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abstract

 

In rat basophilic leukemia (RBL) cells and Jurkat T cells, Ca

 

2

 

�

 

 release–activated Ca

 

2

 

�

 

 (

 

CRAC) chan-
nels open in response to passive Ca

 

2

 

�

 

 store depletion. Inwardly rectifying CRAC channels admit monovalent cations
when external divalent ions are removed. Removal of internal Mg

 

2

 

�

 

 exposes an outwardly rectifying current (Mg

 

2

 

�

 

-
inhibited cation [MIC]) that also admits monovalent cations when external divalent ions are removed. Here we
demonstrate that CRAC and MIC currents are separable by ion selectivity and rectification properties: by kinetics of
activation and susceptibility to run-down and by pharmacological sensitivity to external Mg

 

2

 

�

 

, spermine, and SKF-
96365. Importantly, selective run-down of MIC current allowed CRAC and MIC current to be characterized under
identical ionic conditions with low internal Mg

 

2

 

�

 

. Removal of internal Mg

 

2

 

�

 

 induced MIC current despite widely
varying Ca

 

2

 

�

 

 and EGTA levels, suggesting that Ca

 

2

 

�

 

-store depletion is not involved in activation of MIC channels. In-
creasing internal Mg

 

2

 

�

 

 from submicromolar to millimolar levels decreased MIC currents without affecting rectifica-
tion but did not alter CRAC current rectification or amplitudes. External Mg

 

2

 

�

 

 and Cs

 

�

 

 carried current through
MIC but not CRAC channels. SKF-96365 blocked CRAC current reversibly but inhibited MIC current irreversibly. At
micromolar concentrations, both spermine and extracellular Mg

 

2

 

�

 

 blocked monovalent MIC current reversibly but
not monovalent CRAC current. The biophysical characteristics of MIC current match well with cloned and ex-
pressed TRPM7 channels. Previous results are reevaluated in terms of separate CRAC and MIC channels.
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I N T R O D U C T I O N

 

In T lymphocytes and rat basophilic leukemia (RBL)*
cells, Ca

 

2

 

�

 

-release-activated Ca

 

2

 

�

 

 (CRAC) channels play
a major role in Ca

 

2

 

�

 

 signaling and cellular activation
events that lead to secretion and cell proliferation.
CRAC channels, like other store-operated Ca

 

2

 

�

 

 chan-
nels, open by an unknown mechanism when Ca

 

2

 

�

 

 is de-
pleted from intracellular stores (Hoth and Penner,
1992; Zweifach and Lewis, 1993). Active depletion of
Ca

 

2

 

�

 

 stores can take place by receptor stimulation to
generate IP

 

3

 

-induced Ca

 

2

 

�

 

 release, by addition of
thapsigargin or other SERCA pump inhibitors to in-
hibit Ca

 

2

 

�

 

 sequestration, or by whole-cell recording
with addition of IP

 

3

 

 to the pipette solution. In a passive
depletion paradigm, CRAC channels are activated dur-
ing whole-cell recording within 1–3 min simply by dia-
lyzing the cytoplasm with a high concentration of Ca

 

2

 

�

 

chelator, either EGTA or BAPTA. Ca

 

2

 

�

 

 ions that pas-
sively leak from intracellular stores are rapidly bound,
thereby depleting the Ca

 

2

 

�

 

 stores and resulting in
CRAC channel activation (Lewis and Cahalan, 1989;
Zweifach and Lewis, 1993).

CRAC channels, like voltage-activated Ca

 

2

 

�

 

 channels
(Hess and Tsien, 1984; Almers and McCleskey, 1984)
and several other cation channels, are selective for Ca

 

2

 

�

 

ions in physiological solutions and conduct monovalent
cations when external divalent ions are removed (Hoth
and Penner, 1993; Premack et al., 1994). Within the se-
ries of alkali metal cations, Li

 

�

 

, Na

 

�

 

, K

 

�

 

, and Rb

 

�

 

 are
equally permeant but Cs

 

�

 

 is only sparingly permeant
through CRAC channels (Lepple-Wienhues and Ca-
halan, 1996). Monovalent current through CRAC chan-
nels retains the property of inward rectification seen
with divalent ions. Upon removal of external divalent
ions the monovalent current inactivates (also termed
depotentiation; Zweifach and Lewis, 1996) within tens
of seconds. All studies described above were performed
with 1–3 mM internal free [Mg

 

2

 

�

 

].
Omission of external and internal divalent ions led to

a much larger monovalent current in Jurkat T cells, with
properties that were similar but not identical to monova-
lent current through CRAC channels recorded with in-
ternal Mg

 

2

 

�

 

 present (Kerschbaum and Cahalan, 1998).
In contrast to CRAC channels, the monovalent current
did not inactivate, had a nearly linear I-V characteristic,
and conducted Cs

 

�

 

 just as well as Na

 

�

 

. During whole-cell
recording from Jurkat and normal human T cells, 40-pS
single channels with high open probability were seen
during activation, inactivation, and run-down (Kersch-
baum and Cahalan, 1999; Fomina et al., 2000). Under
identical conditions, a similar current develops in RBL
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cells and exhibits similar single-channel characteristics
(Braun et al., 2001). These single channels were pro-
posed to represent CRAC channels with properties mod-
ulated by Mg

 

2

 

�

 

 removal (modulated CRAC hypothesis).
However, the alternative possibility remained that a dif-
ferent type of cation channel was revealed by the simul-
taneous removal of Mg

 

2

 

�

 

 from the cytoplasm and diva-
lent ions from the bath (two-channel hypothesis). The
difficulty of distinguishing between these two hypotheses
was compounded by a lack of molecular information on
CRAC channels and a corresponding lack of informa-
tion on the mechanism of store-dependent activation
and monovalent-current inactivation. However, the clon-
ing and expression of TRPM7 (Nadler et al., 2001; Run-
nels et al., 2001), with properties that include outward
rectification and inhibition by internal Mg

 

2

 

�

 

, force a
reexamination of the modulated CRAC hypothesis.
TRPM7, a novel TRP gene formerly named ChaK, TRP-
PLIK, or LTRPC7 contains both channel and kinase se-
quence motifs and displays outwardly rectifying cation
currents when expressed in mammalian cells, with prop-
erties similar to native currents recorded with low inter-
nal Mg

 

2

 

�

 

 (or Mg

 

2

 

�

 

-ATP) in RBL and Jurkat T cells. The
outwardly rectifying native currents that develop when
Mg

 

2

 

�

 

 and Mg

 

2

 

�

 

-ATP are omitted have been called
magnesium-nucleotide–regulated metal cation current
(MagNuM) (Hermosura et al., 2002) and Mg

 

2

 

�

 

-inhib-
ited cation current (MIC) (Prakriya and Lewis, 2002);
here we adopt the latter terminology.

Recent studies suggest that separate and indepen-
dent CRAC and MIC channels provide the most parsi-
monious explanation of differences between currents
in the presence and absence of internal Mg

 

2

 

�

 

 (Hermo-
sura et al., 2002; Prakriya and Lewis, 2002). Our results
complement and extend these studies by providing ad-
ditional ways to distinguish and separate the current
components based on differences in ion permeation,
pharmacological sensitivities, and susceptibility to run-
down. We exploit selective run-down of MIC to com-
pare and contrast properties of CRAC and MIC chan-
nels under identical ionic conditions with low internal
Mg

 

2

 

�

 

. We discuss and reinterpret previous studies on
Jurkat and human T cells (Kerschbaum and Cahalan,
1998, 1999; Fomina et al., 2000) in terms of separate
MIC and CRAC currents, each capable of mediating
Ca

 

2

 

�

 

 influx. Some of the data presented in this article
have appeared previously in abstract form (Kozak and
Cahalan, 2001, 2002).

