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Alternative splicing of RNAs generates isoform diversity, resulting in different proteins that are necessary
for maintaining cellular function and identity. The discovery of alternative splicing has been revolution-
ized by next-generation transcriptomic sequencing mainly using bulk RNA-sequencing, which has unrav-
elled RNA splicing and mis-splicing of normal cells under steady-state and stress conditions. Single-cell
RNA-sequencing studies have focused on gene-level expression analysis and revealed gene expression
signatures distinguishable between different cellular types. Single-cell alternative splicing is an emerging
area of research with the promise to reveal transcriptomic dynamics invisible to bulk- and gene-level
analysis. In this review, we will discuss the technological advances for single-cell alternative splicing
analysis, computational strategies for isoform detection and quantitation in single cells, and current
applications of single-cell alternative splicing analysis and its potential future contributions to personal-
ized medicine.
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1. Introduction

Next-generation sequencing technologies enable high-
throughput and genome-wide profiling of the genomic and
transcriptomic landscape in various human cell types, during
development and differentiation processes, and under physiologi-
cal and pathological states [1–5]. Advances in methodologies for
DNA and RNA isolation and amplification techniques including
the application of microfluidic technologies can now accommodate
a small amount of starting DNA and RNA material, enabling the
analysis of formalin-fixed paraffin-embedded or archival speci-
mens, rare cell types such as oocytes and cells from early embryos,
and more recently from single cells [6–8]. Up to now, single-cell
transcriptomic studies have primarily focused on gene-level
expression, where individual gene expression represents the
aggregation of isoforms originating from the same gene, to uncover
heterogeneity of cells with distinct gene expression signatures and
functional states [9–13], and in response to intrinsic or external
signals [14–16].

The alternative splicing process generates mRNA molecules of
different exon composition, and of different length, from the same
genetic locus. Alternative splicing is therefore a major driver of
protein diversity and represents an additional layer of complexity
underlying gene expression profiles [17]. Alternative splicing
events include exon-skipping, mutually exclusive exons, intron
retention, alternative 50 and 30 splice sites, alternative transcription
start and end sites, and differential 30 untranslated region (UTR)
usage [18–21]. A notable example is Bcl-x where an alternative 30

splice site yields two different isoforms with opposing function;
the long isoform Bcl-xL has anti-apoptotic activity, whereas the
short isoform Bcl-xs mediates programmed cell death [22]. Bulk
RNA-sequencing provides insight into the role of RNA splicing
and mis-splicing in tissue and organ development [23,24] includ-
ing inherited diseases [25], and in cancer [26,27]. Nevertheless,
bulk RNA-sequencing may not delineate the heterogeneity that
exist within a population of cells with similar phenotype, such as
rare subpopulations of cells with distinct biological niche and
alternative splicing profile [28–30]. However, the methodology
used for bulk RNA-sequencing cannot be immediately applied to
single-cell RNA-sequencing due to challenges inherent to RNA-
sequencing at the single-cell resolution. These challenges include
uneven capturing of the transcript coverage, lowmolecular capture
rate, low cDNA conversion efficiency, limitation in starting materi-
als, and variability of the cell size (amount of RNA molecules inside
a cell) that inevitably result in low coverage and high technical
noise [31–33].

In this review, we will discuss technological advances in
methodologies for single-cell alternative splicing analysis, with a
particular focus on the current computational and statistical
approaches used for detection and quantification of alternative
splicing (Table 1). We highlight the ways these different
approaches complement each other and summarize the current
and potential future applications of alternative splicing analysis
in single cells.
2. Technological advances in single-cell alternative splicing

2.1. scRT-PCR and smFISH

The earliest studies used reverse transcription polymerase
chain reaction (RT-PCR) and single-cell fluorescence in situ
hybridization (smFISH) for detection and quantification of alterna-
tive splicing events in single cells [34–40]. Single cell RT-PCR
(scRT-PCR) protocols for investigating alternative splicing events
were initially developed for characterizing short isoforms of length
<1 kb. This allowed the analysis of exon-level alternative splicing
events including exon-skipping [34–37,39,40], mutually exclusive
exons [38], and alternative 50 and 30 splice sites [34]. On the other
hand, long-range single-cell PCR can be used to amplify longer
fragments of more than 10 kb [35,41,42]. Alternatively, exon-
exon junctions can be detected in lieu of sequencing entire exons
[43]. The latter is feasible for detecting intron-retaining events,
which typically consist of introns spanning several kilobases
[34,38].

smFISH followed by microscopic analysis is a powerful method
for in situ single-molecule imaging of RNA splice variants in single
cells. smFISH enables counting of single RNA molecules by probing
each molecule with multiple short labelled oligonucleotide probes.
Usually 30–50 hybridization probes of ~20 nt with different
sequences are used for each RNA sequence [44–46]. In addition
to single-molecule quantification of isoforms, smFISH provides
temporal and spatial information of the RNA molecules
[44,45,47]. However, the use of multiple oligonucleotide probes
is constrained to target long sequences (>1 kb) and isoforms that
vary sufficiently in their sequences [46–48]. A modified version
of smFISH which performs padlock-probe-mediated rolling circle
amplification (RNA) prior to imaging of RNA molecules can distin-
guish isoforms at single-base resolution and quantify isoforms at
single-molecule level [49,50].

Both scRT-PCR and smFISH approaches for alternative splicing
analysis in single cells require prior knowledge of RNA sequences
and are generally low-throughput and time-consuming. For these
reasons, these approaches preclude the discovery of novel alterna-
tive splicing events and limit the analysis to a small number of
alterative splicing events. Nevertheless, these methods remain use-
ful to validate alternative splicing events detected from next-
generation sequencing platforms.

2.2. Short-read RNA-sequencing

Early single-cell cDNA amplification protocols used 30-end poly
(A)-tailing for high-density oligonucleotide microarray analysis
which yielded average PCR product lengths of ~0.85 kb [51,52].
While comprehensive single-cell gene expression profiling was
first made practical by using the microarray platform, the analysis
was restricted to only gene-level expression analysis of known
genes. Subsequent protocols leveraged on next-generation
sequencing platforms following single-cell cDNA amplification for
high-throughput and cost-efficient characterization of known and
novel alternative splicing events in addition to gene expression
profiling [53–57].

