&Y stage at baseline 16 subjects with <2 and

13 subjects (≥2); mean disease duration

(years) 3.7 (3.2)

40/2

Rektor et al. (55) DTI TBSS FSL H&Y stage 1–1.5 and disease duration up to 5

years

60/2

Pelizzari et al. (56) DTI TBSS FSL 12 PD [median H&Y (IQR) = 1.5 (1.1–2)] 64/2

Chen et al. (57) DTI TBSS (only for

normalization

procedure), ROI

FSL 30 early stage PD (H&Y = 1.74; average

duration of disease = 62)

25/2

Mishra et al. (58) DTI TBSS (skeleton), ROI,

VBA

FSL, DTI-TK PPMI subjects 64/2

Gou et al. (59) DTI TBSS, Connectivity FSL, SPM12, PANDA,

FACT

PPMI subjects 64/2

Meijer et al. (60) DTI TBSS, ROI FSL 49 early stage PD [19 atypical parkinsonism

(H&Y = 2.4) and 30 PD (H&Y = 1.7)], disease

= 21.6–28.4 months. Longitudinal study

30/2

Guimarães et al. (61) DTI TBSS, ROI,

tractography

FSL, Explore DTI, SPM8 early-stage PD, moderate PD, and severe PD 32/2

Prange et al. (62) DTI TBSS, VBM FSL 14 apathetic and 13 non-apathetic patients

with de novo PD

24/2

Ford et al. (63) DTI TBSS, VBM FSL, SPM8 (for VBM) 124 early-stage PD 64/2

Zhang et al. (64) DTI Tractography SPM8, TrackVis PPMI subjects 64/2

Lorio et al. (65) DTI VBA SPM12, FSL PPMI subjects 64/2

Taylor et al. (66) DTI VBA TEEM tool (from PPMI) PPMI subjects 64/2

Planetta et al. (67) DTI (free

water)

ROI FSL–Matlab for free water 34 patients with early stage PD 64/2

Rahmani et al. (68) QSDR Connectivity Explore DTI–DSI Studio PPMI subjects 64/2

Ghazi Sherbaf et al.

(69)

QSDR Connectivity Explore DTI–DSI Studio PPMI subjects 64/2

Ansari et al. (70) QSDR Connectivity Explore DTI–DSI Studio PPMI subjects 64/2

Ansari et al. (71) QSDR Connectivity DSI Studio PPMI subjects 64/2

Ghazi Sherbaf et al.

(72)

QSDR Connectivity DSI Studio–Explore DTI PPMI subjects 64/2

Wen et al. (73) QSDR Connectivity FSL, DSI Studio 20 prodromal phase of PD; 106 PD; 64/2

Haghshomar et al. (74) QSDR Connectivity ExploreDTI, DSI-Studio PPMI subjects 64/2

Ashraf-Ganjouei et al.

(75)

QSDR Connectivity DSI Studio PPMI subjects 64/2

Sanjari Moghaddam

et al. (76)

QSDR Connectivity DSI Studio–Explore DTI PPMI subjects 64/2

Sobhani et al. (77) QSDR Connectivity DSI Studio PPMI subjects 64/2

Ghazi Sherbaf et al.

(78)

QSDR ROI DSI Studio, ExploreDTI PPMI subjects 64/2

Wen et al. (79) QSDR TBSS–Connectivity DSI Studio–FSL PPMI subjects 64/2

Wen et al. (80) QSDR TBSS, Connectivity FSL, DSI Studio, BCT, PPMI subjects 64/2

Wen et al. (81) QSDR TBSS, Connectivity FSL, DSI Studio, BCT PPMI subjects 64/2

Zhang et al. (82) DKI ROI GE adw 4.5 Initial H&Y staging 1.58 and 1.65; H&Y staging

after 2 years 2.08 and 1.84

25/3

Zhang et al. (83) DKI ROI GE adw 4.5 72 early-stage PD (H&Y = 1.67; duration of

disease = 13.50 months)

25/2

(Continued)
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TABLE 1 | Continued

References Diffusion

method

Analysis method

(for diffusion)

Software PD subjects # Diffusion

directions/# b value(s)

Zhang et al. (84) DKI ROI GE adw 4.5 28 PD with Striatal silent lacunar infarction PD

(H&Y = 1.68 -> 2.39(FU); duration of disease

= 14.21 months); 32 PD et al. [H&Y = 1.63 to

>1.91 (FU); duration of disease = 14.68

months]

25/2

Zhang et al. (85) DKI ROI GE adw 4.5 72 with early stage PD divided in control and

striatal silent lacunar infarction (H&Y = 1.63

and 1.71; duration of disease <14 months)

25/2

Surova et al. (86) DTI–DKI–

NODDI

ROI, tractography FSL, in-house developed

software (for DKI)

105 patients with PD et al. [H&Y = 2; disease

duration (years) = 5]

94/4

Andica et al. (87) DTI–

NODDI

Tractography NODDI Matlab Toolbox5,

FSL, AMICO, TrackVis

29 PD (H&Y = 1.97; average duration of

disease = 6.24 years)

32/2

—, no information available. In the last column, the B0 image acquisition is included in the number of b values.

disorganization is not strictly accurate, given that FA cannot
disentangle the individual microscopic contributions, such as
different WM fiber populations and/or cerebrospinal fluid (CSF)
contamination (92, 93). Fractional anisotropy has also been
equated as a marker of demyelination (94), which is also not
accurate because the regional anisotropy may also reflect altered
axonal diameter, packing density, or membrane permeability
(95). Despite these limitations, DTI-based FA has often been
utilized as a neuroimaging biomarker because of its robustness to
noise (96, 97). Example maps for FA (gray-scale and colorized),
MD, AxD, and RD are shown in Figure 3 in an HC.

Tractography goes beyond the conventional quantitative
voxel-wise metrics to generate a three-dimensional
representation of WM fiber bundles. Figure 4 shows an
example tractography (B), with FA shown in (A), in an HC.
Tractography consists of a multistep procedure to reconstruct
WMfiber bundles inside the brain, namely, seeding, propagation,
and termination. Many options, and best practices, for each of
these steps can be found in the literature (23, 98), and software
exists to perform these functions at varying levels. Some of the
known limitations of tractography are related to acquisition
(minimum number of DTI directions) and WM architecture
(crossing, kissing, and diverging fibers). Other limitations
include possible inaccuracies of tractography due to the presence
of neuropathological changes (99).

