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Routes to Chaos Induced by a 
Discontinuous Resetting Process in 
a Hybrid Spiking Neuron Model
Sou Nobukawa1, Haruhiko Nishimura2 & Teruya Yamanishi3

Several hybrid spiking neuron models combining continuous spike generation mechanisms and 
discontinuous resetting processes following spiking have been proposed. The Izhikevich neuron model, 
for example, can reproduce many spiking patterns. This model clearly possesses various types of 
bifurcations and routes to chaos under the effect of a state-dependent jump in the resetting process. In 
this study, we focus further on the relation between chaotic behaviour and the state-dependent jump, 
approaching the subject by comparing spiking neuron model versions with and without the resetting 
process. We first adopt a continuous two-dimensional spiking neuron model in which the orbit in the 
spiking state does not exhibit divergent behaviour. We then insert the resetting process into the model. 
An evaluation using the Lyapunov exponent with a saltation matrix and a characteristic multiplier of the 
Poincar’e map reveals that two types of chaotic behaviour (i.e. bursting chaotic spikes and near-period-
two chaotic spikes) are induced by the resetting process. In addition, we confirm that this chaotic 
bursting state is generated from the periodic spiking state because of the slow- and fast-scale dynamics 
that arise when jumping to the hyperpolarization and depolarization regions, respectively.

Many types of neural coding (for e.g., rate, temporal, and population coding) are known to exist in brain/nerve 
system adaptive information processing1. Many recent studies on the mechanisms of memory and learning in 
neural systems have utilised spiking neuron models that can recreate these types of neural coding by describing 
the spiking activity of the membrane potential1–5.

The Hodgkin–Huxley neuron model6 is an important spiking neuron model that describes the dynamical 
evolution of the membrane potential and that of the gate variables associated with the K and Na ionic currents 
across the cellular membrane. This model comprises four equations involving several physiological parameters. 
Thus far, parameter values have been estimated for various types of neurons ranging from enormous squid axons 
to cortex neurons6–9. However, the systems that are obtained when the Hodgkin–Huxley neuron model is used to 
construct large-scale neural systems include many variables and parameters, approaching the scale of an actual 
brain neural network. Therefore, applicable analytical approaches are limited and the computational load of the 
numerical calculation becomes high.

Simplified models described by continuous differential equations have been proposed to overcome this diffi-
culty. These models retain the minimum required bifurcations and spiking patterns (e.g. the FitzHugh–Nagumo 
neuron model10,11 and the Hindmarsh–Rose neuron model12).

Meanwhile, several hybrid spiking neuron models combining continuous spike generation mechanisms and 
discontinuous resetting processes after spiking have been proposed as simple transition schemes for membrane 
potentials between spiking and part of the hyperpolarization13–16. For example, the Izhikevich neuron model can 
reproduce nearly all spiking activities observed in actual neural systems by tuning a few parameters, including 
those relating to the resetting process13,14. Furthermore, in their use of non-linear integrate-and-fire models as 
hybrid spiking neuron models, Badel et al.17 proposed a possible method for estimating optimal parameter values 
using data obtained from a single neuron via intracellular voltage recording. They reported an extremely high 
fitting accuracy in reproducing spike patterns and were able to rapidly estimate parameters.

The hybrid spiking neuron model is a piecewise-smooth system in which the dynamics are switched accord-
ing to the system’s state18. Saito et al. conducted chaos and bifurcation analysis and circuit implementation using 
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the piecewise-constant and piecewise-linear systems as types of piecewise-smooth systems19–23. Tsubone et al.23 
proposed a systematic method using an analytical approach to predict the parameter regions for the chaotic states 
in piecewise-constant systems. Meanwhile, Mitsubori and Saito19 and Nakano and Saito20 developed a system-
atic method for piecewise-linear systems. However, the analysis of chaos and bifurcation in piecewise-smooth 
systems such as the Izhikevich neuron model, which generally include non-linear terms, requires the evaluation 
of the Lyapunov exponents and characteristic multipliers against exhaustive parameter sets. Several indices con-
sidering the effect of the resetting process using the saltation matrix have been proposed16,24–27. Coombes et al.16  
utilised this approach and conducts an analysis of the planar non-linear integrate-and-fire model in a large 
parameter region. They revealed that the parameter region for chaotic states is located at the boundary between 
burst firing and fast spiking. The Izhikevich neuron model clearly features various types of bifurcation and routes 
to chaos under the effect of the state-dependent jump in the resetting process27–31. However, neither the relation 
between the chaotic behaviours and the state-dependent jump nor the mechanism for inducing the chaotic states 
using the resetting process has been revealed.