A single-cell RNA-sequencing method was introduced to
improve cDNA amplification for microarray experiments [53,54].
The method increased the reverse transcription step during first-
strand cDNA amplification and the extension time for PCR, and
adding an amine at the 50 end of PCR primers that enabled the gen-
eration of amplified cDNAs of length up to 3 kb from the 30 end of a
transcript [53,54]. On the other hand, a method for sequencing of
mRNA from the 50 end enabled generation of amplified cDNA of
length up to 2 kb from the 50 end of a transcript [55,58]. These 30

and 50 end-bias methods produced relative short cDNA length
and short sequencing reads. Therefore, alternative splicing analysis
was restricted to only the identification of the exon-exon junctions
and subsequent quantification of junction counts (reads mapping
to the exon-exon junctions) [53–55].

Smart-Seq ameliorates 30 bias by using SMART template-
switching technology following poly(A)-tailing to generate ampli-
fied cDNA of length up to 10 kb. The double-stranded cDNA is then
simultaneously fragmented and captured (tagged) with synthetic
oligonucleotides at both ends to enable barcode adaptors to be
appended for multiplexing and downstream sequencing. [56,59].



Table 1
Summary of computational approaches for detection and quantification of alternative splicing events in single cells.

Computational method Software/
Statistical
method

Read aligner No. of
cells

Cell type(s) Sample
origin

Library preparation Sequencing platform Isoform variant
analysed

Reference

Developed for bulk
short-read RNA-
sequencing

MISO Bowtie 12 LNCaP, PC3, T24 Cell line Smart-Seq Genome Analyzer IIx,
150 bp PE

CE [56]

MISO Bowtie 18 BMDCs Mouse Smart-Seq HiSeq 2000, 100 bp PE CE [14]
MISO STAR 34 ESCs Human Smart-Seq HiSeq 2000, 100 bp SE CE [73] (Data from [74])
MISO Bowtie 18 BMDCs Mouse Smart-Seq HiSeq 2000, 100 bp PE CE [78] (Data from [14])
VAST-TOOLS TopHat 66 Spermatogenic cells Mouse Smart-Seq HiSeq 4000, 150 bp PE CE, RI, A5SS, A3SS [74]
bam2ssj Bowtie 10 GM12878 Cell line Smart-Seq HiSeq 2000, 100 bp SE SJ [72]
IPSA TopHat 40 HeLa S3 Cell line MIRALCS HiSeq 2000, 150 bp PE,

50 bp SE
SJ [61]

Developed for single-
cell short-read RNA-
sequencing

Custom
pipeline

ABI whole
transcriptome
software tool

1 Blastomere Mouse Modified single-cell
cDNA amplification for
microarray

SOLiD sequencer, 50 bp PE SJ [54]

Custom
pipeline

ABI whole
transcriptome
software tool

33 ESCs, ICM, Epiblast,
ICM outgrowth cells1

Mouse Modified single-cell
cDNA amplification for
microarray

SOLiD sequencer, 50 bp PE SJ [53]

Custom
pipeline

Bowtie 85 ESCs, embryonic
fibroblast

Mouse STRT Genome Analyzer IIx,
150 bp PE

SJ [55]

SingleSplice GSNAP/GMAP 182 ESCs Mouse Smart-Seq HiSeq 2000, 100 bp, PE Isoform switching [32] (Data from [70])
ISOP Bowtie 384

96
305
96

MDA-MB-231
HTC116
Primary myoblasts
Primary glioma

Cell line
Cell line
Human
Human

Smart-Seq
Smart-Seq
Smart-Seq
Smart-Seq

HiSeq 2000, 100 bp PE
HiSeq 2000, 150 bp PE
HiSeq 2500, 100 bp PE
HiSeq 2500, 100 bp PE

Isoform switching [69] (Additional data
from [71,110,111]

Logistic
regression

Bowtie
STAR
STAR

182
1529
31,831

Primary myoblasts
ESCs
T cells

Human
Human
Human

Smart-Seq
Smart-Seq
10x Genomics

HiSeq 2500, 100 bp PE
HiSeq 2000, 100 bp SE
NextSeq 500, 75 bp PE

Isoform switching [68] (Data from
[71,112,113]

BRIE HISAT 40 ESCs Mouse Smart-Seq HiSeq 2500, bp, SE CE [31] (Data from [114])
BRIE STAR 93

93
iPSCs
Endoderm

Human
Human

scM&T-seq HiSeq 2500 CE [86]

BRIE STAR 2208 Oligodendrocytes Mouse Smart-Seq HiSeq X Ten, 50 bp, SE CE [29]
BRIE STAR 242 Epithelial breast cancer

cells
Human Smart-Seq HiSeq 2500, 100 bp PE CE [84] (Data from [115])

BRIE Bowtie 82 Macrophages Mouse Smart-Seq NextSeq 500, PE CE [83]
Expedition STAR 63

73
70

iPSCs
NPCs
MNs

Human Smart-Seq HiSeq 2000, 100 bp PE CE, MXE [43]

Developed for single-
cell long-read RNA-
sequencing

Custom
pipeline

GMAP 2
4

VLMCs
Oligodendrocytes

Mouse STRT PacBio SMRT CE, A5SS, A3SS, TSS,
TTS

[62]

Custom
pipeline

STARlong 6627 Cerebellar cells Mouse Smart-Seq PacBio SMRT SJ, CE, TSS, TES [28]

Mandalorion STAR 7 B1a cells Mouse Smart-Seq ONT MinION, 2D CE, RI, A5SS, A3SS, TSS,
TES

[65]

Mandalorion STAR 12 OHCs Mouse Smart-Seq ONT MinION, 1D CE [67]
Mandalorion Minimap2 96 B cells Human R2C2 ONT MinION, 1D CE, RI, TSS, TES [66]
IgBLAST,
BLASTN

Minimap2 6027 Lymph node cells Human Droplet-based (10x
Genomics)

ONT MinION, 1D CE, RI, A5SS, A3SS, TSS,
TES

[30]

A3SS: Alternative 30 splice site; A5SS: Alternative 50 splice site; ABI: Applied Biosystems; BMDCs: Bone-marrow-derived dendritic cells; CE: Cassette exon; ESCs: Embryonic stem cells; ICM: Inner cell mass; IPSA: Integrative Pipeline
for Splicing Analyses; iPSCs: Induced pluripotent stem cells; ISOP: ISOform-Patterns; MIRALCS: Microwell full-length mRNA amplification and library construction system; MISO: Mixture of Isoforms; MN: Motor neurons; MXE:
Mutually exclusive exons; NPC: Neural progenitor cells; OHC: Outer hair cells; ONT: Oxford Nanopore Technology; PacBio SMRT: Pacific Biosciences Single Molecule Real Time; PE: Paired-end; R2C2: Rolling Circle Amplification to
Concatemeric Consensus; RI: Retained-intron; scM&T-seq: Single-cell methylation and transcriptome sequencing; SE: Single-end; SJ: Splice junction; STRT: Single-cell tagged reverse transcription; TES: Transcription end site; TSS:
Transcription start site; VLMCs: Vascular and leptomeningeal cells.