Upon generation of DTI-based metrics, subsequent
quantitative analyses can be performed using histogram
analysis, region of interest (ROI) analysis, voxel-based analysis
(VBA), or skeletonized analysis [also called tract-based spatial
statistics (TBSS)]. Additionally, DTI enables measurement of the
macroscopic orientation of WM tissue and analysis of structural
connectivity through tractography algorithms. These different
analysis methods are demonstrated in Figure 5 and are discussed
in greater detail below.

One of the simplest analyses is whole-brain histogram analysis
(Figure 5A). Beyond mean and median, histograms permit
extraction of parameters such as histogram peak height and
location that can be compared across subjects or correlated with
other variables. A major advantage of whole-brain histogram

analysis is that no a priori choice of region is required; however,
one ensuing drawback is that the results may be affected by
CSF contamination (92). Region-of-interest analysis (Figure 5B)
is a commonly used method to analyze DTI-derived indices,
where ROIs can be obtained from automated segmentation
(e.g., FreeSurfer; https://surfer.nmr.mgh.harvard.edu/) or by
manual delineation. Although ROIs can be drawn directly
on the DTI-derived indices, their placement may be difficult
due to low-resolution images and the intensity of DTI-derived
maps (e.g., FA) may spuriously influence the ROI boundaries,
thereby introducing bias into the analysis. Alternatively, ROIs
may be drawn on anatomical T1- or T2-weighted images,
which necessitates reliable co-registration with dMRI data. One
drawback to ROI analysis is that it requires either an a priori
hypothesis regarding where WM differences are expected to be
present in a pathology or normal development as the inclusion of
many ROIs increases the number of statistical tests and requires
correction for multiple comparisons.

Moving beyond ROI analysis, VBA is a fully automated
approach that allows for the investigation of microstructural
organization in each voxel inside the whole brain (Figure 5C).
It involves the spatial normalization of high- and low-resolution
images from the subjects’ native space to stereotactic space, and
thus, reliable co-registration is crucial. Additionally, smoothing
of the data during analysis can increase the impact of partial
volume effects (PVE), as the voxels may combine both WM and
gray matter (GM) in such a way that the results are less robust
and less specific to a specific component. As statistical analysis
is performed in each voxel, there is also an increased risk of
false-positive findings, such thatmultiple comparison corrections
are compulsory. Finally, pathologies and lesions can strongly
affect VBA results. Alternatively, TBSS (or skeletonized analysis,
Figure 5D) can alleviate the alignment and smoothing challenges
associated with VBA (100). Tract-based spatial statistics is
a popular pipeline used to coregister sets of DTI maps for
performing voxel-wise comparisons on skeletonized WM tracts.
As a result, it precludes the study of whole-brain WM tracts,
focusing instead on the components of WM tracts common
across all subjects (hence the name skeletonized). In recent years,
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FIGURE 3 | Standard DTI maps, from a healthy volunteer, created by DSI Studio with a DTI diffusion scheme with a total of 67 diffusion sampling directions. The b

value was 1,000 s/mm2. The in-plane resolution was 2mm, and the slice thickness was 2mm. FA, fractional anisotropy; MD, mean diffusivity; AxD, axial diffusivity;

RD, radial diffusivity. The range of FA in between 0 (isotropic diffusion) and 1 (anisotropic diffusion).

several studies have questioned the reliability and interpretability
of TBSS (101), and improvements over the original TBSS pipeline
have been suggested (102).

The final analysis method covered to this review is the
connectome analysis (Figure 5E), which pertains to whether
there are global changes in structural connectivity patterns at
the end of WM pathways (103). Advantages of this method
include that it is automated and identifies the global shift
in WM connectivity pattern between the groups. Network-
based measures derived through this connectome analysis can
then be utilized to not only understand whether there is
a global shift in WM-derived structural connectivity due to
pathology but also to understand its correlations with clinical and
pathological presentations.

DTI in Early-Stage PD
Given the known spatiotemporal progression of changes
associated with PD, ROI analysis has been used widely in early-
stage PD. Moreover, given the recognized involvement of the SN
early in pathophysiological progression of PD, many DTI studies
have focused on ROI analysis of the SN. For example, reduced
FA of SN in subjects with early-stage PD compared with controls
was observed by Vaillancourt et al. (36), whereas Liu et al. (43)
similarly found that FAs in the rostral, middle, and caudal areas
of the SN were decreased significantly in subjects with early-
stage PD compared with controls. Mangia et al. (44) explored the
SN and other brain locations from a multimodal MRI approach
and reported neuronal degeneration of the SN in the early-PD
group. However, not all studies have reported similar results.
For instance, Pellizari et al. (41) observed no differences in FA
in the SN between early-stage PD and HC, although differences

in AxD were reported. Similarly, Joshi et al. (33) compared all
DTI-derived metrics in 24 early-stage PD subjects and found
increased MD in the SN. Finally, in a longitudinal study over
almost 2 years, Loane et al. (39) found no significant differences
in DTI metrics at baseline, but significant differences in nigral FA
(decrease in PD) andMD (increase in PD) metrics were observed
at the follow-up time point. As a result, the authors hypothesized
that diffusion metrics in the SN may be sensitive measures of
disease progression.

Parkinson disease is often associated with olfactory
dysfunction, and impaired sense of smell is one of the earliest
clinical symptoms of PD, preceding even the classic motor signs
(104). Using ROI analysis, significant group differences in FA
and MD have been observed in the anterior olfactory structures
(33). These results were confirmed by Rolheiser et al. (49), who
leveraged TBSS to reveal significant group differences between
PD and controls in the anterior olfactory region, as well as the
SN. Furthermore, reduced FA in WM associated with the central
olfactory system was observed using TBSS in early-stage PD
patients and was associated with a reduced ability to smell (50).