Revealing this mechanism requires evaluating the influence of the state-dependent jump on the trajectory in 
a continuous system through a comparison of two systems: versions with and without the resetting process. The 
aforementioned Izhikevich neuron model cannot be applied for this purpose because of its divergent behaviour 
in the spiking state when the resetting process is removed. We previously introduced a preliminary approach to 
this issue based on a comparison of spiking neuron models such as the FitzHugh–Nagumo neuron model with 
and without the resetting process32,33. In actual neural systems, the system state transits from resting to spiking 
through both Hopf and saddle-node bifurcations1,34. However, the FitzHugh–Nagumo neuron model permits 
spiking activity only via Hopf bifurcation. A non-linear equation for the membrane recovery variable with a sig-
moidal function has been reported to generate spiking activity via both types of bifurcation34.

In our approach, we first adopt a continuous two-dimensional (2D) spiking neuron model with a non-linear 
equation for the recovery variable in which the orbit in the spiking state does not exhibit divergent behaviour. We 
then add the resetting process to the model. Utilising a rigorous method to analyse the bifurcation and chaos in 
hybrid systems (i.e., using a characteristic multiplier of the Poincaré map and Lyapunov exponents with a salta-
tion matrix), we evaluate several routes to chaos, which cannot be achieved in a hybridised FitzHugh–Nagumo 
neuron model33, by changing the resetting process parameters and comparing the structure of the attractor 
between the system versions with and without the resetting process.

Model and Method
Spiking Neuron Model with the Resetting Process.  The FitzHugh–Nagumo neuron model10,11 is 
driven by 2D ordinary differential equations with the following form:

= − − − +v v a v v u I( )( 1) , (1)

= −u bv cu, (2)

where v and u represent the membrane potential of a neuron and the membrane recovery variable, respectively. 
The parameter a determines the shape of a v-nullcline =v( 0), while b/c and c exhibit the sensitivity of u and its 
time constant, respectively. In real-world neural systems, the system state transits from resting to spiking through 
both Hopf and saddle-node bifurcations1,34. However, the FitzHugh–Nagumo model only permits spiking activity 
via Hopf bifurcation. Spiking neuron models such as the Morris–Lecar neuron model35 can be used to generate 
spiking activity via both types of bifurcation. Such models apply the following non-linear equation for u with a 
sigmoidal function for v34,36:
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where α is the time constant for u and parameters β and ε determine the shape of the sigmoidal function. Instead 
of the linear equation given by Eq. (2), we use Eq. (3) with the parameters set to (a, α, ε) = (0.1, 0.1, 0.05) as the 
equation for u.

For the continuous spiking neuron model above, we implement the resetting process given by the following 
equation:

≥
→
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v v
u u dif , then

,
, (4)
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where vr and d represent the after-spike reset values of the membrane potential v and the recovery variable u, 
respectively. In other words, we consider it to be a spike event if v reaches vpeak. The state-dependent jump induced 
by Eq. (4) converges to a continuous trajectory under the condition vr → vpeak and d → 0 in the case which vpeak is 
set to a maximum value of v for the orbit of the continuous spiking neuron model given by Eqs (1) and (3).

We numerically analysed this model in SUNDIALS, our non-linear differential/algebraic equation solver sim-
ulator, using the backward-differentiation formula method with Newton’s iteration37. As this function can detect 
intersection points between a trajectory and the user-defined manifolds, we utilise it to detect the points for 
v ≥ vpeak. The time step for numerical integration is related to the time precision needed to detect intersection 
points. As the fixed width in this solver is not user-tunable, relative and absolute tolerances are set instead; we set 
these to sufficiently small values (10−14) to achieve sufficient numerical precision for the evaluation of a chaotic 
spiking activity and the detection of the intersection.
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Evaluation Indices.  Lyapunov exponents.  Lyapunov exponents with saltation matrices are utilised here 
to quantify the chaotic activity in the version of the spiking neuron model with the resetting process25,26,28. The 
evolution of the orthogonal vectors of perturbation lj (j = 1, 2) for Eqs (1) and (3) in a system with a continuous 
trajectory in spike intervals between the i-th and (i + 1)-th times (ti ≤ t ≤ ti+1) is described as follows:

Λ = Λ
+ +
 t t J v u t t t( , ) ( , , ) ( , ), (5)

i
i

i
i

1 1

where Λi+1 is the matrix (l1, l2). The Jacobian matrix J for Eqs (1) and (3) is given as follows:
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lj is corrected by Gram–Schmidt orthonormalisation at intervals of 10−3 to maintain the orthogonality of lj:
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The saltation matrix at t = ti is given by the following equation:
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where (v−, u−) and (v+, u+) represent the values of (v, u) before and after spiking, respectively. Λk(Tk+1, Tk) (k = 0, 
1, …, N−1) can be expressed as follows in case spikes arise in the range [Tk: Tk+1]28:
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The initial perturbation Λ0(T0, T0) and the evolution period τ = Tk+1 − Tk are set to unit matrix E and 0.1, 
respectively.

The Lyapunov spectrum λj is calculated as follows based on the norm of l j
k (j = 1, 2) in Λk (Tk+1, Tk):
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where the evolution period for λj is set to Nτ = 105 (N = 108, τ = 10−3).

Poincaré map.  We set a Poincaré section Ψ(v = vpeak) to conduct a bifurcation analysis in a system with a 
state-dependent jump. The dynamics of the system behaviour on Ψ are given by the Poincaré map as follows:

ψ= = … .+u u l( ) ( 1, 2, ) (14)i l
l

i

We evaluate here the profile of ψl on a return map of ui − ui+l. In practice, we solve Eqs (1),(3) and (4) against 
the initial values of (vr, u0), and obtain the u values that pass through Ψ at times l as ul. The values (u0, ul) are plot-
ted on a return map of ui − ui+l.

Characteristic multiplier of the Poincaré map.  The variational equations of Eqs (1) and (3) in a system with a 
continuous trajectory in spike intervals between the i-th and (i + 1)-th times (ti ≤ t ≤ ti+1) are defined as follows:

Φ = Φ+ +
 t t J v u t t t( , ) ( , , ) ( , ), (15)i i i i1 1

where Φ indicates the state transition matrix. Φ(t, t0) can be expressed as follows for the case in which spikes arise 
in the range [t : t0]:

Φ = Φ Φ Φ Φ .+ − t t t t S t t S t t S t( , ) ( , ) ( , ) ( , ) ( , 0) (16)i i i i i i0 1 1 2 2 2 1 1 1 1

The initial state transition Φ(t0, t0) is set here as the unit matrix E.
We calculate the characteristic multiplier of the solution for the l period (u0 = ψl (u0)) as follows:
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where u0 indicates the initial value of orbit x0 = (vr, u0) at t = t0. The projection P and embedding P−1 to and from 
the Poincaré section are defined as follows by local sections Π0 and Π1, respectively:

Π → Ψ → =P w ux: , (18)0

Ψ → Π → =− ( )P u v
ux: , (19)
r1

0

where w indicates the local coordinate on Ψ. According to the literature27, local sections Π0 and Π1 are set as 
follows to solve Eq. (17):
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where q0(v, u) and q1(v, u) are the scalar functions used to determine the local sections. Eq. (17) can be developed 
as follows to utilise the aforementioned sets (see the detailed derivation from Eq. (22) to Eq. (23) in ref.27):
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|μl < 1|, μl = −1 and μl = 1 represent the stable condition, period-doubling bifurcation and tangent bifurcation, 
respectively.