1 Day 3 Oct4+Sox2+Nanog+, day 5 Oct4��Sox2+Nanog+, day 5 Oct4��Sox2��Nanog�� outgrowth cells.
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Smart-Seq2 further improved read coverage distribution at both 30

and 50 ends of transcripts by systematically evaluating a large
number of variations in experimental conditions [57,60]. The main
improvements made to Smart-Seq protocol that contributed to
increased cDNA yield and length in Smart-Seq2 were the inclusion
of a locked nucleic acid (LNA) guanylate in place of a single guany-
late at 30 end of the template switching oligo (TSO), addition of
methyl group betaine together with higher MgCl2 concentrations,
and incorporating deoxyribonucleotide triphosphates (dNTPs)
before RNA denaturation step instead of in the reverse transcrip-
tion master mix. While early implementation of Smart-Seq and
Smart-Seq2 protocols involved only a few cells (<10) [56], integra-
tion with microfluidic or microwell platforms increased automa-
tion and multiplexing capability up to several hundred of cells
[32,43,61,62]. Notably, the microfluidic-based Fluidigm C1 plat-
form enables fully automated cell lysis, reverse transcription, and
amplification of full-length RNA molecules in micro-to-nanolitre
reaction volume [63,64].

The improvement of read coverage across full-length tran-
scripts using next-generation short-read sequencing demon-
strated, for the first time, characterization of transcriptome-wide
exon-level alternative splicing events at the single-cell level, pri-
marily exon-skipping and mutually exclusive events [43,56,61]. A
notable exception is random displacement amplification sequenc-
ing (RamDA-seq) method, the first full-length total RNA-
sequencing method for single cells [59]. This method can achieve
near uniform full-length coverage of transcripts up to >20 kb for
poly(A) and non-poly(A) tail-containing RNAs. The method used
a whole-transcriptome amplification that amplifies cDNAs directly
from RNA templates and not-so-random primers (NSRs) designed
to avoid synthesizing cDNA from rRNAs. NSRs capture both poly
(A) and non-poly(A) tail-containing RNAs by multiple priming
but do not bind to rRNA sequences as they lack the 6-mers typi-
cally present in random hexamer primers that matches the rRNA
sequences. Using this approach, the long non-poly(A) isoform of
the long non-coding RNA Neat1-001 (>20 kb) and its short poly
(A) isoform Neat1-002 were shown to be differentially expressed
in mouse embryonic stem cells (mESCs) collected at different time
points. Furthermore, recursive splicing, a multistep process of
intron removal using cryptic splice sites within long introns, was
also detected in pre-mRNAs [59].

2.3. Long-read RNA-sequencing

Relatively high sequencing depth of the massively parallel
short-read RNA-sequencing enables the precise identification of
splice sites. However, the identification of alternative splicing
event was limited at exon-level due to the difficulty of transcript
assembly from short sequencing reads [65]. In addition, short-
read RNA-sequencing does not take the advantage of the full-
length cDNA generated during library preparation, in particular
for the protocols utilizing template switching approaches such as
the Smart-Seq protocol [56,57,60]. Long-read RNA-sequencing
can leverage on the full-length cDNA generated from library prepa-
ration by directly sequencing these transcripts without prior
fragmentation.

The Oxford Nanopore Technologies (ONT) MinION sequencer is
a portable device that is based on single-molecule sequencing
technology that generates sequencing reads of up to 6 kb [65].
ONT MinION successfully detected 82% of splice sites present in
the Spike-in RNA Variant Control Mixes (SIRV) genome annotation
[65]. To mitigate the sequencing error rate of ONT MinION, circular
consensus principle was introduced using Rolling Circle Amplifica-
tion to Concatemeric Consensus (R2C2) method to obtain full-
length consensus reads [66]. In the R2C2 method, amplified cDNA
molecules generated from full-length library preparation protocols
such as Smart-Seq2 are first circularized, then amplified, and
finally debranched prior to sequencing. Reads generated from the
original sequence after circularization are known as subreads and
are collapsed computationally to yield a consensus read. R2C2
improved detection of splice sites present in SIRV genome annota-
tion up to 91%. Whilst mismatch errors decreased with the increas-
ing number of subreads, indels were systematically present at
homopolymer regions. The high number of sequencing reads gen-
erated by ONT MinION relative to PacBio enables quantitation of
genes and isoforms and consequently allows for gene expression
and isoform profiling in single cells. Although the incorporation
of unique molecular identifiers (UMIs) for accurate quantification
of isoforms is not recommended due to high sequencing error rate
of ONT MinION, gene expression levels generally correlate well
when benchmarked against short-read RNA-sequencing gene
expression [65,66].

PacBio single-molecule real-time sequencing (SMRT) based on
the properties of zero-mode waveguides can generate reads of up
to 5 kb. Due to its lower sequencing error rates compared to ONT
MinION, it can measure splice sites at 50 and 30 ends with an accu-
racy of ±1 bp in External RNA Controls Consortium (ERCC) spike-in
[62]. In contrast to ONT MinION which uses 20 bp bins to assess
the accuracy of identifying splice sites at 50 and 30 ends in SIRV, a
control RNA [65]. The high base calling accuracy rate of PacBio
enabled it to integrate UMIs to quantify isoforms at the single-
molecule level. Counting of isoforms at the single-molecule level
revealed a large number of transcripts to constitute singletons,
i.e. transcripts supported by a single UMI [28,62]. The high rate
of singletons in PacBio, in part, reflects the low coverage obtained
from this platform and therefore preclude differential gene and
isoform analysis across individual cells. Hence, the isoform analysis
using PacBio has been restricted to the characterization of a limited
number of genes [28,62]. Moreover, multiple deeply sequenced
replicates are required for more precise quantitation [28]. Never-
theless, the accurate identification of splice sites has led to the dis-
covery of isoforms not previously captured by publicly available
gene annotation databases. In one study, 43%, 71%, and 94% of iso-
forms detected in mouse cerebellum have at least one splice site
not annotated in GENCODE, RefSeq, and UCSC, respectively. These
unannotated splice sites represent novel exon-exon junctions link-
ing previously reported splice sites. The parallel analysis of short-
and long-read RNA-sequencing enabled validation of these novel
splice sites due to the high accuracy and coverage conferred by
short-read sequencing [28,65]. Therefore, full-length isoform infor-
mation, especially from rare cell types [67], can be a valuable
resource to reduce missing gene annotation in publicly available
gene annotation databases.

