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1. Abstract
Phylogenetics has been central to the genomic surveillance, epidemiology and contact tracing
efforts during the COVD-19 pandemic. But the massive scale of genomic sequencing has
rendered the pre-pandemic tools inadequate for comprehensive phylogenetic analyses. Here,
we discuss the phylogenetic package that we developed to address the needs imposed by this
pandemic. The package incorporates several pandemic-specific optimization and parallelization
techniques and comprises four programs: UShER, matOptimize, RIPPLES and matUtils. Using
high-performance computing, UShER and matOptimize maintain and refine daily a massive
mutation-annotated phylogenetic tree consisting of all SARS-CoV-2 sequences available in
online repositories. With UShER and RIPPLES, individual labs – even with modest compute
resources – incorporate newly-sequenced SARS-CoV-2 genomes on this phylogeny and
discover evidence for recombination in real-time. With matUtils, they rapidly query and visualize
massive SARS-CoV-2 phylogenies. These tools have empowered scientists worldwide to study
the SARS-CoV-2 evolution and transmission at an unprecedented scale, resolution and speed.

2. Justification
Our package:

● helps maintain possibly the largest-ever phylogenetic tree with millions of SARS-CoV-2
sequences, thus providing an unprecedented resolution for studying the pathogen’s
evolutionary and transmission dynamics

● incorporates a new sequence on the phylogeny and sensitively identifies its
recombination history within seconds, thereby enabling real-time monitoring of the virus
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3. Performance attributes

Performance Attribute Our Submission

Category of achievement peak performance, scalability

Type of method used N/A

Results reported on the basis of whole application including I/O

Precision reported N/A

System scale results measured on full-scale system

Measurement mechanism timers

4. Overview of the problem
As the SARS-CoV-2 virus spreads in the human population, it acquires new mutations. These
mutations can render the virus more contagious, virulent or capable of evading the vaccines and
antibody-based therapies (Campbell et al., 2021; Challen et al., 2021; Harvey et al., 2021).
Therefore, from the early days of the pandemic, the global scientific community mobilized to
monitor the viral mutations and the evolutionary dynamics with the help of genome sequencing
(Lo and Jamrozy, 2020; Maxmen, 2021). The first SARS-CoV-2 genome sequence was
deposited on an online database in January 2020 (Wu et al., 2020), and since then, over 4
million additional sequences have been shared through an extraordinary worldwide effort, with
tens of thousands more being shared every day (Maxmen, 2021; McBroome et al., 2021). This
vast volume of genomic data has provided invaluable insights into the evolution and spread of
the virus, and has allowed public health officials and governments to respond to it in a timely
fashion (Lam-Hine et al., 2021; Oude Munnink et al., 2020).

Phylogenetics has been a foundational tool in analyzing the genomic data for a public health
response (Hodcroft et al., 2021). COVID-19 phylogenetics aims to infer the evolutionary
relationships between the different SARS-CoV-2 genome sequences sampled from infected
people and represent this information in the form of a tree, with individual sequences occupying
the leaves of this tree (Lam et al., 2010). Sequences that are similar to each other tend to be
grouped together in the tree, since they are likely to share a recent common ancestor.
Phylogenetic trees play a crucial role in genomic surveillance, which involves tracking
SARS-CoV-2 variants – each representing a different lineage in a phylogenetic tree – circulating
in a given geographic region (da Silva Filipe et al., 2021; Deng et al., 2020), as well as for
identifying and naming new variants (Rambaut et al., 2020). They also provide a powerful tool in
establishing transmission links between seemingly unrelated infections, and in disambiguating
community transmission from outside introductions (da Silva Filipe et al., 2021; Deng et al.,
2020; Komissarov et al., 2021). Moreover, phylogenetic trees complement experimental
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techniques to identify the mutations that might have conferred increased transmissibility to the
virus (Korber et al., 2020; Richard et al., 2021). Phylogenetic trees also find numerous other
applications in epidemiology, including in estimating the reproduction number (R0) of the virus or
its particular variant (Lai et al., 2020; Volz et al., 2021).