Parkinson disease–associated pathological changes are not
isolated to the SN and olfactory regions. In fact, alterations
have been observed in other WM areas, including the genu of
the corpus callosum, superior longitudinal fasciculus, putamen,
external capsule, midbrain, superior cerebellum, and superior
cerebellar peduncles (37, 60). Using both ROI and tractography
methods, Planetta et al. (46) found that FA values were
significantly reduced in PD in fibers projecting from the anterior
nucleus, ventral anterior nucleus, and dorsomedial nucleus. In
addition, reduced FA values approached significance in the
ventral lateral nucleus of patients with PD. Similarly, regions
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FIGURE 4 | (A) Fractional anisotropy maps and (B) an example of whole-brain deterministic tractography created by DSI Studio in a healthy volunteer (angular

threshold: 60 degrees; step size: 1mm; anisotropy threshold: 0.20. Tracks with length shorter than 50 or longer than 300mm were discarded. A total of 500,000

seeds were placed inside the whole brain).

that have shown reduced FA using TBSS include the bilateral
anterior corona radiata, upper corona radiata, posterior thalamic
radiation, optic radiation, fornix, and corpus callosum, among
others (48, 56). In a study of 125 early-stage PD and 50 HC
individuals, increased MD in PD subjects was observed in several
WM locations, suggesting early axonal damage (52). On the
other hand, some studies have reported no significant differences
between early-stage PD and controls (35, 39), whereas higher FA
values in several WM locations have also been reported (57).

Given the evidence of widespread WM changes, whole-
brain metrics may be of interest. Tessa et al. (31) previously
used whole-brain histogram analysis to compare FA metrics
between controls and de novo drug-naive PD (n = 27), the
latter of which was divided in tremor-dominant, akinetic-
rigid, and mixed types. Increased FA was observed in patients
with PD, which was more pronounced in patients with the
akinetic-rigid subtype. Considering the use of whole-brain
analysis, these results support the hypothesis that widespread
neuropathology exists at the time of clinical onset, possibly driven
by the inclusion of GM in whole-brain analysis. Connectome
analysis has also shown significant differences in the WM-
derived structural connectome associated with PD (29, 30, 105).
More specifically, lower global efficiency and global clustering
coefficient have been observed in PD compared with HCs (26).

Arrigo et al. (27) found significant alterations in optic radiation
connectivity distribution, a significant increase in optic radiation
MD, and a significant reduction in WM concentration in early-
stage PD. Finally, Tinaz et al. (28) investigated the structural
and functional organization in PD subjects, finding reduced
WM connectivity in frontoparietal–striatal nodes compared to
controls, but no change in modular organization of the WM
tracts. A recent study by Mishra et al. (105) reported that
there is an early-stage PD-specific WM-derived connectome
comprising pathophysiologically relevant regions and that the
overall connectivity in early-stage PD in these regions is
significantly higher than that compared to HC. Additionally, PD
groups have shown reduction in functional local network metrics
in many nodes distributed across the connectome (28).

Several studies have sought to correlate DTI findings with
clinical metrics, including functional and cognitive measures,
both cross-sectionally and longitudinally. The cross-sectional
results have been mixed with both ROI analysis and TBSS,
with some studies showing no correlations between DTI-derived
metrics and clinical measures (38, 48) and other studies reporting
significant correlations, particularly in the caudate nucleus
(34, 41). Minett et al. (51) found that at baseline patients
with early-stage PD had significantly higher MD relative to
HC, and in patients with PD and mild cognitive impairment,
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FIGURE 5 | Example of the different dMRI analysis methods. (A) Histogram analysis; (B) ROI analysis; (C) voxel-based analysis (VBA); (D) skeletonized analysis (e.g.,

TBSS pipeline); (E) connectome analysis.
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higher MD was significantly correlated with lower attention
and executive function scores. In this longitudinal study, DTI-
derived WM microstructural changes were assessed as potential
prognostic biomarkers of worsening motor features or cognitive
decline in patients with PD. At follow-up, frontal MD increased
significantly when comparing patients with PD and mild
cognitive impairment with HC. In another longitudinal study
over 18 months, patients with early-stage PD with unilateral
disease were shown to have higher rates of microstructural
changes compared to patients with later-stage PD with bilateral
disease, suggesting that substantial microstructural changes
occur during the early stages of disease (54). Gray matter
changes have also been implicated in PD-associated cognitive
impairment, where reduced cortical microstructural integrity was
associated with reduced cognitive performance in early-stage PD
patients (45).

While many of the aforementioned studies have used
subject sample sizes on the order of 20 to 30, several studies
have leveraged the PPMI database that features larger patient
enrollment and longitudinal data, along with clinical metrics.
Using ROI analysis, Schuff et al. (40) analyzedWM abnormalities
in 153 early-stage drug-naive de novo PD and compared these
measures with 67 HC from the PPMI database, finding a
marginally non-significant interaction between nigral FA and
disease status. However, significant interactions between WM
regions and disease status have been found in several other non-
PPMI studies (32, 38, 106). Analyzing longitudinal PPMI data
using VBA, Taylor et al. (66) found significantly increased FA
in brainstem, cerebellar, anterior corpus callosal, inferior frontal,
and inferior fronto-occipital WM and increased MD in primary
sensorimotor and supplementary motor regions. After 1 year, PD
patients showed a significantly stronger decline in FA compared
to HC in the optic radiation and corpus callosum, as well as
parietal, occipital, posterior temporal, posterior thalamic, and
vermis GM. The authors postulate that these findings are in line
with spatiotemporal patterns of α-synuclein, in both WM and
cortical GM. Diffusion tensor imaging–derived metrics of the
nigrostriatal tract were shown to have a systematic abnormalities
in 50 PD patients from PPMI using tractography; in addition,
variations in FA and RD of the nigrostriatal tract were associated
with the degree of motor deficits in PD patients (64).

Given the numerous permutations of DTI analysis methods,
Mishra et al. (58) performed a systematic comparison of
various postprocessing approaches used for identifying WM
differences using DTI data from PPMI database. Region-of-
interest–based analysis, VBA with varying spatial smoothing,
and two widely used skeletonized approaches (TBSS and tensor-
based registration with DTI-TK) were compared in a group of
81 early-stage PD and 44 HCs from PPMI. Both skeletonized
approaches revealed significant negative correlations for FA
with disease duration, although DTI-TK was found to be more
accurate for assessing disease progression. However, no analytic
techniques showed any group difference in any region between
early-stage PD and HC. These types of comparisons provide
context for studies that have shown conflicting findings with
different analysis pipelines and highlight the importance of
standardization of DTI analysis.