Full-length isoform sequencing enables the characterization of
all aspects of isoforms including exon-skipping, alternative 30 and
50 splice sites, intron retention and alternative transcription start
and end sites, and complex isoform consisting of coordination of
multiple exon-level events on the same isoform [28,30,62,65–67].
It is noteworthy that complex isoforms involving multiple exons
may be missed by short-read RNA-sequencing assembly while
long-read RNA-sequencing assembly may be able to deconvolute
these individual isoforms. This is of particular importance if multi-
ple isoforms of the same gene co-occur in the same cell type
(Fig. 1). One such example is the expression of Alzheimer’s
disease-associated Bin1 gene in neurons where a recent study iden-
tified six alternatively spliced exons on this gene and delineated a
range of isoforms containing different combinations of these exons
using long-read RNA-sequencing [28]. It is noteworthy that while
long-read sequencing has been successful in identifying novel iso-
forms, in particular complex isoforms, its application on isoform
characterization has been restricted to highly-expressed genes,
such as cell lineage-specific genes. For example, cell type-specific



Fig. 1. Unique insights gained through single-cell alternative splicing analysis using short- and long-read RNA-sequencing. For simplicity, two isoforms with one alternative
spliced exon (blue and red cells) and one complex isoform with two alternative spliced exons (green cells) illustrated here. Top-left panel: Bulk short-read RNA-sequencing is
unable to delineate cell of origin for alternative splicing event. Top-right panel: Single-cell short-read RNA-sequencing is able to delineate cell of origin for each alternative
splicing event. With the exception of cells with coordinated alternative splicing event (green) where it will be inferred that there are two isolated alternative splicing events.
Bottom-left panel: Bulk long-read RNA-sequencing is able to distinguish isolated and coordinated alternative splicing events but is unable to assign the events to the cell of
origin. Bottom-right panel: Single-cell long-read RNA-sequencing is able to distinguish isolated and coordinated alternative splicing events as well as assign the events to the
cell of origin. Solid black box represents constitutive exons. Blue and red boxes represent alternatively spliced exons. Solid lines connecting two exons represent no
alternative splicing events (no exon-skipping). Dotted lines connecting two exons represent alternative splicing events (exon-skipping). (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)
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receptor isoforms were characterized and reported in B cells
notwithstanding when poly(A) tail-containing RNA molecules
were captured and sequenced in experiments performed by Byrne
et al. [65]. As only highly-expressed isoforms are feasible to be
analysed with current long-read sequencing technologies, it may
be useful to first enriched for isoforms of interest during library
preparation prior to sequencing. Indeed, in one such study, T and
B cell receptor transcripts were first enriched using hybridization
capture approach prior to sequencing on ONT MinION. This
enabled extensive characterization of T and B cell receptor iso-
forms in the immune cell repertoire harvested from the lymph
node of a breast cancer patient [30].
3. Computational and statistical approaches for single-cell
alternative splicing analysis

3.1. Isoform switching-based gene-level analysis

Most single-cell RNA-sequencing studies quantify gene counts
obtained by aggregating or summing isoform-level expressions
[43]. Isoform switching event or differential isoform usage is the
difference in the isoform ratio of the same gene between groups
of cells, and it may not necessarily be reflected by overall changes
in gene expression [32]. For example, a gene X consists of isoforms
Y and Z and has gene counts of 100 in both cell group 1 and 2. In
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group 1, isoforms Y and Z constitute 20 and 80 counts, whereas in
group 2, isoforms Y and Z constitute 80 and 20 counts, respectively.
In this scenario, there would be no detectable change in the gene-
expression level, however, there is a clear difference in the isoform
usage between these groups of cells. The relative change in individ-
ual isoform between difference cell groups is referred to as effect
size (direction of change) [68]. Therefore, isoforms with effect sizes
in the same direction would indicate no isoform switching,
whereas isoforms having effect sizes in the opposite directions
would indicate isoform switching. Hence, where one isoform is
downregulated and the other is upregulated in one cell group rel-
ative to the other, the isoforms are indicated to have effect sizes in
the opposite directions and the gene is detected to have undergone
isoform switching. Several approaches were developed to perform
isoform switching analysis, and by extension, identify overall
changes in gene abundances in single cell experiments. These
approaches take into account the limitations inherent to single cell
experiments, such as high technical noise [32,69] and 30 bias tran-
scripts [32], or by taking advantage of the large number of cells in
single-cell experiments [68].

SingleSplice identifies genes whose differential isoform usage
exceed technical noise in single cells [32]. Technical noise is the
random fluctuations of isoform ratios due to reasons other than
that of biological sources. Technical noise is caused by a range of
factors, such as amplification of cDNA from small amount of start-
ing materials [33]. SingleSplice also overcomes 30 bias transcript
inherent in single-cell experiments by circumventing the need to
identify full-length transcripts using the concept of alternative
splicing module (ASM) path. First, read alignments are used to
build a directed, acyclic splice graph and each path through the
graph represents a transcript. Therefore, any change in ratio of
these ASM paths would indicate possible isoform switching events.
To address high technical noise inherent in single-cell experiments,
SingleSplice first builds a distribution of expected variance in cov-
erage due to technical noise for each ASM path (fitted noise distri-
bution). Next, it predicts the expected change in the ratio of these
ASM paths by sampling repeatedly from the previous fitted noise
distributions. Finally, a gene is considered to have undergone an
isoform switching event if the observed change in the ratio of
ASM paths exceeds that of the expected change in the ratio of
ASM paths due to technical noise alone. Applying SingleSplice to
a population of mouse embryonic stem cells [70], cell cycle-
associated genes were found to have isoform switching events,
and these single cells clustered according to their respective cell
cycle stages using these differentially spliced genes [32].
ISOform-Patterns (ISOP) similarly identifies isoform switching
events occurring beyond the high technical noise present in single
cell experiments [69]. ISOP compares the expression profile of
pairs of isoforms and classifies them into one of three main cate-
gories: single isoform preference (one isoform is preferentially
expressed over the other isoform), bimodal isoform preference
(unimodal expression in one of the isoform and a bimodal distribu-
tion in the other isoform), and mutually exclusive (either one or
the other isoform is expressed, but not both). Application of ISOP
on metformin-treated and untreated breast cancer cell line identi-
fied a subset of genes with isoform switching events that were
missed from differential gene expression analysis [69].