4.1 Phylogenetic placement. Many of these far-reaching phylogenetic applications require a
comprehensive tree – without sub-sampling sequences – in order to unravel the true potential of
the available genomic data. For example, transmission links with a sequence missing in the
sub-sampled phylogenetic tree cannot be established. Likewise, sub-sampled phylogenetic
trees could omit important lineages or sub-lineages corresponding to different variants. This can
have adverse consequences on the downstream evolutionary and epidemiological studies. But
maintaining a comprehensive phylogenetic tree of over 4 million available SARS-CoV-2
sequences, with tens of thousands of new sequences becoming available each day, is
computationally prohibitive with pre-pandemic phylogenetic tools. We therefore developed
UShER – an ultrafast, parallel phylogenetic placement tool that can maintain a comprehensive
phylogenetic tree by incorporating new sequences (also referred to as samples) as they
become available onto an existing phylogenetic tree (Turakhia, Thornlow, AS Hinrichs, et al.,
2021).

4.2 Tree Optimization. The greedy strategy in phylogenetic placement of sequentially
incorporating new sequences onto an existing tree can occasionally lead to a suboptimal tree
structure. This can be mitigated by tree optimization programs, which use tree rearrangement to
find a more optimal tree. Here too, previous programs are inadequate to handle the vast scale
and speed of SARS-CoV-2 genome data. We therefore developed matOptimize – a
low-memory, high-performance computing (HPC) software for fast optimization of trees based
on pandemic-scale data. To date, UShER and matOptimize have managed to maintain and
refine the phylogenetic tree consisting of all SARS-CoV-2 sequences.

4.3 Recombination detection. The COVID-19 pandemic has intensified the need for individual
labs worldwide having primary access to sequencing data to respond rapidly to the emergence
of new variants. One worrisome mechanism through which the virus can produce new variants
is recombination (Simon-Loriere and Holmes, 2011). Through recombination, different variants
of the virus that co-infect a host cell can exchange genetic material to form novel variants with
drastic “jumps” in fitness (Burke, 1997; Simon-Loriere and Holmes, 2011). Detecting
recombination from viral genomes is so computationally demanding that prior tools could only
handle up to a few thousand viral sequences – a far cry from the scale of millions that is needed
to study SARS-CoV-2 recombination comprehensively. We show here how our tools UShER
and RIPPLES (Turakhia, Thornlow, A Hinrichs, et al., 2021) empower individual research labs to
provide a real-time response, not only in incorporating their sequences onto a global phylogeny,
but also in uncovering evidence for recombination from a massive search space. RIPPLES can
also be used in an HPC setting to comprehensively detect recombination events from the entire
SARS-CoV-2 phylogeny within a few hours.
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5. Current state of the art
5.1 Phylogenetic placement. In the recent decades, phylogenetic tools have been hugely
focused on probabilistic approaches, namely maximum likelihood (ML) and Bayesian inference
(BI). These approaches are guided by a probabilistic model of evolution (Durbin, 1998). For
comparative genomics or molecular epidemiology of rapidly evolving pathogens, ML and BI
techniques are indeed more accurate than the simplistic, model-free approaches of maximum
parsimony (MP) or distance-based clustering (Page and Holmes, 1998). This is because when
the sequence divergence is high, model-free approaches are more susceptible to long branch
attraction (Bergsten, 2005; Felsenstein, 1978). State-of-the-art phylogenetic placement tools,
including EPA-NG (Barbera et al., 2019), PPLACER (Matsen et al., 2010) and IQ-TREE2 (Minh
et al., 2020), are all based on maximum likelihood. Each tool accepts (i) a reference tree and (ii)
a FASTA-formatted file containing the multiple-sequence alignment (MSA) of all sequences,
including the sequences to be placed on the reference tree. Placement typically starts with a
pre-placement phase that uses fast heuristics to select promising candidate branches in the
reference tree for each query sequence, followed by a detailed placement phase which
evaluates the likelihood scores for candidates in detail through a thorough numerical
optimization (Barbera et al., 2019). Ample parallelism available in the form of independent
candidate branches is exploited. Despite highly-efficient implementations, ML-based placement
tools have a high compute and memory requirement and cannot scale beyond a few tens of
thousands of sequences – making them highly inadequate in the context of the COVID-19
pandemic. Recently, distance-based placement algorithms are also being explored (Balaban et
al., 2020).