 

M A T E R I A L S  A N D  M E T H O D S

 

Cell Culture

 

RBL-2H3 cells (Siraganian et al., 1982) were cultured in Eagle’s
MEM supplemented with 10% fetal bovine serum in 5% CO

 

2

 

-
humidified atmosphere at 37

 

�

 

C. Cells were passaged twice weekly

and plated on glass coverslips for recording (McCloskey and Ca-
halan, 1990).

 

Patch-Clamp Recording

 

Whole-cell recordings were done on RBL cells 1–3 d after plat-
ing, using an EPC-9 patch clamp amplifier (HEKA Elektronik).
Patch pipettes were fabricated from soda lime glass capillaries
(Becton Dickinson and Kimble) on a DMZ-Universal Puller
(Zeitz) and coated with sylgard (Dow Corning Corp.) near the
tips. The resistances of fire-polished pipettes were 1.5–4 M

 

�

 

when filled with K

 

�

 

 or Cs

 

�

 

 glutamate–containing solutions. Fast
and slow capacitance transients were compensated using the
EPC-9 circuitry. Voltage ramps (

 

�

 

120 to 70 mV or 

 

�

 

120 to 85
mV, 211-ms duration) were delivered at 0.5 Hz to obtain current-
voltage relations. The holding potential between the ramps was 0
mV. Data were analyzed using Pulse/Pulsefit, v. 8.11 (HEKA Elek-
tronik), Igor Pro (v. 3.1.2) (WaveMetrics), and Microcal Origin
(v. 6) (Microcal Software) software. To determine the reversal po-
tential of the current induced by dialysis, we subtracted I-V traces
after complete run-down from I-V traces collected at the peak of
current development (usually around 10 min after break-in) to
correct for a small leakage current that did not vary significantly
in good experiments. Experiments were conducted at room tem-
perature.

The “high EGTA” internal solution contained (mM): 130 Cs

 

�

 

glutamate, 8 NaCl, 0.9 CaCl

 

2

 

, 12 EGTA, 10 HEPES, pH 7.3 ti-
trated with CsOH. When necessary, 0.15–5 mM MgCl

 

2

 

 was added
to this solution yielding free Mg

 

2

 

�

 

 concentrations of 

 

�

 

83 

 

�

 

M to
3 mM as estimated by Maxchelator (v. 1.78) software (written by
Chris Patton, Stanford University). The “low EGTA” internal so-
lution contained (mM) 150 K

 

�

 

 or Cs

 

�

 

 glutamate, 1 EGTA, 0.5
CaCl

 

2

 

, 10 HEPES, pH 7.3 titrated with K

 

� 

 

or CsOH. Free Ca

 

2

 

�

 

concentration in high and low EGTA internal solution was 

 

�

 

9
nM and 

 

�

 

92 nM, respectively, as estimated by Maxchelator. In
some experiments, internal 12 mM EDTA with higher affinity for
Mg

 

2

 

�

 

 than EGTA was used in order to remove cytosolic Mg

 

2

 

�

 

more completely. Divalent-free external solution, referred to as
“Na

 

�

 

–HEDTA,” contained (mM): 154 Na

 

�

 

 aspartate, 5 NaCl, 10
HEDTA, 10 HEPES, pH 7.3 titrated with NaOH. Li

 

�

 

, Cs

 

�

 

, or
NH

 

4

 

�

 

 were substituted for Na

 

�

 

 in one series of experiments. Di-
valent-containing external solutions contained (mM): 2–5 CaCl

 

2

 

or MgCl

 

2

 

, 10 HEPES, 167 Na

 

�

 

 aspartate, pH 7.3 titrated with
NaOH. Aspartate and glutamate were used as the main anions in
internal and external solutions to minimize Cl

 

� 

 

currents. In most
experiments, 2 Cs

 

�

 

 methanesulfonate was added to block native
inward rectifier K

 

�

 

 currents (Wischmeyer et al., 1995). Experi-
ments testing the effect of increased internal Ca

 

2

 

�

 

 on MIC activa-
tion parameters and comparing MIC and inward rectifier K

 

�

 

 cur-
rent development time course were performed in external solu-
tion containing (mM): 4.5 KCl, 2 Ca

 

2

 

�

 

, 1 Mg

 

2

 

�

 

.
Spermine (hydrochloride) stock (5 mM) was prepared in diva-

lent-free external solution and stored at 4

 

�

 

C. SKF-96365 (hydro-
chloride) (1-[b-[3-(4-methoxyphenyl)propoxy]-4-methoxyphen-
ethyl]-1H-imidazole, HCl) and thapsigargin stock solutions were
prepared in DMSO and kept frozen. After diluting in external so-
lutions the final DMSO concentration was below 0.1%. Sper-
mine, SKF-96365, and thapsigargin were from Calbiochem. All
other chemicals were purchased from Sigma-Aldrich.

 

R E S U L T S

 

Removal of internal Mg

 

2

 

�

 

 changes the rectification and
ion permeability characteristics of cation currents in
RBL and Jurkat cells (Kerschbaum and Cahalan, 1998;
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Nadler et al., 2001; Hermosura et al., 2002; Prakriya
and Lewis, 2002). Operationally, the additional current
that develops as cytoplasmic [Mg

 

2

 

�

 

] is lowered can be
defined as the MIC component of current. Fig. 1 out-
lines the general characteristics of currents activated by
dialysis with a pipette solution containing high EGTA
to deplete Ca

 

2

 

�

 

 stores passively while lowering internal
Mg

 

2

 

�

 

. Two components of current are present in this
experiment but overlap kinetically. Within minutes af-
ter break-in, large outward currents carried by Cs

 

�

 

 and
much smaller inward currents developed in external
solution containing 2 mM Ca

 

2

 

�

 

 (Fig. 1 A). The removal
of external divalent ions (using a divalent-free solution
with 10 mM HEDTA) increased the amplitude of in-
ward currents with only minor change in the outward
Cs

 

�

 

 current at 80 mV. Both Na

 

�

 

 and Cs

 

�

 

 carried inward
current in divalent-free external solution. On ex-
panded time and current amplitude scales, the inward
current can be seen to activate somewhat more rapidly

than the outward current at the beginning of the ex-
periment, suggesting the presence of more than one
type of channel or, alternatively, the evolution of I-V
characteristics of a single type of channel (Fig. 1 B).
Current-voltage relations before, during, and after cur-
rent development illustrate strong outward rectifica-
tion of the induced current in the presence of external
Ca

 

2

 

�

 

 (Fig. 1 C). When Ca

 

2

 

�

 

 was withdrawn, the I-V
curves in Na

 

�

 

 and Cs

 

�

 

 revealed slight inward rectifica-
tion (Fig. 1 D). After reaching a peak, the inward and
outward currents declined to zero after �2,000 s. Our
goal is to test whether reducing internal Mg2� modu-
lates CRAC channel properties or reveals a second pop-
ulation of outwardly rectifying MIC channels.