Results
Bifurcation in a Continuous 2D Spiking Neuron Model.  First, we demonstrate the system behaviour 
of the continuous spiking neuron model given by Eqs (1) and (3) for the cases of β = 0.5 and β = 0.3, which are 
hereinafter called regions #1 and #2, respectively. For region #1, Fig. 1(a) shows the v-nullcline =v( 0), u-null-
cline =u( 0) and vector field of  v u( , ) in the case I = 0; these are denoted by a dotted line, a dashed line, and 
arrows, respectively. In this region, the fixed points (i.e. the points at which the v-nullcline intersects with the 
u-nullcline) are located at (v, u) ≈ (0, 0), (0.10, 0), (0.35, 0.06). The system trajectories are attracted to the stable 
fixed point ((v, u) ≈ (0, 0)). The other intersection points are unstable fixed points. In the I = 0.004 case (upper 
panel of Fig. 1(c)), the orbit indicated by a solid line exhibits a limit cycle along the vector field because of the 
effects of the destruction of the pair of stable and unstable fixed points. Next, as shown in the lower panel of 
Fig. 1(c), a spiking activity appears in the time series of v(t). In region #2, the fixed point is located at (v, u) ≈ (0, 
0), and, as the point is stable, the system trajectories are attracted to it (Fig. 1(b)). Meanwhile, in the I = 0.04 case, 
a limit cycle emerges as a result of the destabilisation of the fixed point (Fig. 1(d)).

We evaluate the eigenvalues mj (j = 1, 2) of J around the stable fixed point ((v, u) ≈ (0, 0)) to specify the bifur-
cation against I. Figure 2(a) shows the dependence of the maximum real part of eigenvalue mmax Re( )j j  on I. The 
fixed point is stable <( )mmax Re( ) 0j j  in − . ≤ .I0 005 0 0024, but disappears when  .I 0 0024. Furthermore, the 
limit cycle can be interpreted to be generated through saddle-node bifurcation becasue the complex values of mj, 
m1 and m2 are real numbers in  . .I0 0009 0 0024 and m2 reaches Re(l2) = 0 at I ≈ 0.0024, as shown in the left 
panel of Fig. 2(b). For region #2, the right panel of Fig. 2(a) shows the dependence of mmax Re( )j j  on I. In this 
region, the fixed point is stable in − . ≤ .I0 005 0 0193 but becomes unstable when  .I 0 0193 because the 
complex values of mj, m1 and m2 are complex conjugates and pass through a real axis at I ≈ 0.0193 (right panel of 
Fig. 2(b)). Therefore, this bifurcation is classified as Hopf bifurcation.

Bifurcation and Chaos in the Spiking Neuron Model with the Resetting Process.  We evaluate the 
system’s behaviour in the version of the spiking neuron model with the resetting process given by Eqs (1),(3) and 
(4). Figure 3 shows the dependence of the maximum Lyapunov exponent of λ1 on parameters vr and d in regions #1 
(a) and #2 (b), respectively. The parameters for Eqs. (1) and (3) are set to a = 0.1, α = 0.1, ε = 0.05; β = 0.5, I = 0.004 
(region #1), β = 0.3, I = 0.04 (region #2) in the same manner as in the cases shown in Fig. 1(c) and (d). Parameter 
vpeak in Eq. (4) is set to 0.4 and 0.225 in regions #1 and #2, respectively. The chaotic state is induced by the resetting 
process in    . . .v d0 25 0 4, 0 0 025r  (region #1) and    . . .v d0 12 0 17, 0 0 01r  (region #2).

Figure 4 shows the dependence of the bifurcation diagrams of ui and λj (j = 1, 2) on the vr parameter in regions 
#1 and #2 with the value of parameter d fixed at d = 0.01 in Fig. 3. This result shows the chaotic states, which 
exhibit an irregular behaviour of ui, and the Lyapunov exponents λ1 > 0, λ2 = 0 in region #1 observed in the 
parameter set for (  . .v0 322 0 388r ). We evaluate the bifurcation against the chaotic region. The 
period-doubling and tangent bifurcations arise at vr ≈ 0.288 (l = 1), 0.318 (l = 2), 0.322 (l = 4), … and vr ≈ 0.388 
(l = 5). Therefore, the aforementioned chaotic region is produced by period-doubling bifurcation in the positive 
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direction of vr and by tangent bifurcation in the negative direction. The chaotic state (λ1 > 0, λ2 = 0) in region #2 
is observed in  . .v0 136 0 141r  (Fig. 4(b)). Tangent bifurcation arises at both sides of this chaotic region 
(vr ≈ 0.136 (l = 2), 0.141 (l = 1)). In other words, this chaotic region is induced by tangent bifurcation.