Logistic regression approach takes the advantage of the large
number of cells in single-cell RNA-sequencing experiments to
detect genes with differential isoform usage [68]. The large sample
size of single-cell experiments can be leveraged to accurately fit
the logistic regression model. Individual isoform abundance is first
quantified for each cell from different populations and the linear
combination of isoform quantifications (differences in abundance
between cell groups with direction of change taken into account)
determines the overall effect size. Positive effect size indicates
higher transcript expression relative to the reference group. Con-
versely, negative effect size indicates lower transcript expression
relative to the reference group. Hence, genes consisting of isoforms
with effect size in opposite direction would indicate isoform
switching events, whereas the simple sum of isoform abundances
without taking into account direction of change may lead one to
conclude there were no differences in the isoform usage. Applica-
tion of logistic regression to myogenic precursors and differentiat-
ing myeloblasts identified genes involved in myogenesis to have
differential isoform usage [68,71].

Both SingleSplice and logistic regression may identify differen-
tial isoform usage for two or more isoforms, whereas ISOP infers
isoform-switching events from only a pair of isoforms. ISOP
requires full-length isoform expressions to infer isoform-
switching events, which may not always be attainable from
single-cell RNA-sequencing. It is also noteworthy that ISOP and
SingleSplice require the use of ERCC spike-in to establish levels
of technical noise while logistic regression is the only approach,
among the three methods, to demonstrate its utility on RNA-
sequencing data generated from both full-length library protocol
(e.g. Smart-Seq) and 30-bias library protocol (e.g. Chromium plat-
form from 10x genomics) [32,68,69]. Taken together, identifying
genes with isoform switching events can identify hidden subpopu-
lation of cells in a seemingly homogenous population of cells and
differentially regulated genes between different groups of cells
that would otherwise been missed using only the gene-level
expression information.

3.2. Computational methods originally developed for bulk RNA-
sequencing

Computational methods applied to early single-cell studies for
detection and quantification of exon inclusion rates were originally
developed for and benchmarked against short reads from bulk
RNA-sequencing data. The exon inclusion rate can be divided into
exon- and intron-centric. The inclusion rate of an alternative exon
is often presented as the percent spliced-in (PSI or W) index and
takes any value between 0 and 1 [14,56,61,72–74]. The inclusion
rate of an exon or W index represents the relative expression of
alternatively spliced isoforms (the inclusion isoform) and it in
turns reflect the proportion of reads supporting alternative splicing
over total reads [75,76]. Therefore, a W of 0.5 would reflect half of
all reads supporting the inclusion isoform, whereas aW of 1 would
reflect all reads supporting the inclusion isoform. On the other
hand, a W of 0 would reflect the absence of any reads supporting
the inclusion isoform.

Mixture-of-isoforms (MISO) model is a probabilistic framework
that considers reads aligned to bodies of the alternative exon and
its immediate flanking constitutive exons, as well as reads aligned
to the junctions between the alternative exon and immediate
flanking constitutive exons. In paired-end RNA sequencing, MISO
further considers information about length distribution to improve
the estimates ofW. MISO provides Bayesian confidence intervals in
addition to point estimates ofW to reflect the uncertainty in theW
estimation for each exon [77]. Early single-cell studies used MISO
for estimating exon inclusion rate and restricted their analysis to
only known or annotated splicing events [14,56]. RNA-
sequencing of full-length cDNA from a panel of cancer cell lines
and subsequent detection and quantification of exon inclusion
levels using MISO demonstrated heterogeneity in alternative splic-
ing events different between cell types. Furthermore, the improve-
ment of read coverage across the entire length of isoforms with an
overall increased in read coverage of RNA-sequencing of full-length
cDNA increased the number of detected alternative splicing events
by twofold compared to RNA-sequencing with 30-end bias [53,56].
On the other hand, RNA-sequencing of full-length cDNA of individ-
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ual cells derived from a single population of mouse bone-marrow-
derived dendritic cells (BMDCs) showed variability in exon inclu-
sion rate. Notably, these individual cells demonstrated bimodal
expression pattern of alternative exons, i.e. either inclusion or
exclusion of the alternative exon [14]. Collectively, early alterna-
tive splicing analysis in single cells have demonstrated the power
of single cell RNA-sequencing to unravel heterogeneity in alterna-
tive splicing events between different cell types and across cells
originating from the same population. The latter would have not
been possible with the alternative splicing analysis at the bulk
level.

Weighted-log-likelihood expectation maximization method on
isoform quantification (WemIQ) is another exon-centric approach
for W estimation in bulk RNA-sequencing experiments [78].
WemIQ corrects for bias in RNA-sequencing by assigning different
weights to reads from different genomic region according to
degree of sequencing bias. The bias parameter makes no assump-
tion about the bias source and format. This is in contrast to some
methods that assume a constant bias factor for each relative posi-
tion of genes or only correct for sequence-specific bias caused by
random hexamer priming [79,80]. Applying WemIQ to the afore-
mentioned mouse BMDC dataset [14] revealed larger variation
among exon bias within a gene in single-cell RNA-sequencing com-
pared to bulk RNA-sequencing. Correction of heterogenous bias
pattern through WemIQ decreased cell-to-cell expression variabil-
ity, suggesting that differences in expression profile between single
cells may be attributed to both technical and biological factors.

Intron-centric approach for alternative splice site detection,
unlike exon-centric approach, ignores reads aligning to exon bod-
ies. Instead, only splice junction reads are considered when com-
puting W. In intron-centric approach, W is split into two indices:
W5 and W3, and the calculation of these indices is based on condi-
tional probability. W5 is the number of reads supporting the splic-
ing event from the 50 (donor)-splice site to the immediate 30

(acceptor)-splice site relative to the combined number of reads
supporting splicing from 50-splice site to any 30-splice sites. Simi-
larly,W3 is the number of reads supporting the splicing event from
the 30-splice site to the immediate 50-splice site relative to the
combined number of reads supporting splicing from 30-splice site
to any 50-splice sites. [61,81]. Intron-centric estimation of W was
applied to single cells from a lymphoblastoid cell line to detect
novel splice junctions in single cells [72]. Using conservative
approach where at least one of the 50- or 30-splice sites has already
been annotated, 35% of novel junctions were observed to connect
two annotated exons, whereas 60% of novel junctions connected
an annotated exon to an unannotated exon. This was also the first
study to include spike-in standards for splice site detection, and
‘‘novel junctions” were similarly observed in these controls, sug-
gesting quality control measures should be performed when
detecting novel alternative splicing events in single cells.