Properties of MIC Current

Divalent and monovalent ion permeation. One of the hall-
marks of the CRAC current is its positive reversal poten-
tial in physiological levels of external Ca2�. Reversal po-

Figure 1. Development and run-
down of CRAC and MIC currents in the
presence and absence of external diva-
lent ions. Internal solution contained
12 mM EGTA and no added Mg2�. (A)
Outward (top) and inward (bottom)
current development in 2 mM external
Ca2�, followed at �400 s by exposure to
Cs�– then Na�–HEDTA. MIC ran down
gradually over 2,000 s. (B) Current de-
velopment time course for inward and
outward currents compared. The scaled
and inverted inward current measured
at �110 mV is shown superimposed
with the outward current (80 mV). The
inward current clearly precedes the de-
velopment of the outward current, de-
spite its smaller size. (C) I-V plots of
MIC current in 2 mM Ca2� plotted with
two different current amplitude scales.
Traces 1 and 2 correspond to times indi-
cated in A. Trace 7 was collected 51 min
after break-in after reintroduction of 2
mM Ca2�. (D) I-V plots of monovalent
MIC current in Na�– and Cs�–HEDTA.
Both Cs� and Na� are permeant
through the channel. The indistin-
guishable traces 5 and 6 (taken 54 min
after break-in) were obtained in Cs�

and Na� solution, respectively, after
complete run-down of MIC current.
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tentials of the induced current were close to 0 mV (Fig.
1 C, shown with two current scales in C) when the ex-
ternal medium contained 2 mM Ca2�. Significantly, the
reversal potential was also close to 0 mV when the ex-
ternal solution contained only Mg2�, Ca2�, Na�, or Cs�

as the major external permeant ion, with Cs� inside.
Differences in reversal potential and permeant ions dis-
tinguish a larger component of MIC current from the
smaller CRAC current. The current in external Cs�

usually reversed at slightly more positive potentials
than in Na� (Fig. 1 D), indicating that Cs� is slightly
more permeant through this channel than Na�. By re-
versal potential measurement, the following cations
had the relative permeability sequence: NH4

� (1.3) �
Cs� (1.1) � Li� (1.0) � Na� (1.0 by definition).
Among larger monovalent cation substitutes, NMDG�

was not measurably permeant and tetramethylammo-
nium was sparingly permeant (unpublished data).
These results are consistent with previous data (Kersch-
baum and Cahalan, 1998), but with the revision that
these properties are characteristic of the MIC compo-
nent of current, not CRAC.

TRPM7 channels expressed in HEK cells are report-
edly permeable to Mg2� in the absence of Ca2�, based
on the presence of inward current in isotonic Mg2� so-
lution (Nadler et al., 2001). Since MIC currents in na-
tive Jurkat and RBL cells resemble TRPM7 in the ex-
pression system, we examined whether Mg2� current
can be detected using physiological levels of Mg2� in
RBL cells dialyzed with 12 mM EGTA and no added
Mg2�. With 2 mM external Mg2� present and Ca2� ab-
sent, an inward current developed and ran down in
parallel with the outward current during dialysis with
zero internal Mg2� (Fig. 2), consistent with Mg2� cur-
rent through the MIC channel. Fig. 2 B illustrates I-V
curves recorded at different time points of current de-
velopment. At negative potentials, the inward current
did not consistently increase when Mg2� concentration

was varied from 2 to 5 mM. However, by process of
elimination, Mg2� is the main current-carrying ion, be-
cause inward current was still observed in the absence
of external Na� (substituted by the impermeant cation
NMDG�), leaving Mg2� as the only remaining cation.
Substituting internal HEPES by TRIS also did not affect
the inward current with external Mg2� (n � 3 cells). At
positive potentials, the current was outward, conduct-
ing Cs� from the inside. I-V shapes were similar with 2
mM external Mg2� or Ca2�, although currents were
markedly and uniformly reduced at all potentials with
external Mg2� as the only divalent ion. We conclude
that the MIC current discriminates poorly among
monovalent cations (in the absence of divalent ions) as
well as between Ca2� and Mg2�. The ability of Mg2� and
Cs� to carry inward current is characteristic of the MIC,
but not the CRAC component of current.

MIC I-V Shape Is Mg2�- and Time-invariant

Internal Mg2� greater than �3 mM inhibited MIC
current completely, in agreement with Nadler et al.
(2001). If Mg2� inhibition were mediated by a direct in-
teraction with the conducting pore, intermediate levels
of Mg2� might alter I-V shape as a result of voltage-
dependent block, as is seen in several types of ion chan-
nels interacting with Mg2�, including inwardly rectify-
ing K� channels, nicotinic acetylcholine receptor chan-
nels, L-type Ca2� channels, and voltage-gated Na�

channels (Matsuda et al., 1987; Vandenberg, 1987;
Pusch, 1990; Ifune and Steinbach, 1992; Kuo and Hess,
1993; Nichols et al., 1994; Forster and Bertrand, 1995).
However, at different internal free Mg2� levels from
subnanomolar (zero added Mg2� with 12 mM EDTA)
to 1.15 mM, the shape of the MIC I-V curve remained
constant although current magnitudes varied widely,
both in the presence or absence of external divalent
ions (Fig. 3). When the pipette solution contained zero

Figure 2. MIC current is permeable
to external Mg2�. Internal solution con-
tained 12 mM EGTA and no added
Mg2�. External solution contained 2
mM Mg2� and Na� aspartate. (A) MIC-
current development and run-down in
2 mM external Mg2� with zero Ca2�.
(B) I-V relations of MIC current in 2
mM Mg2� obtained at various times af-
ter break-in (same cell as in A).
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added Mg2�, the I-V relation showed strong outward
rectification in the presence of either Ca2� or Mg2�

(Fig. 3 A). Fig. 3, B and C, shows scaled, superimposed
I-V curves with Ca2� carrying the inward current and al-
most linear I-V relations with Cs� carrying the inward
current in the absence of external divalent ions. Inter-
nal Mg2� reduced current magnitudes uniformly at all
potentials. We also tested whether the MIC I-V shape is
stationary during whole-cell recording as internal Mg2�

is washed out during dialysis of cytoplasm by the pi-
pette contents. During development and run-down of
MIC current, the I-V shape remained constant, shown
by superimposing scaled I-V curves at varying times af-
ter break-in (Fig. 3 D). In Fig. 3, E and F, the outward
current did not develop when NMDG� was the sole cat-
ion in the pipette. After �10 min of dialysis the exter-
nal solution was switched from 2 mM Ca2� to Na�–
HEDTA and the inward current became visible. Thus, it
is possible for the MIC I-V to be inwardly rectifying
when internal permeant ions are eliminated but not
when internal Mg2� is increased. The MIC I-V shape ap-

pears to be intrinsic to the channel and is not tailored
by dialyzable cytoplasmic constituents other than per-
meant monovalent cations.