To provide a more comprehensive view of early-stage
PD-related neuropathological changes, several studies
have combined imaging metrics with different underlying
pathophysiological correlates. Wei et al. (47) and Pelizzari
et al. (41) combined microstructural DTI-derived metrics with
perfusion using arterial spin labeling to increase diagnostic
accuracy for early-stage PD. In those studies, both FA and
cerebral blood flow in the hippocampus, prefrontal cortex, and
parietal WM regions were decreased in early-stage PD and mid-
late PD compared with HC. In addition, FA was decreased in the
SN, while hypoperfusion was observed in the frontal/occipital
WM regions. Several authors have also used DTI together
with VBM, which can detect subtle brain volumetric changes
using structural images, to investigate the relationship between
WM tracts, GM volume and PD. These studies found reduced
WM microstructural integrity and reduction of GM volume
in PD subjects in several regions, such as cingulum, superior
longitudinal fasciculus, inferior longitudinal fasciculus, inferior
fronto-occipital fasciculus, striatum, and the frontal, temporal,
limbic, and paralimbic areas (27, 45, 52, 55, 62, 65, 107).

Sleep disorders, such as rapid eye movement sleep behavior
disorder, may coincide with early-stage PD, and the combination
of sleep disorders and early-stage PD has been associated
with more advanced disease status, despite similar clinical
characteristics and cognitive performance (63). Parkinson disease
patients with sleep disorders have shown regions of reduced
cortical GM volume, as assessed by VBM, and WM changes,
most notably reduced FA using TBSS, compared with those
who did not have sleep disorders, though not significant when
adjusted for multiple comparisons. In a separate study, cortical
and subcortical alterations in de novo PD patients were observed
using VBA-DTI (65); notably, many of these changes occurred
in the brainstem, specifically the pontine tegmentum, which has
been implicated in the regulation of sleep cycles (108).

Mood disorders, including depression, apathy, and anxiety,
have been associated with more advanced PD stages and may
be related to dopaminergic depletion (109); however, these
neuropsychiatric conditions have also been implicated in early-
stage disease and may have a different underlying etiology (62).
Gou et al. found no significant WM microstructural differences
between depressed and non-depressed PD groups using TBSS
(59), a finding that was replicated by Lacey et al. using data from
PPMI (53). However, connectivity analysis revealed significant
network changes associated with PD patients with depression
(59). Parkinson disease with apathy has also been associated with
bilateral microstructural alterations in the medial corticostriatal
limbic system; more specifically, decreased FA and increased
MD were observed in the anterior striatum and pregenual
anterior cingulate cortex, along with concomitant serotonergic
dysfunction (62).

While most studies have sought to differentiate between
PD and HC groups, some studies have assessed the potential
of DTI biomarkers to differentiate PD subgroups. In one
study, decreased FA was observed in the SN using ROI
analysis in early and mid–late PD patients compared with
healthy subjects, but there were no significant differences in
the same metrics between early-stage PD and mid–late PD
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groups (47). These results suggest that SN changes occur early
in the pathology of PD and rapidly reach a plateau, such
that longer disease duration is not indicative of increased
nigral microstructural changes. Comparing early-stage PD and
neurodegenerative atypical parkinsonism (AP), higher MD in
the centrum semiovale, body of the corpus callosum, putamen,
external capsule, midbrain, superior cerebellum, and superior
cerebellar peduncles has been observed in AP (60). Another study
using ROI analysis across PD subgroups found that widespread
microstructural changes were present only in late-stage PD
groups and not in early and moderate PD groups (61). The
authors further suggest that standard DTI methods may not be
sensitive to early PD pathology, which may indicate a role for
more advanced methods.

Free-Water Algorithms for DTI Correction
The complex organization of brain tissue, in combination with
the relatively large voxel size in dMRI acquisition, results in
PVE in diffusion tensor measurements. Consequently, DTI-
derived metrics are influenced by the combined contributions
of different brain tissue compartments, including CSF and/or
extracellular free water (110). Free-water is defined as water
molecules that neither experience flow nor are restricted
by their surroundings. In the human brain, free water is
found in CSF within the ventricles and around the brain
parenchyma. For instance, CSF has a relatively large diffusion
coefficient compared with that of the brain parenchyma, such
that PVE in the periventricular regions and the sulci may
overestimate the ADC values by 15–30% (111). Several methods
can be employed to remove free-water contributions, such as
fluid-attenuated inversion recovery diffusion-weighted imaging
(FLAIR-DWI) (112) or the free-water correction algorithm
developed by Pasternak et al. (113) for single-shell acquisitions
and later extended to multishell acquisitions (114). Planetta
et al. (67) used a free-water DTI algorithm in the context
of early-stage PD patients taking rasagiline, a monoamine
oxidase inhibitor used to treat PD, and found that the
+rasagiline group had less free water in the posterior SN
and better performance on a coordination task than the –
rasagiline group. However, interpretation of changes in free-
water measures from single-shell dMRI acquisitions must be
interpreted cautiously, as the measures are biased at crossing-
fiber regions (115), which make up approximately 90% of WM
voxels (116).

Beyond DTI: Diffusion Kurtosis Imaging
Although DTI is widely used to study WM organization,
its inherent assumption of a Gaussian distribution results
in an inability to resolve tracts in voxels with complex fiber
arrangements (99). To overcome this issue, other techniques
such as DKI have been developed. Kurtosis is a statistical
measure of the deviation from a Gaussian distribution
(which is the assumed distribution for DTI), and thus,
DKI-based methods can quantify non-Gaussian diffusion
(117). This technique is largely based on the same type of
pulse sequences employed for DTI, but DKI requires multishell

dMRI at higher b values than those conventionally utilized for
DTI analysis.

For DKI, the natural logarithm of the diffusion-weighted
signal can be approximated by an expansion in terms of the
b values:

ln
[

S(b)
]

= ln
[

S(0)
]

− bDapp +
1

6
b2D2

appKapp + O(b3) (5)

where S(b) is the signal intensity, Dapp is the apparent diffusion
coefficient, and Kapp is the apparent diffusional kurtosis, and the
termO(b3) is the Taylor expansion for power of b> 2. In the case
of Gaussian diffusion, Kapp is zero, and Equation (5) reduces to
the standard DTI equation. Analogous to DTI, this equation is
solvable to yield the diffusion kurtosis tensorW.

Diffusion kurtosis imaging processing is only slightly more
complex than DTI processing, although DKI provides a
significantly more complete characterization of water diffusion
and tissue structure.

Diffusion kurtosis imaging provides the same set of diffusion
parameters as DTI (DKI-FA, DKI-RD, DKI-AD, and DKI-MD),
in addition to mean kurtosis (MK), radial kurtosis (RK), and
axial kurtosis (AK), which are the most commonly used kurtosis
metrics. Similar to DTI, AK is the primary eigenvalue of the
apparent kurtosis tensor along the main diffusion direction,
whereas RK is the average of the kurtosis coefficients on the
equatorial plane. Kurtosis anisotropy is the DKI analog to
FA (118).