Intron-centric approach for inferring alternative splicing events
relies on reads spanning beyond the alternative spliced exon and
its immediate flanking exons. Hence, intron-centric approach
assumes uniform coverage across the isoform length, which is
not always achievable in single-cell RNA-sequencing. Both exon-
centric and intron-centric approach infer alternative splicing
events from sequencing reads alone and therefore does not address
the limitations of low and uneven coverage prevalent in single-cell
RNA-sequencing [77,78,81]. Although early single-cell studies that
utilised computational tools originally developed for bulk RNA-
sequencing largely restricted alternative splicing analysis to
known or annotated events, most of these studies did not perform
independent validation of these alternative splicing events, such as
using smFISH or scRT-PCR. Nevertheless, these studies represent a
proof-of-concept for alternative splicing detection and quantifica-
tion in single cells.
3.3. Prediction-based approaches for single-cell RNA-sequencing

The most pronounced computational challenges in single-cell
RNA-sequencing are low coverage, high dropout rate and increased
technical noise compared to bulk RNA-sequencing [32]. These chal-
lenges are not incorporated into the probabilistic methods based on
mixture modelling such as MISO, which only considers aligned-
reads to form the likelihood of the Bayesian model to estimate W
[77,82]. Therefore, mixture modelling based on aligned-reads alone
does not accurately predict W at low coverage. To overcome this
problem, Bayesian Regression for Isoform Estimation (BRIE)
extends this mixture model approach, such as that of MISO, to
not only consider aligned-reads but also to incorporate a Bayesian
regression module to automatically learn an informative prior dis-
tribution directly from the data [31]. BRIE integrates an informative
prior distribution derived from sequence features together with
likelihood derived from aligned-reads for W estimation. These fea-
tures include seven-hundred and thirty-five splicing regulatory fea-
tures predictive of exon-skipping events derived from a training
dataset comprising of >20,000 and >9,000 high-quality exon-
skipping events from GENCODE human and mouse gene annota-
tion, respectively. As a consequence, the informative prior distribu-
tion enables BRIE to estimate W more accurately at low coverage.
On the other hand, at high coverage, the probabilistic model based
on aligned-reads dominates inW estimation, whereas Bayes’ theo-
rem is used to trade off imputation and quantification at the region
of intermediate coverage. Unsurprisingly,W values estimated with
an informative prior distribution demonstrated superior correla-
tion with W values computed from bulk RNA-sequencing reads
compared to W values estimated with an uninformative prior dis-
tribution [31]. In addition to characterizing exclusion and inclusion
rates across identical cells, BRIE is also able to identify events that
are differentially spliced between identical cells by comparing all
possible pairs of cells [29,31,83,84]. Nevertheless, it is computa-
tionally costly and unfeasible to compareW values between all pos-
sible pairs of cells, particularly in experiments involving large
number of single cells [31,85].

In addition to sequence features, incorporating DNA methyla-
tion profiles as an informative prior demonstrated modest
improvement in W estimation compared to when either factors
was used as informative prior alone [86]. It is noteworthy that
sequence features were more informative compared to DNA
methylation profile for predicting W. Using DNA methylation pro-
file alone as informative prior distribution confers limited benefits
in predictingW, suggesting that sequence features dominate in the
Bayesian model. Moreover, DNA methylation profiles are often
cell-type specific as shown in single-cell methylation and tran-
scriptomic sequencing (scM&T-seq) of induced pluripotent stem
cells (iPSCs) and endoderm cells [86]. Therefore, unlike sequence
features, DNA methylation profiles are not universally applicable
across different cell types. Taken together, the informative prior
information such as that of genomic and epigenetic features can
increase accuracy of W prediction when combined with likelihood
terms computed from aligned-reads. It would be of particular
interest to uncover additional factors that may serve as informative
priors. One such potential factor is chromatin accessibility [31],
which can be profiled by ATAC (assay for transposase-accessible
chromatin) sequencing method. This method currently allows to
assess genome-wide chromatin accessibility at the single-cell level
[87].

While W estimation using prediction-based approach may mit-
igate, to some extent, the challenges posed by the absence of data
(drop-out genes) or low-confidence data (low coverage) [31], it is
noteworthy that presentingW as an estimation does not represent
true biological phenomenon [43]. For example, a W value of 0.05
should indicate that 5% of transcripts include the alternative exon
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while the other 95% skips the alternative exon. As a case in point,
W estimation of the Pdgfa exon 6 showed variability in exon inclu-
sion rate (~0–0.8 W) in single cells derived from oligodendrocytes
from the spinal cord of mice induced with experimental autoim-
mune encephalomyelitis (EAE) and that of control mice. However,
independent validation of this exon-skipping event using scRT-PCR
in bulk spinal cord from EAE mice showed high expression of this
exon (~10–60 normalized mRNA expression), whereas bulk spinal
cord tissues from control mice showed no expression of this exon
(~0 normalized mRNA expression) [29]. In another example, vari-
able Dectin-2 exon 3 inclusion rate was observed in stage 1 and 2
macrophages infected with Candida albicans, where all but one cell
was observed to have W values above 0. However, visual-based
inspection of coverage distribution in a genome browser revealed
the absence of coverage at the exon 3 in ~20% and ~6.5% of stage
1 and 2 infected macrophages, respectively [83]. These suggest that
although the use of informative prior comes at the cost of biasing
results at low coverage regions, it is nevertheless an effective
approach for more accurate W prediction, especially at regions
with moderate-to-high coverage [29,31,83]. One possible approach
to reduce potential false positive detection of alternative splicing
events at low coverage regions is to apply stringent filtering crite-
ria to restrict analysis to alternatively spliced exons with coverage
above a user-defined threshold and expressed in more than a user-
defined percentage or number of cells sequenced [86].

3.4. Read-based approaches for single-cell RNA-sequencing

The Expedition suite creates a custom alternative splicing index
from splice junction information to detect and quantify alternative
splicing events based on aligned-reads only from short-read RNA-
sequencing data [43,88]. As the W values are computed from
aligned-reads only, it is more reflective of the biological exon inclu-
sion rate compared to W values estimated from prediction-based
approaches [31,77]. Expedition suite can be used to more accu-
rately characterize the distribution of exon inclusion rate in the
form of ‘‘modalities” across a population of single cells. Modalities
can be classified into five categories consisting of excluded (W val-
ues concentrated mainly around 0), included (W values concen-
trated mainly around 1), bimodal (W values concentrated around
both 0 and 1), middle (W values concentrated around 0.5), and
multimodal (uniform distribution ofW values from 0 to 1) [43,86].