Internal and External Mg2� Inhibition Compared

To address the mechanism of internal Mg2� inhibition,
we took advantage of the observation that a small per-
centage of RBL cells (�5%) show a substantial MIC
current upon break-in. With Mg2� omitted from the
pipette solution the current increased until a maxi-
mum was reached after several minutes. When the pi-
pette contained millimolar levels of Mg2�, the MIC
current gradually declined, also with a slow time
course. Fig. 4 A shows a recording from a cell with pre-
activated MIC current with 5 mM Mg2� internal solu-
tion. The current was completely inhibited after �9
min; t1/2 averaged 117 	 41 s, n � 7 cells. The time
course of internal Mg2� inhibition is too slow for di-
rect channel block by Mg2�, since complete dialysis of
the cell cytoplasm by Mg2� is complete within 
1 min
(Pusch and Neher, 1988). In contrast, block of mono-

Figure 3. MIC I-V shape does not
depend on internal [Mg2�] or dialy-
sis time after break-in. (A) Scaled
and superimposed MIC I-V relations
from three different cells with 0, 0.5,
and 1 mM Mg2� in pipette. Free
[Mg2�] concentrations were esti-
mated by calculation with Maxchela-
tor: nominally zero, �280 �M, and
�563 �M. External solution con-
tained 2 mM Ca2�. (B) MIC current
I-V from two different cells with 0
and 2 mM Mg2� in the pipette with 2
mM external Ca2�. Note the different
current axis scales, with the smaller,
noisy current trace (2 mM internal
Mg2�) corresponding to the pA scale.
The internal solutions contained
(mM): 12 EDTA � 0 Mg2� (nomi-
nally Mg2�-free); and 12 EGTA � 2
total (�1.15 free) Mg2�. (C) MIC I-V
in the absence of external divalent
ions, with 0 and 2 mM Mg2� in the pi-
pette as in B. External solution: Cs�–
HEDTA to minimize CRAC current
contamination (see Fig. 9). (D) Su-
perimposed scaled traces from Fig. 2
B in 2 mM external Mg2� at varying
times following break-in, showing
that the I-V characteristic of MIC cur-
rent is time-invariant. Mg2� was used
as the permeant ion to minimize pos-
sible contamination by CRAC cur-
rent. Internal solution: 12 mM
EGTA, 0 Mg2�. (E and F) MIC cur-

rent recorded with internal NMDG� as the predominant cation. I-V curves in 2 mM Ca2� and Na�–HEDTA, respectively. The low-
EGTA internal solution contained NMDG� as an impermeant cation substitute. External solutions were 2 mM Ca2� (E) and Na�–
HEDTA (F).
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valent current by external Mg2� is fast and voltage-
dependent, indicating a high-affinity binding site for
Mg2� within the pore (Fig. 4 B).

Ca2� Buffering Does Not Affect the Size or the
Time Course of MIC Current Development

To determine whether store depletion is necessary to
evoke the MIC current, we tested conditions that would
be expected to alter store content. One approach to ad-
dress this question is to increase internal free Ca2� con-
centration, thus reducing the Ca2� gradient between
the intracellular store and the cytoplasm. In a paired
comparison trial, the MIC current was recorded with
low EGTA (1 mM) with (n � 7 cells) or without (n � 14
cells) 0.5 mM Ca2� (�90 nM free) in the pipette. Nei-
ther the MIC current amplitude nor the rate of activa-
tion was reduced by inclusion of Ca2�; if anything these
parameters were increased, contrary to expectations
for a store-operated channel. MIC current amplitudes
normalized to cell capacitance were 5.5 	 1.6 pA/pF in

Ca2�-free compared with 13.1	 2.8 pA/pF in 0.5 mM
Ca2�, respectively (evaluated at 70 mV, 6 min after
break-in); times to maximal current were 854 	 110
and 577 	 55 s, respectively. Furthermore, complete
omission of chelators from the pipette solution (with
10 or 100 �M Ca2� added) did not prevent the activa-
tion of MIC current either (unpublished data). Condi-
tions that suppress CRAC channel activation do not al-
ter development of MIC current when Mg2� is with-
drawn from the cytoplasm.

Run-down of MIC and IRK Currents

In addition to CRAC and MIC, RBL cells express in-
wardly rectifying K� (IRK) channels thought to be
Kir2.1. IRK currents run down spontaneously after
prolonged dialysis (McCloskey and Cahalan, 1990;
Wischmeyer et al., 1995). MIC and IRK conductances
change in parallel during prolonged dialysis, first in-
creasing to a maximum at a similar time and then run-
ning down (Fig. 5, A and B). Since IRK is a strong in-
ward rectifier and MIC rectifies strongly in the out-
ward direction, cross-contamination of currents is
minimal at very positive and negative membrane po-
tentials (Fig. 5 C). Contamination by CRAC channels
at negative potentials is minimal due to the substan-
tially larger IRK current magnitude. MIC and IRK
run-down kinetics were highly variable from cell to
cell but strongly correlated in an individual cell (n �
12 cells). It is likely that the mechanisms that govern
IRK and MIC run-down are both related to PIP2 deple-
tion in the cell membrane (Huang et al., 1998; Rohacs
et al., 1999; Runnels et al., 2002). In contrast, as we
document further below, CRAC current is relatively
resistant to run-down and can be characterized in iso-
lation of other current components under conditions
of low internal Mg2�.

MIC Current Is Blocked by External Spermine

External Mg2� in the micromolar range blocks mono-
valent MIC current in a voltage-dependent manner (Fig.
4 B). Polyamines also block several other channel types
that display open channel Mg2� block, including IRK
channels and AMPA glutamate receptors (for review
see Williams, 1997), nAChRs (Haghighi and Cooper,
2000), cyclic nucleotide–gated channels (Lu and Ding,
1999), and voltage-gated Na� channels (Huang and
Moczydlowski, 2001). Fig. 6 A shows that MIC currents
carried by Cs� in the absence of external divalent ions
are blocked by spermine at micromolar concentrations.
The dose–response relation for spermine block of Cs�

current (Fig. 6 B) indicates a Kd value of 2.3 �M at
�100 mV. Like external Mg2� block, spermine block
was fast and voltage dependent, with relief of block at
both depolarized and hyperpolarized potentials, indi-
cating interaction with a site within the conducting

Figure 4. Effects of external and internal Mg2� on MIC current.
(A) Time course of internal Mg2� inhibition of preactivated MIC
current. The pipette solution contained: 12 mM EGTA, 5 mM total
(�3 mM free) Mg2�. Outward current amplitude was measured at
85 mV, and the half-time of inhibition was 85 s. (B) Time course of
external Mg2� inhibition of MIC current. The pipette solution
contained: 12 mM EGTA, 0 Mg2�. MIC current developed first in 2
mM Ca2� external. Monovalent MIC current in Na�–HEDTA was
blocked reversibly by 28 �M external Mg2� (8 mM HEDTA � 3
mM MgCl2).
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pore and punch through at very negative potentials.
Spermine provides a pharmacological tool to test for
monovalent MIC current.

SKF-96365 Accelerates Run-down of MIC Current

SKF-96365 (Merritt et al., 1990; Chung et al., 1994) has
been shown to block CRAC current reversibly at 10–20
�M (IC50 values vary from 11 to 16 �M). We investi-
gated effects of 20 �M SKF applied after complete de-
velopment of MIC current (Fig. 7). SKF inhibits MIC
with slow onset kinetics that are consistent with an indi-
rect action rather than direct channel blockade. In-
deed, SKF (20 �M) had very little effect on the MIC
channels in human T cells (unpublished data). The
time course of SKF inhibition was variable from cell to
cell. Interestingly, SKF exposure seemed to prime the

currents for run-down; MIC currents continued to de-
crease at the same rate even after SKF was washed out.
SKF inhibition was entirely irreversible. Pretreatment
of intact RBL cells with SKF did not prevent the subse-
quent development of MIC, but SKF still exerted its in-
hibitory effect when reapplied. SKF also inhibited the
monovalent current through MIC channels in divalent-
free conditions. As a working hypothesis, we propose
that SKF acts to facilitate the run-down process through
an unknown mechanism that may involve accelerated
PIP2 depletion. Consistent with this hypothesis, in pre-
liminary experiments SKF also facilitated the run-down
of IRK current. Since the speed of drug action varied
from cell to cell, with no effect in a minority of cells,
SKF inhibition of MIC current is not a simple and di-
rect blocking action.