The upper panel of Fig. 5(a) shows the time series of v(t) as an example of the chaotic spiking pattern in region 
#1 (vr = 0.33, d = 0.01). In this spiking pattern, v(t) exhibits two types of behaviours after the resetting process 
(spike). In one case, v(t) enters the hyperpolarization mode and decreases to v(t) ≈ 0.25. In the other case, v(t) 
increases to vpeak but does not do so through hyperpolarization. This spike repeats several times. In the former 
behaviour, (v, u) jumps in the region of <v 0 through the v-nullcline in the v-u phase plane, as shown in the 
lower panel in Fig. 5(a). Meanwhile, in the latter behaviour, (v, u) jumps in the region of >v 0 but not do so 
through the v-nullcline via the resetting process. This spiking pattern is called a burst and is observed in actual 
neural systems. Figure 6 shows the bifurcation diagram after the value of ui + d is reset (a) and typical orbits at 
vr = 0.25, 0.3, 0.32 (b) for the transition scheme from spike to burst against changing vr. This result implies that 
(v,u) jumps in the region of <v 0 at .⪅v 0 31r  (see typical examples vr = 0.25, 0.3 in Fig. 6(b)). Meanwhile, at 
 .v 0 31r , (v,u) jumps in the region of >v 0 as well as in the region of <v 0 (red circle in the vr = 0.32 graph in 

Fig. 6(b)). The upper and lower panels of Fig. 5(b) show examples of the chaotic time series of v (t) and the behav-
iour of (v, u) in the v-u phase plane in region #2 (vr = 0.14, d = 0.01). In this case, (v, u) always jumps in the region 
>v 0 and the orbit exhibits a near-period-2 chaotic behaviour. We can also confirm the aforementioned mecha-

nisms for generating a chaotic bursting behaviour and a near-period-2 chaotic behaviour in the Izhikevich neu-
ron model29,31.

Next, we investigate the dependence of the return map on vr. For region #1, Fig. 7(a) shows ψ(ui) on the 
ui+1 − ui return map in cases with the resetting process, in which vr = 0.15, vr = 0.33 (corresponding to the value 
of vr in Fig. 5(a)) and vr = 0.395, and in the case without the resetting process. In the case without the resetting 
process, which is indicated by the dotted black line, ψ(ui) exhibits a nearly constant value (≈0.01). Meanwhile, in 

Figure 1.  System behaviour in the continuous spiking neuron model. Orbit of (v, u) under the condition of no 
application of a direct current I = 0 in regions #1 (a) and #2 (b); the orbit of (v, u) (upper) and the time series of 
v (lower) under the condition with application of a direct current in regions #1 (I = 0.004) (c) and #2 (I = 0.04) 
(d). (a = 0.1, α = 0.1, ε = 0.05; β = 0.5 (region #1), β = 0.3 (region #2)).
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the cases in which the resetting process is applied the stretching and folding structure with piecewise nearly linear 
maps (ψ(ui) ≈ ui + 0.01 if  − . .u0 02 0 06i  and ψ(ui) ≈ 0.01 if  . .u0 06 0 1i ) in the vr = 0.395 case is indi-
cated by the solid blue line. In the case of vr = 0.33, in which the distance of the jump in the v − u phase plane 
becomes larger than vr = 0.395 as a result of separation from vpeak = 0.4, a stretching and folding structure with 
non-linearity emerges at ui ≈ 0.04. The chaotic spiking activity observed in Fig. 5(a) can be considered to be 
induced by this structure. The stretching and folding structure then fades as vr further decreases, as in the vr = 0.15 
case indicated by the solid red line. For region #2, Fig. 7(b) shows ψ (ui) on the ui+1 − ui return map in the cases 
with the resetting process, in which vr = 0.12, vr = 0.14 (corresponding to the value of vr in Fig. 5(b)), and vr = 0.20, 
and in the case without the resetting process. ψ (ui) is a nearly constant value in the case without the resetting 
process (≈0.03), which is indicated by the dotted black line, as well as for region #1. However, the stretching and 
folding structure arises as an effect of the resetting process (vr = 0.20 case, indicated by the solid blue line). 
Meanwhile, the frequency of the stretching and folding structure increases in the case in which the jump distance 

Figure 2.  Dependence of the maximum real part of eigenvalue mj (j = 1, 2) on parameter I (a) and dependence 
of mj on parameter I (b) in regions #1 (left) and #2 (right). (a = 0.1, α = 0.1, ε = 0.05; β = 0.5 (region #1), β = 0.3 
(region #2)).