Early single-cell studies applied computational approaches for
bulk RNA-sequencing to determineW values in small sample sizes
of single cells (~10–20 cells) [14,56,72]. These studies reported that
the majority of cells expressed either one or the other isoform but
rarely both, reflective of included and excluded modalities. This
suggests that included and excluded modalities may be the most
prevalent modalities. Indeed, using Expedition to compute W val-
ues and subsequently applying a beta distribution to represent
these W values in the large sample size of iPSC cells (>60 cells),
it was observed that the included and excluded modalities repre-
sented ~50% and 29% of all modalities, whereas bimodal, multi-
modal, and middle modalities represented ~20%, 1%, and <1% of
all modalities, respectively [43]. Prediction-based approach such
as BRIE may underestimate splicing heterogeneity at low coverage
[31,77]. For example, alternatively spliced exons with low inclu-
sion rates (W values concentrated mainly around 0) have been
shown to have lower variance compared to the alternatively
spliced exons with intermediate-to-high inclusion rates [73,89].
Different thresholds may be applied prior to W estimation using
prediction-based approach to circumvent this and enable the char-
acterization of modalities across a population of single cells. These
thresholds may include the inclusion of high quality annotation of
alternative splicing events and events defined manually by a user-
defined cut-off based on the number of reads and cells supporting
the events [86]. After applying thresholds prior to W estimation
and subsequent characterization of W distribution as a function
of mean-variance in iPSC cells, included and excluded modalities
were similarly observed to be the most prevalent modalities com-
prising of ~52% and ~31%, respectively. Furthermore, bimodal, mul-
timodal, and middle modalities represented ~7%, ~8%, and ~2%,
respectively, of all modalities. Therefore, combining prediction-
based approach forW estimation and carefully selected thresholds
prior toW estimation may increase statistical power for the detec-
tion of rare modalities, namely multimodal and middle modalities.

Taken together, combining computational approaches devel-
oped for single cells and large population of single cells can unravel
heterogeneity in exon inclusion rate distribution across single cells
that would otherwise be missed when analysing small populations
of single cells. This is particularly true for less frequent modalities
such as bimodal, multimodal, and middle modalities. It is known
that the bimodal and multimodal modalities are critically relevant
during cellular differentiation. An analysis of iPSC differentiation
into neural progenitor cells (NPCs) and motor neurons (MNs)
showed that >99% of alternative splicing events either switched
from bimodal or multimodal state, or switched toward a bimodal
or multimodal state [43].

Although the utility of read-based approach for computing W
values is limited to isoforms expressed at moderate-to-high levels,
it may be more precise in reflecting true biological W values com-
pared to W values estimated from prediction-based approach
where informative priors are used to infer W at low coverage
region [31,43]. This may be an important consideration when
assessing the consistency between computedW values and results
from independent validation using experimental or visual-based
inspection from computational approaches.
3.5. Visual-based inspection of alternative splicing events

Visual-based inspection of read coverage from RNA-sequencing
enables the assessment of bioinformatics methods used to com-
pute gene and isoform expression levels [29,31,83,84]. Genome
browsers such as Integrative Genomics Viewer (IGV) and Univer-
sity of California Santa Cruz (UCSC) Genome Browser enable the
visualization of read coverage distribution over defined genomic
regions [90–93]. Read coverage distribution is represented as bar
graphs where the height of the bar graph is proportional to the
number of reads at each genomic coordinate. The extension to this
functionality is the display of arcs that represent splice junctions
connecting exons. The width of the arc is proportional to the num-
ber of reads split across splice junctions. Visual-based presentation
that includes both splice junction information in addition to read
coverage distribution is called a sashimi plot [77]. IGV and ggsa-
shimi generate sashimi plots from the input Binary Alignment
Map (BAM) files using a user-friendly and command-line interface,
respectively [90,91,94].

The presentation of multi-panel coverage distributions or mul-
tiple sashimi plots is not a feasible approach for the large sample
sizes (>1000 cells) from single-cell RNA-sequencing experiments.
As a consequence, sashimi plots for only a subset of cells are usu-
ally displayed and do not capture cell-to-cell variability in alterna-
tive splicing events [31,83,84]. Furthermore, it is difficult to
capture cell-to-cell variability in alternative splicing events even
when the coverage distribution of all single cells is displayed in a
multi-panel format [43,83]. One possible approach for visual-
based inspection of alternative splicing events across different
groups of single cells is to aggregate all single cells by their respec-
tive groups [29,67,94]. However, merging cells by their respective
groups does not take cell-to-cell variation in sequencing depth and
group-to-group variation in number of single cells into account.



Fig. 2. The comparison of different visualization methods of alternative splicing events in 69 motor neurons (MNs) and 63 induced-pluripotent stem cells (iPSCs) from Song
et al. using short-read RNA-sequencing data [43]. (A-C) Mutually exclusive exon 9 and 10 of PKM gene. Alternative splicing event validated using smFISH previously. iPSCs
almost exclusively express exon 10 while MNs predominantly express exon 9. (A) IGV display of coverage distribution of mutually exclusive exon 9 and 10 together with
flanking constitutive exons from 3 MN (red) and 2 iPSC (blue) bulk samples show inconsistency in relative coverage for exon 9 and 10 across MN samples. Specifically, MN
sample 1 and 2 show higher exon 9 coverage whereas MN sample 3 show higher exon 10 coverage. (B) IGV display of coverage distribution of mutually exclusive exon 9 and
10 together with flanking constitutive exons from 5 MN (red) and 5 iPSC (blue) representative cells show inconsistency in relative coverage for exon 9 and 10 across MN cells.
Specifically, MN sample 1, 3, and 5 show higher exon 9 expression, MN sample 4 show higher exon 10 expression, whereas MN sample 2 had no detectable coverage across
both exon 9 and 10. (C) VALERIE display of PSI values for all MN (red) and iPSC (blue) cells in heatmap annotated with mutually exclusive exon 9 (orange) and 10 (yellow) and
flanking constitutive exons (black and grey). MN exon 9 with higher PSI compared to iPSC where MN exon 10 with lower PSI compared to iPSC. Differences in PSI for mutually
exclusive exon 9 and 10 between MN and iPSC cell groups are statistically significant. On the other hand, there is no statistical difference in PSI values of both constitutive
exons between MN and iPSC cell groups. (D-F) Exon 6 skipping of RPS24 gene. Alternative splicing event validated using sc-qPCR. MNs express higher levels of exon 6
compared to iPSCs. (D) IGV display of coverage distribution of alternative spliced exon 6 together with flanking constitutive exons from 3 MN (red) and 2 iPSC (blue) bulk
samples show consistently higher coverage of exon 6 in MN compared to iPSC. (E) IGV display of coverage distribution of alternative spliced exon 6 together with flanking
constitutive exons from 5 MN (red) and 5 iPSC (blue) representative cells show consistently higher coverage of exon 6 in MN compared to iPSC. (F) VALERIE display of PSI
values for all MN (red) and iPSC (blue) cells in heatmap annotated with alternatively spliced exon 6 (orange) and flanking constitutive exons (black and grey). MN exon 6 with
higher PSI compared to iPSC. Differences in PSI for alternatively spliced exon 6 between MN and iPSC cell groups are statistically significant. On the other hand, there is no
statistical difference in PSI values for both constitutive exons between MN and iPSC cell groups. VALERIE standardizes the display of base position in 50-to-30 direction, focuses
on informative exonic regions by excluding long intronic sequences with no splicing events, and displays PSI values rather than coverage information. Two-sided t-test used
as statistical test for comparing PSI values at each genomic coordinate. IGV: Integrative Genome Browser. VALERIE: Visualizing alternative splicing events in single-cell
ribonucleic acid (RNA)-sequencing experiments. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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This limits meaningful visual-based inspection of alternative splic-
ing events across different groups of single cells.