Figure 5. MIC and the endogenous
IRK currents activate and run down in
parallel. (A) Time course of develop-
ment of MIC current measured at 70
mV and IRK current measured at �110
mV. (B) I-V shapes at various times. IRK
was preactivated at break-in, whereas
MIC was absent. The internal solution
contained (mM): K� glutamate, 1
EGTA, 0.5 Ca2�, 0 Mg2�. The external
solution contained (mM) 4.5 KCl, 2
Ca2�, 1 Mg2�.

Figure 6. Extracellular spermine
blocks the MIC current in divalent-free
solution. (A) 20 �M spermine was ap-
plied externally after MIC current had
developed fully in divalent-free solution
(Na�–and Cs�–HEDTA). Block was
strongly voltage-dependent, blocking
preferentially the inward current, but
showing some relief of block at very
negative potentials. Internal solution:
12 mM EGTA, 0 Mg2�. Spermine block
was completely reversible (not shown).
(B) Dose-response relationship for
spermine block of Cs� current (to mini-
mize possible CRAC current contami-
nation) at �100 mV. Data from nine
cells are fitted with the Hill equation us-
ing a Kd value of 2.3 �M and a Hill coef-
ficient of 1.1.
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Properties of CRAC Current

Divalent and monovalent permeation. To investigate CRAC
channels in isolation, 6 mM internal Mg2� (free [Mg2�] �
3.67 mM) was used to prevent activation of MIC channels
(Fig. 8). In Ca2�-free external solution (with 2 mM Mg2�)
the characteristic development of inward CRAC current
was not seen, because Mg2� is impermeant. Nevertheless,
CRAC channels were activated, because inward current
was immediately detected upon switching the external so-
lution to 2 mM Ca2� (with 0 Mg2�). Subsequently, after
removal of all external divalent ions, an inactivating Na�

current was seen, and this current was greatly reduced in
external Cs�, confirming previous observations in Jurkat
cells that CRAC channels do not conduct Cs� well (Lep-
ple-Wienhues and Cahalan, 1996). Fig. 8 B shows corre-
sponding I-V curves in the presence and absence of exter-
nal Ca2� and Mg2�. In Ca2�, the current was inwardly rec-

tifying, whereas in Mg2� inward currents were reduced
and only a linear leak current was observed. Monovalent
CRAC I-V curves in Na� and Cs� show that Na�, but not
Cs�, permeates readily and displays the same degree of
inward rectification as Ca2� current (Fig. 8 C). These re-
sults confirm that CRAC channels are highly selective for
Ca2� over Mg2� and, upon removal of divalents, Na� over
Cs� (Hoth and Penner, 1993; Lepple-Wienhues and Ca-
halan, 1996).

Varying Internal Mg2� Does Not Affect 
the I-V Shape of CRAC Channels

Fig. 9 A shows CRAC current with 5 mM internal [Mg2�],
corresponding to �3 mM free [Mg2�]. At this level of in-
ternal Mg2�, the MIC current was very small, and only
CRAC current was observed. With 2 mM external Ca2�,
the I-V of CRAC current was inwardly rectifying as ex-

Figure 7. SKF-96365 irreversibly in-
hibits MIC current. (A) 20 �M SKF was
applied after development of MIC cur-
rent in 2 mM Ca2�. (B) I-V relations in a
different cell after break-in (1), after de-
velopment of MIC current (2), and af-
ter SKF inhibition (3). Internal solution
contained 2 mM EGTA.

Figure 8. Divalent and monovalent
selectivity of CRAC channels. Internal
solution contained 12 mM EGTA, with
6 mM total (�3.67 free) Mg2� to block
MIC current development. (A) Time
course of inward and outward currents
showing inward CRAC Ca2� and
monovalent currents. Recording was
started in 2 mM Mg2�; the time-depen-
dent activation of Mg2� MIC current
was absent. Adding 2 mM Ca2� revealed
CRAC current. The inward monova-
lent current showed partial inactivation
in Na� - HEDTA, and was greatly re-
duced in Cs� - HEDTA. (B) I-V curves
in 2 mM external Mg2� and Ca2�. (C) I-V
curves in Na� - and Cs� - HEDTA.
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pected with a reversal potential more positive than 40 mV
(compare Hoth and Penner, 1993). Increasing external
Ca2� from 2 to 5 mM increased the size of the inward
CRAC current, also as expected. At lower internal Mg2�

levels, mixtures of CRAC and a much larger MIC current
component were typically observed, but CRAC current
persisted after MIC current ran down completely. Fig. 9,
B–D, shows a comparison of CRAC I-V shapes when inter-
nal Mg2� was lowered to 2, 1, and 0.15 mM Mg2�, corre-
sponding to calculated free [Mg2�] levels of 1.15–0.083
mM. The CRAC I-V relationship retained the same de-
gree of inward rectification. By taking advantage of the se-
lective run-down of MIC current, we show that the CRAC
I-V shape does not depend upon internal [Mg2�].

Pharmacological Properties of Monovalent Current 
through CRAC Channels

We tested the effects of external spermine and SKF-
96365 on monovalent CRAC current to compare the
pharmacological properties of CRAC and MIC currents.
This section demonstrates that spermine had no effect
on monovalent or divalent CRAC current, although it
reversibly blocked monovalent MIC current (Fig. 6). In
addition, SKF-96365 (20 �M) inhibited monovalent
CRAC current reversibly (Fig. 10 A), as was shown previ-
ously for Ca2� current through CRAC channels (Chung
et al., 1994), although it inhibited MIC current irrevers-
ibly (Fig. 7). SKF-96365 block was reversible (n � 4) and
did not show apparent voltage dependence. As shown in
Fig. 10 B, 20 �M spermine failed to block Na� current
through CRAC channels. Like spermine, external Mg2�

also did not affect CRAC channels at a concentration of

external Mg2� (28 �M free) that almost completely
blocked MIC channels (Fig. 10 B, c.f. Fig. 4 B).

Separation of CRAC and MIC Currents by SKF-facilitated 
Run-down: Changes in Relative Na� and Cs� Permeability

SKF accelerates run-down of MIC current but blocks
CRAC current reversibly. This difference was exploited
to separate MIC and CRAC components under identi-
cal ionic conditions with low internal Mg2�. In Fig. 11
A, both CRAC and MIC currents developed in the pres-
ence of 2 and 5 mM external Ca2�. Application of SKF
reduced the outward MIC current to zero within several
minutes and also reduced the inward current at the
same time. Inward but not outward currents recovered
upon washout of SKF. Under these conditions (5 mM
external Ca2�), most of the inward current at negative
potentials is carried through CRAC channels and is
blocked reversibly by SKF. Although SKF decreases both
CRAC and MIC components of inward current, the re-
duction of MIC current was complete and irreversible.
Washout of SKF revealed CRAC current in isolation. A
complementary approach to observe MIC current in
isolation can be taken using Mg2� as a selectively per-
meant ion (Fig. 11 B). In this experiment, with NMDG�

substituted for Na�, Mg2� serves as the only external
permeant ion; the MIC current develops as expected
during dialysis and then is irreversibly reduced by expo-
sure to SKF. These experiments illustrate that CRAC
and MIC components are separable according to char-
acteristic properties of run-down and ion permeation.