Figure 3.  Maximum Lyapunov exponent λ1 as a function of vr and d around the chaotic region (a = 0.1, α = 0.1, 
ε = 0.05). (a) Region #1 (β = 0.5, I = 0.004, vpeak = 0.4). (b) Region #2 (β = 0.3, I = 0.04, vpeak = 0.225).



www.nature.com/scientificreports/

7Scientific REPOrTS |  (2018) 8:379  | DOI:10.1038/s41598-017-18783-z

is larger than vr = 0.20 (vr = 0.14 case indicated by the solid green line. The near-period-2 chaotic spiking activity 
can be interpreted as being produced by this structure. This frequency decreases as vr further decreases (vr = 0.12 
case indicated by the solid red line).

Fixing vr at 0.33 in region #1 and vr at 0.14 in region #2, we evaluate the dependence of ψ(ui) on the ui+1 − ui 
return map on parameter ε (Fig. 8). The stretching and folding structure with piecewise nearly linear maps 
appears, as shown in ε = 0.053, in the case in which ε increases in region #1 (corresponding to the shape of 
the u-nullcline approaching the step function). A stretching and folding structure with non-linearity emerges 
at ui ≈ 0.04 when the ε values decrease, such as at ε = 0.05, 0.03. In region #2, nine folding structures appear at 
ε = 0.05. The frequency of folding in this case decreases as the value of ε decreases (see ε = 0.045, 0.04).

Discussion and Conclusion
In this paper, we applied the resetting process to a continuous 2D spiking neuron model with a sigmoidal null-
cline structure to reveal the mechanisms for the emergence of chaotic states in a hybrid spiking neuron model. 
We also evaluated the bifurcation and routes to chaos against two types of spikes generated by the parameter 
sets for saddle-node bifurcation (region #1) and spikes for Hopf bifurcation (region #2) by changing the value 
of the resetting parameter. Through an evaluation using the Lyapunov exponent with a saltation matrix and the 
index for the fixed-point stability on a Poincaré section, we demonstrated that two types of chaotic behaviour are 
induced by the resetting process.

A chaotic state with bursting characteristics emerged in region #1 through tangent bifurcation, with a jump 
distance that increased as vr decreased. This chaotic state moved to the periodic state through period-doubling 
bifurcation as the distance increased even further. We investigated the dependence of the return map on the 

Figure 4.  Bifurcation diagram and Lyapunov exponents λj (j = 1, 2) as functions of vr around the chaotic 
region (a = 0.1, α = 0.1, ε = 0.05). (a) Region #1 (β = 0.5, I = 0.004, vpeak = 0.4, d = 0.01). (b) Region #2 (β = 0.3, 
I = 0.04, vpeak = 0.225, d = 0.01).

Figure 5.  Chaotic time series of v(t) (upper) and the orbit of (v, u) (lower) in the spiking neuron model with 
a state-dependent jump in regions #1 (a) and #2 (b). (a = 0.1, α = 0.1, ε = 0.05. Region #1: β = 0.5, I = 0.004, 
vpeak = 0.4, vr = 0.33 and d = 0.01; and region #2: β = 0.3, I = 0.04, vpeak = 0.225, vr = 0.14 and d = 0.01).
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resetting parameter and compared the models with and without the resetting process. Consequently, we found 
that the non-linear stretching and folding structure of the attractor is induced by the resetting process. This struc-
ture is also affected by the shape of the sigmoidal function of the u-nullcline. We also confirmed that the bursting 
chaotic states emerged according to the adjustment of this structure’s non-linearity.