5.2 Tree optimization. Unlike phylogenetic placement, tree optimization has been widely
studied for both maximum likelihood (Minh et al., 2020; Price et al., 2010) and maximum
parsimony (Goloboff and Catalano, 2016). TNT (Goloboff and Catalano, 2016) is the most
efficient parsimony-based tree optimization tool and scales well beyond the limits of
likelihood-based tools. TNT (i) takes as input an existing tree in Newick format and the MSA of
its sequences in FASTA format, (ii) computes the parsimonious state assignments for every
node of the tree for every alignment site, and (iii) uses tree rearrangement in the form of tree
bisection and reconnection (TBR) to improve parsimony score. TNT keeps multiple equally
parsimonious candidate trees  and uses tree drifting during the optimization to avoid getting
stuck in local optima. TNT also provides several heuristics, such as ratchet search, to speed up
the search (Goloboff, 1999). We found the sectorial search mode in TNT (Goloboff, 1999),
which splits the original tree into subtrees to be optimized independently and merged back, to
be the most computationally efficient heuristic for optimizing the SARS-CoV-2 phylogenies. TNT
does not provide a multithreaded implementation, but we were able to adapt its scripts (see
Section 7) to parallelize the optimization over several processes.

5.3 Recombination detection. Viral recombination has been studied widely in the past for a
variety of viruses, including coronaviruses (Anthony et al., 2017; Hon et al., 2008; Koelle et al.,
2017). Recombination Detection Program (RDP) is a widely-used program for recombination
detection in viruses and provides implementation for a number of well-studied techniques in the

4

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 6, 2021. ; https://doi.org/10.1101/2021.12.03.470766doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?lwKENP
https://www.zotero.org/google-docs/?uEKiyr
https://www.zotero.org/google-docs/?5RfxwH
https://www.zotero.org/google-docs/?Mo1mod
https://www.zotero.org/google-docs/?u73l8Y
https://www.zotero.org/google-docs/?GGNUkX
https://www.zotero.org/google-docs/?GGNUkX
https://www.zotero.org/google-docs/?KrCnq0
https://www.zotero.org/google-docs/?i3JZ2F
https://www.zotero.org/google-docs/?i3JZ2F
https://www.zotero.org/google-docs/?1ZI9H0
https://www.zotero.org/google-docs/?7oTCNr
https://www.zotero.org/google-docs/?zxLd8d
https://www.zotero.org/google-docs/?76D2qJ
https://www.zotero.org/google-docs/?ASjSuT
https://www.zotero.org/google-docs/?GwRGzo
https://www.zotero.org/google-docs/?GwRGzo
https://doi.org/10.1101/2021.12.03.470766
http://creativecommons.org/licenses/by/4.0/


literature (Martin et al., 2015; Martin and Rybicki, 2000). Broadly, RDP accepts a multiple
alignment of sequences and scans each triplet of sequences in the alignment to discover
whether one sequence of the triplet (viz., the putative recombinant) is a mosaic of the other two
(viz., the parents of the recombinant). Specifically, RDP finds the recombination-informative
signal in the alignment, i.e. sites in which two sequences share an allele that is different in the
third, and then uses a number of heuristics to infer the recombination breakpoints that would
best explain the signal. Because of the complexity of its search space, RDP analysis is limited
to a few thousand viral sequences (Martin et al., 2015: 4).

6. Innovations realized
Our phylogenetic package achieves orders of magnitude speedup over the prior art through
several domain-specific optimizations in the algorithms and data structures and efficient
implementation of our parallel algorithms. Figure 1 illustrates these innovations.

6.1 Algorithmic innovations. Pandemic-specific algorithmic innovations form the basis of our
phylogenetic package efficiency. For example, we observed that in SARS-CoV-2 phylogenetics,
long branch attraction is not an issue – a newly-sequenced SARS-CoV-2 genome is separated
by less than one mutation, on average, from its closest neighbor in the global phylogeny.
Unsurprisingly, we found ML and MP trees to be practically consistent, but the MP trees had
better interpretability since individual mutations could be confidently labelled on internal
branches, as done in our package using a novel data object called mutation-annotated tree
(MAT) (Turakhia, Thornlow, AS Hinrichs, et al., 2021). MAT is a protocol buffer based file format
as well as an internal data structure used in our package (Turakhia, Thornlow, AS Hinrichs, et
al., 2021). Our phylogenetic package leverages the MAT and MP algorithms to avoid the
expensive likelihood computations in probabilistic approaches.