Even though DKI is more complete than DTI and is able
to quantify non-Gaussian diffusion in the brain, DKI-derived
diffusion parameters (e.g., DKI-FA) are limited in their sensitivity
to detect abnormalities in WM regions with complex fiber
arrangements (119). Therefore, the kurtosis indices, such as
MK, may be more accurate metrics for WM structural analysis
using DKI.

DKI in Early-Stage PD
Diffusion kurtosis imaging has been used in several studies to
assess the early stages of PD. Zhang et al. (82–85) published
several studies with DKI in early-stage PD with both cross-
sectional and longitudinal designs. In these studies, MK in
the SN was significantly increased in PD compared with HCs.
Additionally, MK in the SN was positively correlated with the
H&Y score staging and part III of the Unified Parkinson’s Disease
Rating Scale (UPDRS-III). In another study, Surova et al. (86)
used DKI to study 105 patients with early-stage PD. They found
differences in DTI and DKI metrics between PD subjects and HC
in the putamen, thalamus, and superior longitudinal fasciculus,
which were also associated with increased disease severity. Guan
et al. (42) used ROI analysis of DKI metrics to study advanced
and early-stage PD, and MK was found to be significantly lower
in bilateral SN in patients with both early-stage and advanced PD
than in controls. In addition, MK in the left SN was significantly
lower in patients with advanced PD than in those with early-
stage PD. However, no differences in FA or MD values were
observed between the PD and control groups in that study, and
no significant correlations between MK, FA, or MD values and
the UPDRS scores were observed.
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Beyond DTI: Neurite Orientation Dispersion
and Density Imaging
Neurite orientation dispersion and density imaging is a practical
dMRI technique for estimating the microstructural complexity
of dendrites and axons in vivo (120). Neurite orientation
dispersion and density imaging distinguishes between three
microstructural environments: intracellular, extracellular, and
CSF compartments. Each compartment affects water diffusion
in a unique way (121) and gives rise to a separate normalized
MR signal. The full normalized signal, S (A), which includes all
environments, is written as follows:

S (A) = (1− viso) · (vicAic + (1− vic)Aec)+ visoAiso (6)

where Aic and vic are the normalized signal and volume
fraction of the intracellular compartment, respectively; Aec is the
normalized signal of the extracellular compartment; and Aiso and
vec are the normalized signal and volume fraction of the CSF
compartment, respectively (120). By fitting Equation (6), it is
possible to obtain vic, viso, and the concentration parameter of
the Watson distribution (k), which is a parameter related to Aic.
Using k, the orientation dispersion (OD) index can be defined
as follows:

OD = 2

π
arctan

(

1

k

)

(7)

Neurite orientation dispersion and density imaging–derived
indices have been suggested as imaging biomarkers in early-stage
PD, as discussed below. Moreover, NODDI-derived metrics are
less sensitive to partial volume effects than DTI (122), which are
known to reduce the accuracy of DTI-derived metrics.

NODDI in Early-Stage PD
Neurite orientation dispersion and density imaging has been used
in only two studies in early-stage PD. Andica et al. (87) used both
NODDI and tractography to compare vic, OD, and viso between
groups of PD and HCs. They found that the contralateral distal
vic of the nigrostriatal pathway was significantly lower in PD
patients than in HCs. However, no correlations were detected
between different NODDI indices and disease duration or motor
symptom severity. Surova et al. (86) used NODDI, in addition to
DKI as discussed above, and ROI analysis in 105 patients with
PD, finding increased viso in the superior longitudinal fasciculus
and decreased viso in the corticospinal tract.

Beyond DTI: Q-Space Diffeomorphic
Reconstruction
In addition to limitations of DTI related to non-Gaussian
diffusion, other known limitations such as its inability to
independently resolve crossing fibers (123) and sensitivity to
PVE, result in DTI-derived metrics that reflect a weighted
average of multiple diffusion components within a voxel. These
limitations reduce the accuracy of DTI-derived metrics and also
of WM tractography. For instance, in voxels with multiple tract
orientations, a decrease in FA for one of these fiber populations
may result in a contradictory increase in the overall FA (124).

To partially overcome this issue, dMRI techniques such as QSDR
have been developed.

The orientation distribution function (ODF) can be used to
characterize the diffusion distribution of fiber populations, thus
overcoming crossing fiber limitations. To calculate the ODF,
diffusion data can be acquired using a single-shell diffusion
sampling scheme, also known as high angular resolution
diffusion imaging (HARDI) (123), or a grid sampling scheme,
which is known as diffusion spectrum imaging (DSI) acquisition
(125). However, studies using ODF to characterize the diffusion
distribution may also suffer from partial volume effects. To
overcome these effects, the spin distribution function (SDF)
can be obtained from generalized Q-sampling imaging (GQI)
(126), where SDF represents the proportion of spins undergoing
diffusion in different orientations. Q-space diffeomorphic
reconstruction is an advanced method to calculate transformed
SDFs in any given deformation field that satisfies diffeomorphism
(127). Therefore, QSDR can resolve crossing fibers with
substantially smaller impact of partial volume effects.

The quantitative anisotropy (QA), which is defined as the
proportion of spins that undergo diffusion along a given
fiber orientation, can characterize the diffusion behavior of a
fiber population. Quantitative anisotropy is calculated from the
peak orientations on an SDF. Each peak orientation defines a
QA value:

QA
(

â
)

= Z0
(

ψQ

(

â
)

− I
(

ψQ

))

(8)

where ψQ is the SDF, Z0 is the SDF scaling constant, â is the
orientation of the fiber defined by the local maximum of the SDF,
and I

(

ψQ

)

is the background isotropic component, which can
be approximated by the minimum value of the SDF. With

QSDR and the QA index, it is possible to run subsequent analysis,
such as VBA (through the normalized QA; nQA=QA/[max QA
value]), tractography, and connectome analyses (Figure 6).