Homoclinic orbits coexisting with fast and slow dynamics are needed to reproduce bursting38. For example, 
using the Hindmarsh–Rose neuron model as a continuous three-dimensional spiking neuron model can repro-
duce the bursting by fast dynamics of the membrane potential and recovery variable and the slow dynamics of the 
bursting variable12. Meanwhile, in hybrid spiking neuron models (Fig. 6) bursting can be reproduced using 2D 
systems because the hyperpolarization after resetting to <v 0 and the depolarization in the inter-burst term after 
resetting to >v 0 can play the roles of slow and fast dynamics, respectively. The analysis of the Hindmarsh–Rose 
neuron model indicated that a unimodal peak on the return map of the Poincaré section existed in chaotic burst-
ing39–41. This structure, which was also confirmed in region #1 of our model (Fig. 7(a)), contributes to the gener-
ation of chaotic bursting. Investigations of this chaotic bursting by inter-spike intervals (ISI) have previously been 
described in the literature42,43. Gu43 reported that the return map of the ISI exhibited a unimodal peak in chaotic 
bursting, with a peak value that decreased with the approach of chaotic spiking in a physiological experiment 
involving a neural pacemaker. Meanwhile, Innocenti et al.42 demonstrated that this return map has two peaks in 

Figure 6.  Transition scheme from spiking to bursting against changing vr in region #1. (a) Bifurcation diagram 
of ui + d (the dotted line indicates v-nullcline) and (b) orbits (v, u). The parameter values are similar to those in 
Figs 4 and 5 (a = 0.1, α = 0.1, ε = 0.05, β = 0.5, I = 0.004, vpeak = 0.4, d = 0.01). The red circle in the graph for 
vr = 0.32 indicates the region, where (v, u) jumps in >v 0.
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chaotic bursting and that these peaks merged with the approach of chaotic spiking in the Hindmarsh–Rose neu-
ron model. The patterns of the ISI prior to the last-minute hyperpolarization might be interpreted as reflecting the 
number of peaks in the return map. In our case, we confirmed that the trend in our result is consistent with that 
of Gu (Additional Information)43.

A chaotic state with a near-period-2 behaviour emerged in region #2 through tangent bifurcation as the jump 
distance increased. As the distance was increased even further, this chaotic state moved to a periodic state through 
tangent bifurcation. Evaluation of the return map showed that this chaotic state emerged from the non-linear 
stretching and folding structure of the attractor induced by the resetting process. The folding frequency increased 
as the jump distance increased; also, this frequency decreased as the value of parameter ε decreased.

In conclusion, the resetting process provides and enhances non-linear effects in attractors, a result that can-
not be achieved in continuous spiking neuron models of less than two dimensions. Chaotic states tend to arise 
when a state-dependent jump exists with an appropriate distance. The two types of chaotic behaviour and bifur-
cation mentioned above can also be observed in the widely used Izhikevich neuron model14,29,31. Therefore, the 
effects induced by the resetting process revealed in this study might be utilised to generate various chaotic spiking 
patterns.

Further research based on this study should be undertaken to classify the types of transition from chaotic 
bursting to spiking and to evaluate the bifurcation and chaos in neural networks composed of hybrid spiking 
neurons.

Figure 7.  Dependence of the return map ui+1 = ψ(ui) on parameter vr in regions #1 (a) and #2 (b). (a = 0.1, 
α = 0.1, ε = 0.05, d = 0.01. Region #1: β = 0.5, I = 0.004 and vpeak = 0.4; and region #2: β = 0.3, I = 0.04 and 
vpeak = 0.225).

Figure 8.  Dependence of the return map ui+1 = ψ(ui) on parameter ε in regions #1 (a) and #2 (b). (a = 0.1, 
α = 0.1, d = 0.01. Region #1: β = 0.5, I = 0.004, vpeak = 0.4 and vr = 0.33; and region #2: β = 0.3, I = 0.04, 
vpeak = 0.225 and vr = 0.14).
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Figure 9 shows the inter-spike intervals (ISI) ISIi = ti+1 − ti, where ti indicates the spike time (i = 0, 1, 2,…) in 
the cases with the parameter settings for chaotic activity (vr = 0.325, 0.33, 0.34) in region #1. As a result, the return 
map of the ISI exhibits a unimodal peak in chaotic bursting, and its peak value decreases with the approach of the 
parameter region of periodic bursting and spiking (Fig. 6).
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