A key algorithmic innovation that the MAT format enables is pre-processing, which is critical for
the speedup of phylogenetic placement in UShER. MAT can be stored as a space-efficient
pre-processed object (see Section 6.2), obviating the need to load the bulky sequence or
variation data files for existing samples during each execution. It also avoids the need to
recompute the parsimony state assignments internal to the tree using the
computationally-intensive, dynamic programming-based Fitch-Sankoff algorithm (Fitch, 1971;
Sankoff, 1975). The parallel Fitch-Sankoff algorithm using 20 CPU threads takes 18 minutes for
a 3 million sample tree, approximately 50x slower than simply loading its MAT. Once the MAT is
loaded and the new samples incorporated, the resulting MAT data structure could be stored to
an output file within seconds to allow another round of placement over and above the current
round. Besides pre-processing, UShER uses several additional algorithmic optimizations to
speed up the placement, including condensing identical sequences into a single node and early
termination of the symmetric set difference computation. These techniques are described in
more detail in our previous publication (Turakhia, Thornlow, A Hinrichs, et al., 2021) .

Our package also makes extensive use of search space pruning based on phylogenomic
insights. At first, it may seem that RIPPLES has an intractable search space. An arbitrary choice
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of recombinant sequence, two parent sequences and two breakpoints would result in a search
space that is cubic to the number of sequences – in millions – and quadratic to the sequence
length – in tens of thousands. RIPPLES leverages the insight that a detectable recombinant
sequence must have a long branch in its phylogenetic ancestry to greatly reduce the search
space. RIPPLES also restricts the breakpoints to mutated sites in the recombinant and parent
sequences. Parents are restricted to a small number of nodes – typically in tens – that reduce
the parsimony score of partial phylogenetic placement (i.e. on ignoring sites outside the
breakpoint regions) above an appropriate minimum threshold for detectable recombination.

6.2 Efficient data structures. The mutation-annotated tree (MAT) is a highly efficient data
structure and key performance driver in our tools. Previous phylogenetic packages have
typically relied on FASTA or VCF formats to store sequence and variation data. An
uncompressed MAT file of 3 million SARS-CoV-2 sequence requires only 136 MB to encode
basically the same information that is contained in an 88 GB FASTA or 174 GB VCF file. With
MAT, matOptimize can start optimizing this tree after a small 22-second delay of loading the
MAT file. In comparison, TNT can spend hours to load the alignment file and compute the
internal state assignments before starting optimization (see Results, Figure 3B). Likewise, with
mutations pre-annotated on the phylogenetic tree, RIPPLES can avoid scanning through the
entire alignment file and focus solely on mutated sites.

6.3 Parallel implementation. We designed the algorithms to be embarrassingly parallel with
limited synchronization overheads. Our package uses Intel’s TBB library
(https://github.com/oneapi-src/oneTBB) to take advantage of available parallelism in multicore
processors. In UShER, the placement search is parallelized over millions of internal nodes and
leaves of the tree where a new sample could be placed. In matOptimize, tree arrangement is
explored starting from all possible source nodes, in millions. This contrasts TNT, where each
process optimizes the entire tree, and broadcasts the best tree to all other processes. Since the
tree object remains immutable throughout the search phase in matOptimize, each thread can
find profitable rearrangements independently, with minimal inter-thread communication. In
RIPPLES, the partial phylogenetic placement of individual segments, as well as the parent and
breakpoint search, is parallelized as well.