QSDR in Early-Stage PD
All QSDR studies in early-stage PD used patients from the PPMI
database. Ghazi Sherbaf et al. (69) published several studies by
using this technique utilizing PPMI database. They studied PD
subjects with depression and sleep behavior disorder (70–72).
Additionally, they found that PD patients exhibited negative
correlations between QA and insulinlike growth factor 1 level in
several WM locations, including the middle cerebellar peduncle,
left and right cingulum, and genu and splenium of the corpus
callosum (72); additionally, they demonstrated that the blood
marker apolipoprotein A-1 can predict microstructural changes
in WM regions in early-stage PD patients with undisturbed
cognition and mild motor disability (68). Utilizing QA in a
connectome analyses, Haghshomar et al. (74) previously studied
the structural correlation of various WM tracts in 81 early-stage
PD patients with the whole-blood neutrophil-to-lymphocyte
ratio and identified that the QA index correlated with this ratio
in the bilateral cingulum, body and left crus of fornix, bilateral
corticospinal tract, body and splenium of corpus callosum, and
superior cerebellar peduncle. In another study of 85 subjects with
PD, connectome analysis of QA revealed a positive association
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FIGURE 6 | (A) Q-space diffeomorphic reconstruction using DSI Studio. gFA, QA, ISO (represents background isotropic diffusion contributed from CSF), and the ODF

visualization are shown. (B) The performance of the FA-aided, GFA-aided, anatomy-aided, and QA-aided tractographies showing arcuate fasciculus using shell and

grid sampling data. The false tracks are colored in black, whereas accurate trajectories are coded by directional color. The tractographies using FA, GFA, and

anatomical information show substantially more false tracks than do those using QA. The best performance can be observed in the tractography using QA and the

grid dataset. Reproduced with permission from Yeh et al. (128).

withWM density in bilateral corticospinal tract in the H&Y stage
1 patients, whereas a negative association was observed in the
genu of the corpus callosum and bilateral cingulum in H&Y
stages 1 and 2 groups (75). In addition, associations between
autonomic functional scores and structural brain connectivity in
PD were found. Wen et al. (80) used TBSS with graph-theoretical
and network-based analyses with QSDR reconstruction to
compare WM regional and network features between early-
stage PD [tremor-dominant and postural instability and gait
difficulty (PIGD) subtypes] and HC groups. Using TBSS and
QSDR, tremor-dominant patients showed increased FA and
decreased RD and AxD in several areas. Additionally, motor
severity had mild to moderate correlations with FA and RD
in the genu of the corpus callosum in tremor-dominant
subjects, whereas motor severity had strong correlations with
FA and RD of multiple association tracts in PIGD subjects.
On the other hand, network-based statistical analysis did
not reveal any subnetworks with connectivity differences
between groups.

Structural network alterations have also been investigated
from healthy aging to the prodromal phase of PD to
early-stage PD (73). Compared with HCs and de novo PD
patients, prodromal PD patients showed significantly increased

small-world-ness, higher clustering coefficient, and greater local
connectivity between regions relating to motor, olfactory, and
sleep functions. Parkinson disease patients without hyposmia
have shown a significant decrease in global efficiency compared
to controls using TBSS with graph-theoretical methods and
network-based statistics (81). Additionally, PD patients with
hyposmia were shown to exhibit significantly reduced global and
local efficiency, as well as a disrupted connection between the
right medial orbitofrontal cortex and left rectus, with poorer
frontal-related cognitive functioning. Utilizing connectome
analysis in 18 early-stage PD and 17 prodromal PD patients,
Sanjari Moghaddam et al. (76) investigated the microstructural
association of olfaction in prodromal PD as compared to early-
stage drug-naive PD patients. Their studies suggested that
individuals with prodromal PD have a significantly higher QA as
compared to PD patients in bilateral middle cerebellar peduncles
and right arcuate fasciculus.

Wen et al. (79) analyzed two different groups of early-stage
PD (H&Y stages 1 and 2) using TBSS and QSDR connectome
analysis. They found that the earlier stage PD (H&Y stage 1)
was associated with higher FA and lower MD and RD in callosal,
projection, and association fibers than bothHCs and higher-stage
PD (H&Y stage 2). The timeline of these alterations between

Frontiers in Neurology | www.frontiersin.org 14 May 2020 | Volume 11 | Article 314

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Bergamino et al. Diffusion MRI in Early-Stage PD

HC and H&Y stage 2 PD was hypothesized to be indicative
of compensatory mechanisms arising from early dopaminergic
dysfunction in the SN, although further studies are needed to
confirm the presence of these neural compensation mechanisms.
In addition, motor severity was inversely correlated with FA
and positively correlated with MD and RD in PD patients.
Moreover, connectome analysis also revealed increased WM
density in the aforementioned tracts in PD patients, compared
with HCs.

Finally, olfactory dysfunction has been investigated in relation
to QSDR findings. Multiple regression analysis in prodromal
PD demonstrated positive association between the University
of Pennsylvania Smell Identification Test (UPSIT) score and
connectivity in left and right subgenual cingulum, right
inferior fronto-occipital fasciculus, left corticospinal tract, left
parietopontine, left corticothalamic tract, and the body and
the splenium of corpus callosum. Sobhani et al. (77) studied
olfactory dysfunction in PD, confirming a discriminative role
for UPSIT score in identifying WM microstructure changes in
early-PD subjects.

Software for DTI Analysis
Different software packages have been used for diffusion
analysis in early-stage PD (Table 2). Most of the available
software provides both preprocessing and processing steps
within the same pipeline. A standalone preprocessing method,
DTIprep, may also be used, which performs an automatic
study-specific protocol for DWI/DTI quality control and
preparation. After preprocessing, multiple software packages
are available to generate DTI-derived metrics. FSL is one of
the most widely used software packages for DTI analysis.
FDT-FSL employs both linear least squares (LLS) and weighted
linear least squares (WLLS) fitting procedures. CAMINO is
another open-source software toolkit for dMRI processing. It
employs LLS, WLLS, unconstrained non-linear optimization,
and the robust estimation of tensors involving the outlier
rejection (RESTORE) fitting algorithms. Robust fitting methods
(RESTORE and iRESTORE), together with LLS fitting, can
also be found in the tolerably obsessive registration and tensor
optimization indolent software ensemble (TORTOISE) software.
Analysis of Functional NeuroImages (AFNI) is frequently
used for fMRI analysis, but it can also be employed for DTI
fitting (LLS and non-LLS). Diffusion spectrum imaging Studio
is a tractography software tool that maps brain connections
and correlates findings with neuropsychological disorders. It
works with several dMRI methods, including DTI, GQI, QSDR,
dMRI connectome analysis, and generalized deterministic
fiber tracking. DTI Studio and Explore DTI are other reliable
software packages for DTI fitting and dMRI analysis. FSL’s
probtrackx (within FDT) and the TRActs Constrained by
UnderLying Anatomy (Tracula, within FreeSurfer) are both
used for probabilistic tractography; DSI Studio and TrackVis
are appropriate for deterministic tractography, whereas MRtrix
contains both probabilistic and deterministic algorithms. Matlab
toolboxes include the Brain Connectivity Toolbox (BCT) for
dMRI-derived structural connectivity analysis, DTI and Fiber
Tracking toolbox for DTI fitting and tractography, and NODDI

toolbox for NODDI analysis. In several studies, authors used
in-house software or MRI workstation software for DTI and
DKI analysis.