If the current remaining after run-down of the MIC
current is indeed CRAC, then one would expect the

Figure 9. CRAC current inward recti-
fication is independent of internal
Mg2�. All pipette solutions contained
12 mM EGTA. (A) Trace 1 shows cur-
rent after break-in. Traces 2 and 3 show
CRAC current in 2 and 5 mM external
Ca2�. Internal solution: 5 mM total (�3
mM free) Mg2�. The current is strongly
inwardly rectifying and shows no out-
ward current at 80 mV, indicating that 3
mM free Mg2� is sufficient to inhibit
MIC current completely. The reversal
potential is above 40 mV. Note the dif-
ference in the I-V shape compared with
Fig. 1 C. (B) CRAC current in 2 mM ex-
ternal Ca2�. Internal solution contained
2 mM total (�1.15 free) Mg2�. (C)
CRAC current in 5 mM external Ca2�

with 1 mM (�563 �M free) Mg2� in pi-
pette. (D) CRAC current in 5 mM ex-
ternal Ca2� with 150 �M (�83 �M free)
Mg2� in pipette. Traces shown in B–D
were obtained after run-down of MIC
current.
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monovalent permeability to change depending on the
time of recording. In Fig. 12, the current is shown devel-
oping in presence of 2 mM external Ca2�. The external
solution was subsequently changed to Na�– and then
Cs�–HEDTA in order to record the corresponding
monovalent current. Both Na� and Cs� show large cur-
rent with linear I-V relationship (Fig. 12, A and D), as
expected if most of the current is MIC. Furthermore,
both Cs� and Na� currents continued to increase as ad-
ditional MIC channels activate. Subsequent application
of SKF caused irreversible run-down of Cs� current (Fig.
12, B and E, trace 5). At the end of the experiment, re-
exposure to Na�–HEDTA solution revealed a significant
increase in inward monovalent current (Fig. 12, B and
E, trace 6); the remaining Na� current after run-down

of MIC current showed the familiar inwardly rectifying
I-V shape, unlike the linear I-V relationship in the same
solution before MIC current ran down. This experiment
demonstrates that the combined monovalent perme-
ability switches from Cs� � Na� to Na� �� Cs� over the
course of experiment, further confirming that two sepa-
rate channels, with different permeability and I-V shape,
carry the monovalent current. It also shows that the dif-
ference in selectivity of the monovalent currents re-
corded with high and low internal Mg2� is not due to
Mg2� effects on the same channel, since the same inter-
nal solution is present throughout. Remarkably, CRAC
current usually persists over extended periods of time
(Fig. 8 A), long after MIC has completely disappeared.
The fact that CRAC and MIC do not run down together
can therefore be used for current separation.

D I S C U S S I O N

CRAC channels are activated upon depletion of Ca2�

from the IP3-sensitive intracellular store in Jurkat or
RBL cells. Whole-cell and perforated-patch recordings
have provided a biophysical characterization of these
channels (Lewis and Cahalan, 1989; Hoth and Penner,
1992; Partiseti et al., 1994; for review see Parekh and
Penner, 1997), but a detailed understanding of underly-
ing molecular mechanisms remains elusive. We com-
pared the properties of cation currents that develop
during passive store depletion with and without internal
Mg2� using a wide range of membrane potentials, differ-
ent ionic conditions, and several blocking agents. Table
I serves as a guide for experimental manipulations that
can isolate and distinguish CRAC and MIC channels by
differences in ion permeation, kinetics of development
and run-down, and pharmacological sensitivities. Differ-
ences in ion permeation and channel pharmacology ar-
gue in favor of two separate channels, but multiple ef-
fects of Mg2� removal on a single channel type are diffi-
cult to rule out. In addition, we show that CRAC and
MIC components can be isolated kinetically by exploit-
ing the selective run-down of MIC current; this provides
an opportunity to compare and contrast CRAC and MIC
currents under identical ionic conditions. Our results
show that CRAC currents, investigated in isolation with-
out internal Mg2� after MIC current run-down, retain
their normal properties, including strong selectivity for
Ca2� over Mg2� and Na� over Cs�and reversible block
by SKF-96365 but not spermine or Mg2�. The simplest
interpretation of the available data is that CRAC and
MIC currents represent two distinct channel types.

Comparison of MIC and CRAC Currents

Both MIC and CRAC are Ca2�-permeable channels that
activate gradually after whole-cell recording mode is es-
tablished with Ca2� chelators in the pipette. Inward
currents are comparable in size and I-V shape at hyper-

Figure 10. Pharmacological properties of monovalent CRAC
current. CRAC current was allowed to develop in external Ca2�

and Na� current through CRAC channels was recorded in Na�–
HEDTA. The internal solution contained: 12 EGTA, and 6 (3 mM
free) Mg2�. (A) Effect of 20 �M SKF-96365 on Na� current
through CRAC channels. SKF block was fully reversible. (B) I-V of
Na� current through CRAC channels in the presence and absence
of 20 �M spermine. (C) I-V of Na� current through CRAC chan-
nels in the presence and absence of 28 �M external Mg2�, a free
Mg2� concentration that effectively blocks MIC current (Fig. 4 B).
At the end of the experiment (B and C) external Na�–HEDTA was
substituted by Cs�–HEDTA; the loss of inward current confirms
that the monovalent current is through CRAC channels.
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polarized potentials (10–35 pA). Like voltage-gated
Ca2� channels, both MIC and CRAC conduct monova-
lent cations when external divalents are omitted. Al-
though potent and selective blockers are not yet avail-
able, pharmacological sensitivities show some similari-

ties. Micromolar concentrations of SKF-96365 inhibit
both currents in a voltage-independent manner, albeit
with different kinetics of block. Lanthanides also block
both MIC and CRAC. The present study emphasizes
the major differences in ion permeation, regulation,

Figure 11. Separation of MIC and
CRAC currents using SKF-induced run-
down of MIC with low Mg2� inside. (A)
Development of MIC and CRAC cur-
rents in the same cell. External solution
was 2 mM Ca2� switched to 5 mM to in-
crease inward current. SKF-96365 appli-
cation caused slow reduction of both the
outward and inward currents. The out-
ward current ran down completely in
presence of SKF. Removal of SKF did not
increase outward current but reversed
the inhibition of the inward current.
The remaining inward current in 5 mM
Ca2� after washout of SKF is CRAC cur-
rent. External solution is switched from
Na�– to Cs�–HEDTA. Internal solution
contained 12 EGTA, 0.5 mM Mg2�. (B)
MIC current isolated by use of 2.5 mM
external Mg2�. SKF caused irreversible
run-down of both inward and outward
currents, leaving no residual CRAC cur-
rent in the absence of external Ca2�.