We also parallelized our tools for use in a CPU cluster. For parallelizing UShER over CPU
nodes, we had to implement a merge operation in matUtils (McBroome et al., 2021). Briefly, this
operation accepts two input MATs, checks if the subtrees resulting from common samples are
consistent (i.e. have the same topology and mutation annotations), and then places the
remaining samples in the common subtree using placement information derived from input
MATs to narrowly restrict the search. This allows new samples to be independently placed on a
MAT using UShER and the resulting MATs can then be rapidly merged together using a parallel
reduction tree of matUtils merge to produce the final MAT (Figure 2). In matOptimize, the search
for profitable moves is parallelized across nodes using MPI (https://www.mpich.org/) during
iterations. An iteration begins with the main process distributing source nodes to worker
processes. Then, the worker processes evaluate all possible subtree pruning and grafting (SPR)
moves (without applying moves) from the assigned source nodes and periodically return the
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profitable moves to the main process, which applies those moves to update the tree and begin
the next iteration. For RIPPLES, we implemented an option to restrict the search to a specific
range of potentially recombinant nodes that allowed us to trivially parallelize it over the cluster
without any communication or synchronization requirements.

7. How performance was measured
7.1 Reference tree and sequence data.
We collected SARS-CoV-2 genome sequence data from major online databases: GISAID (Shu
and McCauley, 2017), COG-UK (Nicholls et al., 2020), GenBank (Clark et al., 2016) and CNCB
(https://bigd.big.ac.cn/ncov/release_genome), and used it to build a comprehensive
SARS-CoV-2 phylogeny based on the methodology described in (McBroome et al., 2021). We
used the GenBank MN908947.3 (RefSeq NC_045512.2) sequence as the reference for rooting
the tree, as well as for calling variants in individual samples. We used mafft (version v.7.471)
(Katoh and Standley, 2013) for aligning the sequences and faToVcf utility included in the UShER
package to produce the required VCF files for our analyses. For our experiments, we used the
sampling date metadata to derive from our comprehensive tree two subtrees containing the
earliest 100K and 1M samples, referred to as 100K-sample tree and 1M-sample tree,
respectively.

7.2 Experimental setup and comparison baseline.
All experiments were performed on the Google Cloud Platform (GCP) and are easily
reproducible. We used a recent version (commit e83dc5) of our package available at
https://github.com/yatisht/usher for comparison against state-of-the-art tools with similar
functionality as well as scaling analysis. Since our phylogenetic package is memory-efficient, we
could use CPU-optimized E2 instances for our package but were required to use
memory-optimized instances for some competing tools. In such cases, we opted for iso-cost
comparison such that the hourly cost was roughly the same for both instances.

For phylogenetic placement, we compared UShER with IQ-TREE2 (version 2.1.3). Since
IQ-TREE2’s memory requirement is prohibitively high for the 1M-sample tree, we compared the
performance of placing 1000 new SARS-CoV-2 samples on the 100K-sample tree using the
command options -n 0 -m JC --suppress-list-of-sequences -nt 16. We used
the e2-highmem-16 instance (16 vCPUs, 128 GB, $0.72/hour) for IQ-TREE2 and e2-highcpu-32
instance (32 vCPUs, 32 GB, $0.79/hour) for UShER. Both programs are multithreaded and used
all available vCPUs on the instance.

For tree optimization, we compared matOptimize with TNT (June 2021) using the 1M-sample
tree. In particular, we used the sectorial search (Goloboff, 1999) in TNT, which we found to be
the most efficient option for optimizing SARS-CoV-2 phylogeny, using the script at
https://github.com/yceh/matOptimize-experiments/blob/master/tnt_parallel_sect.run. TNT is not
multithreaded, but we managed to adapt the combosearch script
(http://www.lillo.org.ar/phylogeny/tnt/scripts/combosearch.run) to parallelize it over several
processes. We used m1-ultramem-40 instance (40 vCPUs, 961 GB, $6.30/hour) for TNT, with 8
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processes, which we calculated to be the upper limit for the available memory on the instance.
We used 7 e2-highcpu-32 instances for matOptimize that cumulatively have an hourly cost
($5.54/hour) comparable to the m1-ultramem-40 instance.