DISCUSSION

Current State of dMRI in Early-Stage PD
Overall, dMRI has been widely used in research settings
to investigate WM changes in early-stage PD. In general,
DTI acquisition (and similarly DKI) is fairly standardized
across vendors and sites, leading to high consistency for data
acquisition. The vast majority (56 of 62) of studies included
in this systematic review used two b values (typically b =
1,000 s/mm2 and b = 0), although three studies used more b
values (up to four b values), and three did not provide this
information. More variability is observed in terms of the number
of diffusion directions across studies, although the majority
used more than 60 directions (37 of 62 studies). Several studies
used 30 to 39 directions (seven studies) or 20 to 29 directions
(12 studies). Only three studies used fewer than 20 directions.
As stated above, more advanced methods require high angular
resolution dMRI data, whereas even standard DTI may benefit
from improved data acquisition. In general, more than 30
directions can be recommended, and multiple shells may enable
improved quantification of dMRI metrics. Despite the similarity
in acquisitions, analysis methods can vary widely across studies
and are less standardized.

Additionally, the various preprocessing steps for diffusion
data can lead to different findings. Echo-planar imaging (EPI)
acquisitions suffer from geometric and intensity distortions
caused by static magnetic field inhomogeneity, which is worse at
higher field strengths; additionally, DTI images are susceptible
to the distortions caused by eddy currents induced by large
diffusion gradients. There are several methods to correct these
issues as part of the preprocessing pipeline. For example, the
FSL toolbox includes several tools, including eddy and top-
up, which can be used alone or in concert to correct dMRI
images. Moreover, the effects of the signal-to-noise ratio can
have effect on the accuracy and reproducibility of DTI-derived
metrics (129), highlighting the importance of both acquisition
and preprocessing steps.

Another important point to consider in light of the dMRI
findings in early-stage PD is the effects of the different statistical
methods used. Correction of p-values can be achieved in
multiple ways and may vary across studies. For instance,
the threshold-free cluster enhancement is a method for
finding significant clusters without having to define binary
clusters, whereas cluster-based thresholding methods are used
to correct data for multiple comparisons. Often, the data
are reported as family-wise error (FWE)-corrected, which
means that the family-wise error rate is controlled. It is
important to note that correction for multiple comparisons
(e.g., Bonferroni or false discovery rate) is compulsory when
analysis includes more than two groups (e.g., analysis of
variance post hoc analysis) and/or when using multiple
ROI analysis.
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TABLE 2 | List of the main software for dMRI data processing and analysis available.

Software Diffusion method Link Capabilities

FMRIB’s Diffusion Toolbox (FDT)

in FMRIB Software Library (FSL)

DTI https://fsl.fmrib.ox.ac.uk/fsl/fslwiki Preprocessing, fitting,

and tractography

Tract-Based Spatial Statistics

(TBSS) in FSL

DTI https://fsl.fmrib.ox.ac.uk/fsl/fslwiki Skeletonized analysis

Camino DTI, tractography, multifiber

and HARDI reconstruction

techniques

http://camino.cs.ucl.ac.uk/index.php?n=

Main.HomePage

Preanalysis and

postanalysis

Tolerably obsessive registration

and tensor optimization indolent

software ensemble (TORTOISE)

DTI https://tortoise.nibib.nih.gov/ Prefitting and fitting

Analysis of Functional

NeuroImages (AFNI)

DTI https://afni.nimh.nih.gov/ Fitting

DSI Studio DTI, GQI, QSDR, DSI,

connectometry,

tractography

http://dsi-studio.labsolver.org/ Preprocessing and

data analysis

DTI Studio DTI http://lbam.med.jhmi.edu/ Fitting

Explore DTI DTI, tractography http://www.exploredti.com/ DTI MRI and fiber

tractography

MRtrix Tractography https://www.mrtrix.org/ Fiber tractography

analysis

TrackVis Tractography for

DTI/DSI/HARDI/Q-Ball

http://www.trackvis.org/ Fiber tractography

analysis

Brain Connectivity Toolbox

(BCT)—(MATLAB)

Connectivity https://sites.google.com/site/bctnet/ Connectivity analysis

DTI and Fiber Tracking

(MATLAB)

DTI, tractography https://www.mathworks.com/

matlabcentral/fileexchange/21130-dti-

and-fiber-tracking

Fitting and fiber

tracking

DTIprep DWI/DTI quality control and

preparation

https://www.nitrc.org/projects/dtiprep Preprocessing

Despite the lack of standardized methods, dMRI methods
are increasingly used to understand whether dMRI-derived
metrics suggesting WM disorganization are related to clinical
presentation. Early-stage PD patients with non-motor symptoms,
such as those with olfactory dysfunction or those with substantial
SN dopaminergic neuron loss, have been analyzed with various
dMRI techniques. Conventional single-tensor DTI models, as
well as more sophisticated dMRI models such as DKI and
NODDI, have independently suggested diffuse WM changes in
early-stage PD, supporting the notion of early axonal damage in
PD while simultaneously suggesting that PD pathology may go
unrecognized until symptoms appear. Moreover, conventional
DTI metrics such as FA and MD have displayed sensitivity
to potentially identify earlier symptomatic regions, such as
olfactory structures, using correlations with clinical presentations
in predetermined ROI analysis. In addition, several studies have
considered dMRI changes in GM (10, 45, 65, 66, 86, 107, 122),
which may also be implicated in PD pathology. However, as GM
lacks the microstructural organization of WM, interpretation
of GM-DTI must be approached with caution. In contrast,
NODDI has previously been shown to reflect the neurobiology
of cortical microstructures (122), suggesting that more advanced
dMRI models may enable robust GM characterization in early-
stage PD.