Figure 12. Change in the monovalent
current selectivity after MIC current
run-down induced by SKF-96365. Inter-
nal solution was 12 mM EGTA, 0.5 mM
(280 �M free) Mg2�. (A) Time course
of CRAC and MIC currents. SKF-96365
(20 �M) is applied in Cs� and the MIC
current was allowed to run down com-
pletely. After washout of SKF, reintro-
duction of Na� shows an increased in-
ward current. (B) Same as A with ex-
panded current scale. (C and D) I-V of
the combined current before MIC cur-
rent run-down in 2 mM Ca2� (C, same
trace at different scale in D) and Na�–
and Cs�–HEDTA (D). (E) I-V of
monovalent CRAC in Na�– and Cs�–
HEDTA after MIC run-down.
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and block between these two currents, as summarized
in Table I.

CRAC channels are permeable to Ca2�, Ba2�, and
Sr2�, but not Mg2� ions (Zweifach and Lewis, 1993; Fi-
erro and Parekh, 2000; Fig. 8), and readily admit Na�,
Li�, K�, and Rb�, but not Cs� ions when external diva-
lent ions are removed (Hoth and Penner, 1993; Lepple-
Wienhues and Cahalan, 1996; Fig. 11). On the other
hand, MIC channels are permeable to Mg2� and Cs�

(Nadler et al., 2001; Figs. 1 and 2). Although Mg2� per-
meability is unusual it is not without precedent among
nonselective cation channels (e.g., Dani and Eisenman,
1987). At physiological levels of external Ca2� and Na�,
the reversal potentials were near 0 mV for MIC current,
indicating a nonselective cation conductance, and were
clearly �40 mV for CRAC current consistent with a
highly Ca2�-selective current. In Jurkat and human T
lymphocytes and in RBL cells, the macroscopic monova-
lent current that develops with low internal Mg2� con-
sists of the summed activity of tens to hundreds of 40-pS
channels (Kerschbaum and Cahalan, 1999; Fomina et
al., 2000; Braun et al., 2001); these represent activity of
MIC channels. Single CRAC currents still have not been
detected. From analysis of current fluctuations, variance
and mean current measurements provide an estimate in
the low fS range with Ca2� as the permeant ion species,
and from 2.8 to 0.2 pS with Na� as the permeant ion
(Lepple-Wienhues and Cahalan, 1996; Prakriya and
Lewis, 2002). In retrospect, the former estimate may
have included a contribution from a small fraction of

MIC channels with a much larger single-channel con-
ductance of �40 pS (Kerschbaum and Cahalan, 1999).

MIC and CRAC channels showed marked differences
in I-V characteristics; MIC is a strongly outward-rectify-
ing current, increasing steeply in magnitude �40 mV,
whereas CRAC is a an inwardly rectifying current that
reveals no detectable outward current beyond the same
potential. In the absence of external divalents, CRAC
current remained inwardly rectifying (Fig. 8), whereas
MIC current lost outward rectification and became
nearly linear (Fig. 3). With micromolar internal free
Mg2� (recorded after MIC has run down), CRAC still
demonstrated inward rectification (Fig. 12). Differ-
ences in CRAC and MIC I-V shapes appear to be intrin-
sic to each respective channel. During channel activa-
tion, both MIC and CRAC currents increased uni-
formly at all potentials, and I-V shapes were unaffected
by widely varying levels of internal Mg2� (Figs. 3 and 9).

CRAC and MIC currents also exhibited distinct sensitiv-
ities to two different pharmacological agents, spermine
and SKF-96365. In the absence of external divalent cat-
ions, MIC currents (carried by Cs� or Na�) were revers-
ibly blocked at micromolar concentrations by external
Mg2� or by external spermine, whereas monovalent
CRAC was unaffected. Inhibition by internal Mg2� was
voltage- and time-independent and clearly different from
the voltage-dependent block produced by external Mg2�

or spermine (Figs. 4 and 6). Both Mg2� and spermine
block were strongly voltage-dependent with considerable
relief of block observed at positive potentials and partial
relief at extremely negative potentials, consistent with
punch-through seen by several pore blockers in other
channel types. 20 �M SKF-96365 inhibited divalent or
monovalent CRAC currents rapidly and reversibly, with
millimolar internal Mg2� or with low internal Mg2� after
run-down of MIC (Figs. 10 and 11). In contrast, SKF re-
duced the MIC current slowly over several minutes, and
this reduction in current amplitude (seen uniformly at all
potentials) was irreversible (Fig. 7). The effect of SKF was
complex and may imply that a loss of cytoplasmic factors
from the cytoplasm is required for its expression. Prein-
cubation with SKF did not noticeably alter development
of MIC current. Moreover, SKF did not affect the MIC
current when applied early during the recording. In the
absence of an exact mechanism, we hypothesize that SKF
may facilitate MIC current run-down.

What Are the Mechanisms of Activation and
Run-down of MIC Current? 

When internal Mg2� is reduced by whole-cell dialysis,
MIC current develops gradually over several minutes,
reaching a maximal amplitude �10 min after break-in.
Both the time course of MIC current development and
the maximal current amplitudes varied from cell to
cell. MIC current developed even when internal EGTA

T A B L E  I

Properties of CRAC and MIC Channels in RBL Cells

CRAC MIC

Permeability to external Mg2� not permeable permeablea

Monovalent cation permeability Na� �� Cs� Cs� �Na

Reversal potential (divalents) �40 mV �0 mVa

Reversal potential (Na�) �25 mV �0 mVa

Unitary Na� conductance 0.2 pSb 40 pS

Rectification of

divalent current strong inward strong outwarda

monovalent current strong inward semilineara

Mg2� dependent rectification No No

Development time 50–200 s 100–500 s

Run-down with low internal Mg2� infrequent frequent

Store dependence Yes Noa

Inhibition by internal Mg2� No Yes, mMa

Inhibition by external Mg2� Yes, high mM Yes, low mM

Inactivation of Na� current Yes Noa

Sensitivity to SKF-96365

divalent and monovalent reversible block irreversible inhibition

External spermine block

monovalent No Yes, low �M

aDesignates properties that are similar to TRPM7 (derived from Nadler et
al., 2001; Runnels et al., 2001).
bDerived from Prakriya and Lewis (2002).
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was lowered from 12 to 1 mM and with levels of free
Ca2� that would be expected to sustain Ca2�-store con-
tent, suggesting that passive depletion of stores was not
important for activation. Pretreatment of the cells with
1 �M thapsigargin (8 min) also did not change activa-
tion of MIC current (unpublished data). Furthermore,
addition of 10 or 100 �M internal free Ca2� while omit-
ting internal Ca2� chelators also did not prevent MIC
current from activating (unpublished data). Thus, we
find no evidence that MIC is a store-operated conduc-
tance in RBL cells. A small fraction of cells exhibited
significant MIC current immediately upon break-in. In-
clusion of millimolar concentrations of free Mg2� in
the pipette reduced this preactivated component of
MIC current with a time course slower than expected
for free Mg2� diffusion (Fig. 4 A), suggesting a mecha-
nism more complex than a direct channel–Mg2� inter-
action. The mechanism for MIC-current activation may
involve the removal of tonic inhibition by an endoge-
nous molecule, since MIC current is not increased dur-
ing prolonged perforated-patch recording (unpub-
lished data). It is notable that in other cell types cation
conductances that are blocked by external divalent ions
also develop over a time course of minutes and are not
store-dependent (e.g., Mubagwa et al., 1997).