For recombination detection, we compared RIPPLES with OpenRDP
(https://github.com/PoonLab/OpenRDP), which is a Python adaptation of RDP5 (Martin et al.,
2021), using the n2d-highcpu-224 instance. Due to prohibitively long runtimes of OpenRDP, we
could only compare the two tools on a small dataset of 1000 SARS-CoV-2 sequences for the
typical pandemic scenario of determining whether a new sequence is a recombinant of the
previous sequences. Our recombinant sequences were based on the compelling evidence
provided in (Jackson et al., 2021). We used these sequences to derive the 1000 SARS-CoV-2
sequences using matUtils extract -k 50 for each node in each trio representing each
instance of recombination found in our global tree that was ancestral to the samples cited in
(Jackson et al., 2021). Since OpenRDP is not multithreaded, we parallelized it by creating
498,501 OpenRDP jobs (using options -m openrdp -rdp) for each sequence triplet formed
by combining the new sequence with every unique pair of sequences (one for each parent) from
the 1000 SARS-CoV-2 sequences. We ran 224 jobs, one per vCPU, in parallel using GNU
parallel utility (Tange, 2011). Because RIPPLES requires the new sequence to be already
placed in the phylogenetic tree, we included the time to place the sample on the existing tree
using UShER in the RIPPLES runtime for an approximately level comparison.

We also measured the peak memory usage of all programs using the proc filesystem
(https://man7.org/linux/man-pages/man5/proc.5.html) in Linux.

7.3 Scaling analysis. We performed strong and weak scaling analysis for UShER, matOptimize
and RIPPLES using the 1M-sample tree and e2-highcpu-32 instances, varying the number of
instances from 2 to 32. For UShER and RIPPLES, parallel GCP instances were launched using
the dsub utility (https://github.com/databiosphere/dsub). For UShER, scaling analysis was
performed for placing 100K new samples on the reference tree. The time for parallel reduction
merge using matUtils was included in the analysis and intermediate MAT files between the
different stages of the reduction tree were communicated between instances through the
Google Cloud Store (GCS) using the gsutil tool (https://cloud.google.com/storage/docs/gsutil),
with the dependent instance waiting in a loop for its input MAT file to become available.
RIPPLES was trivially parallelized through a static partitioning of the 9391 branches with 3 or
more mutations and 5 or more mutations in the tree that were explored for a recombination
event. For weak scaling, the problem size was also defined in terms of the number of long
branches explored. For matOptimize, MPI (mpich 3.4.3; https://www.mpich.org/) was used for
parallelizing search over multiple instances. A 1 million sample tree was optimized for 5
iterations with radius set to 1024, which amounts to SPR moves spanning the whole tree.
Problem size was defined in terms of the number of source nodes explored for subtree pruning
and regrafting (SPR) moves and for weak scaling, source nodes to search were randomized
and divided uniformly between instances at each iteration.
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8. Performance Results
8.1 Speedup analysis. Figure 3 highlights the orders of magnitude improvement in runtime
and a large factor improvement in peak memory that our phylogenetic package achieves
relative to state-of-the-art tools. UShER placed 1000 new samples on the 100K-sample tree in
just 15.4 seconds using 92 MB of RAM, achieving 1439-fold speedup and 1300-fold improved
memory-efficiency compared to IQ-TREE2. On tree optimization, TNT spent over 8 hours in just
loading the alignment and computing the parsimony states before beginning optimization.
However, in just over one hour, matOptimize completed its optimization. Even after 24 hours (a
limit we imposed for daily optimization required in the pandemic) of TNT execution, the
matOptimize tree remained more parsimony-optimal. For recombination detection, placing a
new sample on the 1K-tree using UShER and flagging it as a recombinant using RIPPLES took
a fraction of a second, but required over an hour using OpenRDP. RIPPLES is also 3 times
more memory-efficient and as sensitive as OpenRDP for this dataset. On the 1M-sample tree, a
new sample could be placed using UShER and inferred for recombination using RIPPLES in
35.65 seconds on average, which enables real-time monitoring of the virus for recombination.