One approach to accentuate cell-to-cell heterogeneity in alter-
native splicing events in single cells is to use a heatmap to display
the read coverage distribution for all cells. Millefy displays read
coverage distribution across a large number of single cells using
heatmap to demonstrate cell-to-cell heterogeneity in gene expres-
sion [59]. However, Millefy does not consider split reads or junc-
tion reads and hence is not suitable for visualizing W values and
corresponding alternative splicing frequencies in single cells. We

have developed VALERIE (Visualizing alternative splicing events

in single-cell ribonucleic acid (RNA)-sequencing experiments;
https://github.com/wenweixiong/VALERIE) to incorporate both
split reads and non-split reads to compute W values at each
defined nucleotide position, for example at an alternatively spliced
exon, and presents these values in a heatmap. Furthermore, an
average value, such as mean, is used as the summary statistic for
W values for user-defined group of cells. This allows for the overall
comparison of alternative splicing rates in different groups of cells.
Finally, pair-wise comparison, such as t-test, is performed for W
values at each nucleotide position to assess the significant differ-
ence inW values between different groups of cells. Therefore, VAL-
ERIE can capture within- and between-group cell-to-cell
heterogeneity and subsequently allows for meaningful visual-
based inspection of alternative splicing events between different
groups of cells (Fig. 2).

3.6. Full-length isoform analysis in single cells

Most of single-cell alternative splicing analysis have been con-
ducted on short-read RNA-sequencing data. This is reflected by
the paucity of computational tools available to analyse alternative
splicing events from long-read RNA-sequencing data. Mandalorion
is a software package for isoform detection and quantification from
Nanopore sequencing reads and it was first developed for analys-
ing 2D sequencing data [65]. In 2D sequencing, both strands of
the molecule are ligated with a hairpin adapter and each strand
is sequenced sequentially [95]. However, Mandalorion no longer
supports 2D sequencing reads analysis. The recent version of Man-
dalorion supports analysis of sequencing reads generated from the
more accurate R2C2 approach [66] and an experimental version of
Mandalorion supports 1D sequencing reads analysis [67]. In con-
trast to 2D sequencing, 1D sequencing involves sequencing one
strand of the molecule and thus generates lower quality sequenc-
ing data compared to 2D sequencing, albeit at higher sequencing
efficiency [95]. To date, there is no published software available
for isoform detection and quantification from PacBio sequencing
reads. Instead, custom scripts were developed by individual stud-
ies [28,62]. The lack of a unified framework for isoform detection
and quantification from long-read RNA-sequencing in single cells
reflects the infancy of this area of research and presents an oppor-
tunity to develop robust and potentially novel computational tools
for single-cell alternative splicing analysis using long-read RNA-
sequencing data.
4. Motivation for the alternative splicing analysis in single cells

Comprehensive studies for alternative splicing analysis in single
cells have involved characterizing alternative splicing events dur-
ing neuronal differentiation, across different subtypes of neuronal
cells, and in immune cells [28,43,62,65,66,86]. The initial focus
on alternative splicing in individual neurons was motivated by pre-
ceding decades of studies that demonstrated alternative exons play
critical roles in multiple aspects of neuronal development includ-
ing neuronal migration, axon guidance, and synapse formation
[23]. Characterization of alternative splicing events in immune
cells demonstrated alternative splicing as a source for diversity
in T and B cell-specific surface receptors [30,65,66]. On the other
hand, several single-cell studies firstly focused on the overall gene
expression analysis and then performed the alternative splicing
analysis as another layer of information to investigate the cellular
heterogeneity driven by distinct alternative splicing events
[29,56,72,74,83].

Cancer biology is one potential area of research that can be fur-
ther advanced by single-cell alternative splicing analysis. RNA mis-
splicing may arise from novel splice sites created by somatic muta-
tions (cis-acting) and mutations specific to genes involved in the
splicing machinery (trans-acting) [25]. Aberrantly spliced genes
may introduce premature stop codons and consequently degrada-
tion by the nonsense-mediated decay pathway, which yield short
peptides that are ultimately presented on the cell surface through
MHC-I pathway (on the condition the peptide is compatible with
the individual patient’s human leukocyte antigen (HLA) type)
[20,96]. Comprehensive alternative splicing analysis across multi-
ple tumour types from The Cancer Genome Atlas have showed
both cis- and trans-associated aberrant alternative splicing events
to correlate with neoepitopes presentation and immune signatures
[97–99]. Moreover, several aberrantly spliced cancer driver genes
were found to be more prevalent in splicing factor-mutated sam-
ples [97], thus providing additional actionable candidates for tar-
geted therapy.

Mutations in splicing factors are enriched in blood neoplasms,
in particular myeloid dysplastic and proliferative neoplasms
(MDS and MPN), where up to ~50–85% of these patients are found
to be carriers of splicing factor mutations of SF3B1, SRSF2, U2AF1,
and ZRSR2 [19,100,101]. The high variant allele frequency (VAF)
of splicing factor mutations and reconstruction of clonal hierarchy
from genotypes of bulk samples derived from bone marrow
nuclear cells (BMNCs) and genotypes of individual primary human
hematopoietic stem and progenitor cells (HSPCs) suggest that
mutations in splicing factors are early events arising in the HSPC
compartment [19,100,102–104]. Nevertheless, genetic and cellular
heterogeneity can exist within the phenotypically identical HSPC
compartment [13,105,106]. Therefore, single-cell approaches can
be used to deconvolute alternative splicing events attributed to
splicing factor mutations alone or their interaction with other can-
cer driver genes mutation, as well as cell- and lineage-specific
alternative splicing events.

Taken together, it may be of particular interest to identify aber-
rant splicing events engendered from different genetic background
and in different cellular types from phenotypically homogenous
populations, in both solid and blood neoplasm, by leveraging tech-
nological advances in parallel single-cell genomic and transcrip-
tomic sequencing to guide development of personalized therapy
for cancer patients [103,107–109].
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