MIC and IRK current develop and run down in paral-
lel (Fig. 5 A), suggesting a common mechanism of reg-
ulation. The reasons for IRK increase after break-in re-
main unknown at present. IRK run-down is thought to
be mediated by PIP2 depletion in the membrane
(Hilgemann and Ball, 1996; Huang et al., 1998; Rohacs
et al., 1999). IRK current can be reactivated by specific
PIP2 isomers, is blocked by PIP2 antibodies, and is re-
versibly inhibited by agonist stimulation that activates
the PLC pathway (Jones, 1996). Recently, PIP2 has been
shown to be a required cofactor for TRPM7 channels
(Runnels et al., 2002). Depletion of PIP2 may be a
mechanism for the nearly synchronous run-down of
both IRK and MIC currents.

Comparison of MIC and CRAC to Cloned Channels

The I-V characteristic of the native MIC current shows a
marked similarity to the cloned TRPM7 channel (Nad-
ler et al., 2001; Runnels et al., 2001; Yamaguchi et al.,
2001), as noted previously (Hermosura et al., 2002).
Like MIC, TRPM7 current is inhibited by internal Mg2�

or Mg2� nucleotides at millimolar concentrations and
is present in a wide variety of cells, including RBL cells.
Heterologously expressed TRPM7 conducts both Ca2�

and Mg2� (Nadler et al., 2001) and Cs� and Na� in the
absence of external divalent ions (unpublished data)
and reverses close to 0 mV. It is likely that the current
described previously in Jurkat and human T cells (Kersch-
baum and Cahalan, 1998, 1999; Fomina et al., 2000)
represents the TRPM7 channel.

Monovalent cation channels that lack voltage-depen-
dent gating are revealed by removal of external divalent
cations in a wide variety of cell types, including amphib-
ian epithelial membranes (Van Driessche et al., 1993),
chick embryo ectoderm (Sabovcik et al., 1996), Xeno-
pus oocytes (Arellano et al., 1995), cardiac myocytes
(Mubagwa et al., 1997; Bosteels et al., 1999), smooth
muscle (Bae et al., 1999), hippocampal neurons (Xiong
and MacDonald, 1999). Most of these channels have
also been shown to conduct various divalent cations
(Ca2�, Ba2�, Sr2�) in the inward direction. Divalent cur-
rents through these channels are usually much smaller
than monovalent currents at the same voltage, even
when divalent concentrations are in the millimolar
range. All of the above-mentioned conductances display
weak selectivity among K�, Na�, Cs�, Rb�, and other
small monovalent cations when external divalent ions
are removed. Many of these native currents may repre-
sent activity of TRPM7 or related TRP channels.

Another member of the TRP family of ion channels,
TRPV6 (also known as CaT1 or ECaC2) is a Ca2�-perme-
able channel that has been proposed to be store oper-
ated and to underlie native CRAC currents (Yue et al.,
2001). Some important properties of CaT1, such as Na�/
Cs� permeability, effects of 2-APB, and voltage-depen-
dent gating, are, however, different from those of native
CRAC currents (Voets et al., 2001). Effects of internal
Mg2� (or lack therein) on rectification can be consid-
ered a useful characteristic for testing candidate CRAC
channel clones that express inwardly rectifying channels.

Mechanisms of Inward Rectification – CRAC
and other Channels

Several channels are known to have inwardly rectifying
I-V relationships. Internal Mg2� can produce inward
rectification in inwardly rectifying K� channels, nic-
otinic acetylcholine receptor channels, L-type Ca2�

channels, and voltage-gated Na� channels by blocking
the open channel pore from inside at depolarized
membrane potentials (Armstrong, 1969; Vandenberg,
1987; Matsuda et al., 1987; Pusch, 1990; Ifune and
Steinbach, 1992; Kuo and Hess, 1993; Nichols et al.,
1994; Forster and Bertrand, 1995). Here, we demon-
strate that the inward rectification of CRAC channels is
an intrinsic channel property and not a consequence of
a voltage-dependent block of the channel by internal
Mg2�, as previously suggested (Kerschbaum and Ca-
halan, 1998). Mg2� block as a mechanism for inward
rectification of the CRAC channel was ruled out by
varying internal Mg2� systematically from micromolar
to millimolar levels with no observed change in the
characteristic shape of the I-V relation. In addition to
open channel block by internal Mg2�, another mecha-
nism for rectification appears to be the voltage-depen-
dent block of channels by internal spermine and other
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polyamines, organic positively charged molecules pres-
ent in vertebrate cells. This mechanism of rectification
has been demonstrated in various channel types, such
as inwardly rectifying K� channels, AMPA glutamate re-
ceptors (for review see Williams, 1997), and nAChRs
(Haghighi and Cooper, 2000), However, inward rectifi-
cation of CRAC channels is unlikely to be caused by an-
other intracellular blocking ion because prolonged re-
cording (30–60 min) in whole-cell mode does not alter
the inward rectification of CRAC current. Thus, we pro-
pose that the mechanism of inward rectification of
CRAC channels is intrinsic to the protein. TRPV6
(CaT1) and TRPV5 (CaT2) display pronounced inward
rectification and a high degree of Ca2� selectivity. The
mechanism for rectification is unexplored in these
channels. However, it is unlikely that internal Mg2� me-
diates it, as strong inward rectification of CaT1 persists
when Mg2� is in the micromolar range or is entirely
omitted from intracellular solution (unpublished data;
Vennekens et al., 2000; Voets et al., 2001; Yue et al.,
2001). Importantly, CaT1 current carried by monova-
lent cations also maintains its inward rectification in
the absence of internal Mg2� (Yue et al., 2001, Fig. 2).
Thus, TRPV5 and 6 serve as examples of Ca2�-selective
channels that display strong inward rectification inde-
pendent of internal Mg2� block.

Physiological Roles

Ca2� influx through CRAC channels is required to gen-
erate Ca2� signaling, gene expression, and cell prolifera-
tion in T lymphocytes (for review see Lewis, 2001), but
unfortunately mechanistic and molecular aspects of
these channels remain unclear. It appears that we know
even less about these channels than previously thought
(Kerschbaum and Cahalan, 1999), since the single chan-
nels formerly attributed to CRAC are instead likely to be
TRPM7 channels that coactivate when passive Ca2�-store
depletion is combined with low internal Mg2�. Our re-
sults complement recent work and provide a cautionary
note on current separation (Hermosura et al., 2002;
Prakriya and Lewis, 2002). Noise estimates for single-
channel CRAC conductance (Zweifach and Lewis, 1993;
Prakriya and Lewis, 2002) suggest that CRAC channels
are abundantly expressed in Jurkat T cells, from 5,000 to
10,000 functional channels per cell. Functional expres-
sion of MIC channels (previously identified as CRAC) is
up-regulated by an order of magnitude when human T
cells are stimulated to proliferate (Fomina et al., 2000),
in parallel with dramatic changes in expression levels of
voltage-gated K� channels (Kv1.3) and Ca2�-activated K�

channels (IKCa1) (for review see Cahalan et al., 2001).
It will be important to assess expression levels of CRAC
channels in normal T cells, both resting and in varying
states of activation. Selective blockers of the sort that
have been developed for lymphocyte K� channels

(Chandy et al., 2001) are not yet available for CRAC or
MIC channels. Molecular and pharmacological tools will
be important to establish functional roles of CRAC and
MIC channels in the immune system.
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