8.2 Strong scaling analysis. Figure 4 shows the strong scaling analysis of UShER,
matOptimize and RIPPLES.

UShER, in placing 100K new samples on the 1M-sample tree, maintains a strong scaling
efficiency of over 85% until 512 vCPUs are used, after which point it drops to 72.6% at 1024
vCPUs (Figure 4A). Figure 5 illustrates the major factor behind UShER's lost efficiency at high
parallelism. The number of parallel reduction steps required for merging MATs increases with
parallelism (Figure 2) and starts dominating the runtime at higher levels of parallelism. At
1024-way parallelism, the merge phase requires over 8 minutes and constitutes 21.7% of the
total runtime, compared to only 1% at 64-way parallelism. Faster heuristics for matUtils merge
could ameliorate this issue, which we plan to explore in the future.

For matOptimize, we found a rapid deterioration of strong scaling efficiency with parallelism
(Figure 4B). This is because through our highly efficient implementation of the union construct
and incremental update methods (Goloboff, 1996), the parallel search for profitable moves was
very fast for the 1M-sample tree relative to the sequential step of applying the moves, For
example, with 1024 vCPUs, the entire matOptimize run required only 11.5 minutes, with the
parallel search phase requiring less than 1.5 minutes on each iteration (7.5 minutes in total). We
expect strong scaling efficiency to improve as the tree gets bigger.

RIPPLES achieved a strong scaling efficiency of over 80% for comprehensively detecting
recombinants from the 1M-sample tree at all parallelism levels (Figure 4C). Parallel slack is the
main factor behind lost efficiency at high parallelism – some long branches are 10-100 fold
slower to analyze than the average and result in long tail latency jobs. Dynamic load balancing
could improve the scaling efficiency of RIPPLES. Additionally, we also observed that some slack
was created by the difference in time to spin up the GCP instances using dsub – some
instances took over a minute longer to load than the rest.
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8.3 Weak scaling analysis. Table 1 provides the weak scaling analysis for UShER,
matOptimize and RIPPLES. All tools have a weak scaling efficiency above 70% and the causes
behind the lost efficiency are the same as discussed in Section 8.2. The non-deterministic
nature of our algorithms causes some non-monotonic variation of parallel efficiency in some
cases.
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Figures and Tables

Figure 1: Innovative optimizations realized in (A) UShER, (B) matOptimize and (C) RIPPLES for
phylogenetic placement, tree optimization and recombination detection, respectively. The left
side shows a representative illustration of the prior approaches and the right side illustrates the
approach used in our tools.
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Figure 2: For parallelizing phylogenetic placement over multiple CPU nodes, we split up the
VCF containing new samples uniformly and distribute them over independent CPU nodes, each
executing UShER to place the corresponding samples on the base mutation-annotated tree
(MAT). The resulting MAT files are then merged using a parallel reduction tree of matUtils merge
into a single output MAT containing new samples.

Figure 3: Comparison of our phylogenetic package with previous state-of-the-art tools for (A)
phylogenetic placement, (B) tree optimization and (C) recombination detection. Our tools
achieve large improvements in runtime (left) as well as peak memory requirements (right).
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Figure 4: Strong scaling analysis for (A) UShER, (B) matOptimize and (C) RIPPLES.

Figure 5: Total time (in orange) to place 100K new samples on the 1M-sample tree using
UShER followed by parallel reduction using matUtils merge, with the merge component shown
separately (in blue), for different levels of parallelism.
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Figure 6: A comprehensive SARS-CoV-2 phylogeny as of October 3, 2021, containing
4,111,711 samples. The tree was built with the help of UShER and matOptimize and is
visualized using CoV2Tree tool (https://cov2tree.org/). Each dot corresponds to a leaf,
representing a single SARS-CoV-2 sample colored based on its Pango lineage assignment
(https://pangolin.cog-uk.io/).

A. UShER

vCPU Samples placed Time
64 6.25K 26m 48s

128 12.5K 28m 22s
256 25K 30m 41s
512 50K 33m 36s

1024 100K 37m 07s
B. matOptimize

vCPU Source nodes explored Time
64 39789 10m 45s

128 79577 11m 54s
256 159154 11m 51s
512 318308 11m 58s

1024 636616 11m 30s
C. RIPPLES

vCPU Long branches explored Time
64 587 49m 29s

128 1174 53m 33s
256 2348 54m 33s
512 4696 56m 18s

1024 9391 55m 52s

Table 1: Weak scaling analysis for (A) UShER, (B) matOptimize and (C) RIPPLES.
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