However, studies have often displayed heterogeneous results,
which may be at least partially attributable to the varying
preprocessing and postprocessing steps and statistical approaches
utilized. Early-stage PD patients are also heterogeneous in
their clinical presentations, and this may further contribute to
such varied findings. Although the combination of different
dMRI acquisitions and analyses may yield new and more
accurate information related to dMRI-derived WM structural
disorganization and global connectivity changes in early-stage
PD, dMRI has the capability to be developed as a useful
neuroimaging tool for diagnosis and prognosis of early-stage PD
by rigorously developing and enforcing a set of standardized
acquisition and postprocessing tools. This will ultimately provide
more reliable dMRI-derived neuroimaging biomarkers that are
not only significantly different when compared to HC in
early-stage PD, but also attempt to explain their correlations
with clinical presentation. Altogether, these will in turn help
to understand the neuropathological underpinnings of the
progression of PD. Utilizing advanced dMRI methods that
overcome some of the known limitations of DTI is also
imperative, as measures derived through these advanced dMRI
methods may help to understand tract-specific deterioration
of WM organization in the progression of PD. Ultimately,
ensuring standardization of patient recruitment, data acquisition,
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postprocessing analytical tools, and statistical approaches could
move dMRI toward clinical implementation for identifying
dMRI-derived neuroimaging biomarkers.

Challenges of dMRI in Early-Stage PD
As previously mentioned, conflicting results are often reported
in dMRI studies on PD subjects. The small sample size
of participants, heterogeneous clinical presentation, and sex
imbalance may be responsible for such non-reproducible results
reported in the literature. Moreover, the heterogeneity of
findings may also be related to the dMRI data acquisition. It
is important to emphasize that dMRI acquisitions with fewer
than 30 directions may not correctly estimate DTI metrics. For
robust estimation of anisotropy, at least 20 unique sampling
orientations are necessary, whereas at least 30 unique sampling
orientations are required for robust estimation of both tensor
orientation and MD. Diffusion schemes with a lower number
of sampling orientations may introduce bias and spurious
correlations between tensor orientation and apparent diffusion
characteristics (130). Hence, acquiring data with at least 45 to
60 diffusion-encoding directions might help to better resolve
crossing fibers, may aid in connectome analyses, and can be
generally recommended for dMRI data acquisition.

The trend to acquire multishell dMRI data with multiple
b values is increasing and is also widely recommended.
With the advent of simultaneous multislice techniques, it
is now clinically feasible to acquire high angular resolution
data with multiple shells in clinically acceptable time of
approximately 20min. Acquiring such high angular resolution
data with multiple shells permits estimation of advanced dMRI-
derived metrics, such as free-water corrected DTI metrics,
DKI-derived metrics, and NODDI-metrics. In the future, the
sensitivity and specificity of each of these measures should
be compared with disease progression to identify the most
reproducible, sensitive, and specific dMRI-derived neuroimaging
biomarkers for understanding neuropathological underpinnings
of PD.

Another possible source of different results lies in the different
postprocessing software and statistical approaches used. The
algorithms used for tensor fitting of diffusion-weighted data can
have substantial effects on the results, not only for PD, but
also for other diseases (131, 132). For instance, although LLS
fitting model is fast, it incorrectly assumes that data outliers are
homogeneously distributed, and therefore it fails to appropriately
deweight their contributions. On the other hand, WLLS is slower
than the LLS but assigns a weight according to how much the
original noise variation is affected by logarithmic transform of
the data. While more robust fitting algorithms are available,
such as RESTORE and iRESTORE, these are not frequently used
because of more complicated pipelines. Identifying the most
reproducible statistical approach and the best preprocessing and
postprocessing tools are important unmet needs in analysis of
dMRI data.

New Avenues for dMRI in Early-Stage PD
We previously discussed that DTI has several limitations
related to an assumption of Gaussian diffusion, presence of

crossing fibers, and partial volume effects. Each of the methods
presented above that move beyond standard DTI has some
aspect that overcomes these limitations, such as DKI to
characterize deviations from Gaussian diffusion, NODDI to
characterize and minimize partial volume effects, and QSDR
to characterize both intravoxel fiber orientation heterogeneity
and partial volume effects. Network-based approaches that do
not assume the caliber or density of axons in WM, but rather
only the orientation of axons, have seen a surge in recent
years since PD has been postulated as a network disorder.
In several early-stage PD studies, these advanced approaches
have been used to overcome DTI-related limitations, although
other options are available and have not been investigated.
For example, DSI (133) is a technique that can resolve the
fiber crossing limitation; however, DSI requires both more
time for acquisition than standard DTI and larger pulsed
field gradients.

While each of these methods may overcome a fundamental
limitation for DTI, these methods may have different limitations
themselves (113). For instance, DKI and NODDI suffer from
their inherent mathematical assumptions that require data
collection methods and analysis that may not be practical or
feasible. Interpreting the free-water contribution as applied to
DTI is also challenging. Studying network topology through
WM-derived structural connectivity may be limited because
there is no consensus on the choice of tracking algorithm or
edge weights. However, high angular resolution dMRI data
acquisition at multiple shells in a clinically acceptable time
lends hope in applying and standardizing these advanced dMRI
techniques, while simultaneously permitting the incorporation
of metrics from these advanced dMRI techniques into network-
based analysis.

Outlook for Future of dMRI in Early-Stage
PD
The clinical management of PD faces a significant challenge
because moderate to severe neurodegeneration has been shown
to be present before the diagnosis is rendered. In addition, the
classic presentation of motor disability in PD is shown to co-
occur with non-motor symptoms such as changes in mood and
behavior, cognitive impairment, sleep disorders, and olfactory
dysfunction. The need for neuroimaging biomarkers to detect
initial neuropathological changes is crucial to optimize patient
care via correct diagnosis and treatment.

Diffusion tensor imaging–based metrics have shown
significant but subtle changes in early-stage PD in many areas,
such as the motor, premotor, and supplementary motor cortices,
corpus callosum, and SN (37, 134, 135). Moreover, non-motor
features common to PD, including olfactory dysfunction,
REM sleep behavior disorder, cognitive impairment, excessive
daytime sleepiness, and depression, can appear in the early
stages of PD, providing rationale for screening for PD-like
pathology (136). While all of these symptoms have been studied
with DTI, the results have been limited or heterogeneous
(137, 138). Although hallmark regions such as the SN have
been extensively studied using DTI, other regions, along
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with corresponding hallmarks of PD pathology, should be
examined more extensively via advanced dMRI techniques.
Additionally, further studies and the inclusion of advanced
dMRI methods may aid in establishing more coherent
knowledge of WM changes in PD-associated non-motoric
symptoms, possibly providing neuroimaging-based biomarkers
and thus creating an avenue for advancement of patient care
and treatment.
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