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Abstract

Three-dimensional (3D) Magnetic resonance fingerprinting (MRF) permits whole-

brain volumetric quantification of T1 and T2 relaxation values, potentially replacing

conventional T1-weighted structural imaging for common brain imaging analysis. The

aim of this study was to evaluate the repeatability and reproducibility of 3D MRF in

evaluating brain cortical thickness and subcortical volumetric analysis in healthy vol-

unteers using conventional 3D T1-weighted images as a reference standard. Scan-

rescan tests of both 3D MRF and conventional 3D fast spoiled gradient recalled echo

(FSPGR) were performed. For each sequence, the regional cortical thickness and vol-

ume of the subcortical structures were measured using standard automatic brain seg-

mentation software. Repeatability and reproducibility were assessed using the

within-subject coefficient of variation (wCV), intraclass correlation coefficient (ICC),

and mean percent difference and ICC, respectively. The wCV and ICC of cortical

thickness were similar across all regions with both 3D MRF and FSPGR. The percent

relative difference in cortical thickness between 3D MRF and FSPGR across all

regions was 8.0 ± 3.2%. The wCV and ICC of the volume of subcortical structures

across all structures were similar between 3D MRF and FSPGR. The percent relative

difference in the volume of subcortical structures between 3D MRF and FSPGR

across all structures was 7.1 ± 3.6%. 3D MRF measurements of human brain cortical

thickness and subcortical volumes are highly repeatable, and consistent with mea-

surements taken on conventional 3D T1-weighted images. A slight, consistent bias

was evident between the two, and thus careful attention is required when combining

data from MRF and conventional acquisitions.
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1 | INTRODUCTION

Brain morphological information and tissue relaxation time are impor-

tant pieces of biological information that can be acquired by magnetic

resonance imaging (MRI). Changes in brain morphometry, including

regional cortical thickness and subcortical volumes, are reportedly

associated with brain development, aging, and a variety of psychiatric

and neurological disorders (Fotenos, Snyder, Girton, Morris, &

Buckner, 2005). These morphological metrics can quantify neuroana-

tomical features, and accurate measurements could enable better

understanding of individual clinical, behavioral, and genetic character-

istics (Sabuncu et al., 2016). Relaxation time is a quantitative tissue

property that allows objective tissue characterization and is reportedly

sensitive to underlying disease-induced changes. T1 and T2 relaxation

times are altered in specific patterns in neurological diseases such as

Alzheimer's disease (Dean 3rd et al., 2017; House, St Pierre, Foster,

Martins, & Clarnette, 2006), multiple sclerosis (Blystad et al., 2016;

Hagiwara et al., 2019), and epilepsy (Townsend, Bernasconi, Pike, &

Bernasconi, 2004; von Oertzen et al., 2002). Moreover, a combined

analysis of morphology and relaxometry has been applied to tasks

including automatic detection and quantification of lesions and local

brain regions (Pell, Briellmann, Waites, Abbott, & Jackson, 2004;

Specht, Minnerop, Muller-Hubenthal, & Klockgether, 2005). Morpho-

logical information and relaxation times can provide complementary

information (Bernasconi et al., 2000; Fujita et al., 2019; Knight,

Wearn, Coulthard, & Kauppinen, 2019), potentially allowing for a

more robust and comprehensive tissue evaluation.

Magnetic resonance fingerprinting (MRF) is a multiparametric rel-

axometry technique that permits simultaneous acquisition of MR

properties with a single, efficient acquisition (Ma et al., 2013). MRF

depends on a pattern-matching approach in which time-dependent

signals characterizing various relaxation processes unique to each tis-

sue are matched to a dictionary of theoretically simulated signals

(Bipin Mehta et al., 2019). Previous in vitro and in vivo studies demon-

strated high reproducibility and repeatability of T1 and T2 values

obtained with MRF (Buonincontri et al., 2019; Jiang et al., 2017; Kato

et al., 2019; Korzdorfer et al., 2019). The MRF framework enables the

acquisition of various quantitative metrics including, but not limited

to, T1 and T2 values. Promising results have been reported in a wide

range of clinical imaging applications, including the brain (Badve

et al., 2017), liver (Chen et al., 2016), prostate (Panda et al., 2019;

Panda et al., 2019), heart (Liu, Hamilton, Rajagopalan, &

Seiberlich, 2018), and breasts (Chen et al., 2019; Panda et al., 2019).

Recent efforts have been made to extend the volumetric cover-

age of MRF acquisition. Several three-dimensional (3D) MRF

approaches have been proposed which enable whole-brain volumetric

quantification of T1 and T2 relaxation times in a clinically applicable

timeframe (Cao et al., 2019; Liao et al., 2017; Ma et al., 2018). These

approaches provide high-resolution 3D structural data which could be

generated from the acquired 3D T1 and T2 maps, making the

approach more feasible in clinical practice. These high-resolution 3D

quantitative maps by MRF may replace conventional structural data

for common brain imaging analysis and in the clinics where a

T1-weighted image is required. However, studies focusing on the reli-

ability of brain morphometry derived from MRF have been limited,

despite its clinical relevance.

The purpose of this study was to evaluate the scan-rescan repeat-

ability of 3D MRF-derived measurements, and to evaluate the repro-

ducibility of 3D MRF-derived morphological measurements using

conventional 3D T1-weighted structural imaging-derived measure-

ments as reference values.

2 | METHODS

2.1 | MRI acquisitions

Data were collected with the approval of the Institutional Review

Board, and all subjects provided written informed consent prior to the

scan. This study included 21 healthy volunteers (12 women and

9 men; mean age, 41.3 ± 14.6; age range, 22–72 years). All partici-

pants had a negative history of major neurological, psychiatric, or cog-

nitive impairments. Scans were performed using a 3T scanner

(Discovery 750 w, GE Healthcare, Waukesha, WI) with a 32-channel

head coil. Scan-rescan tests of both 3D MRF and 3D T1-weighted fast

spoiled gradient recalled echo (FSPGR) sequences were performed for

all participants. The subjects were repositioned between the scan and

rescan tests. The MRF data acquisition and reconstruction was per-

formed as described by Gómez et al (Gómez et al., 2020). Briefly, the

3D MRF sequence was based on steady-state free precession (SSFP)

with a 3D spiral projection trajectory. The acquisition schedule con-

sisted of a series of variable flip angle hard pulses preceded by an adi-

abatic inversion pulse to encode for T1 and T2. The flip angle pattern

consisted of a triangularly shaped increasing linear ramp, followed by

a decreasing linear ramp and a constant section (Figure S1). Repetition

time (TR) and echo time (TE) were kept constant during the whole

experiment, respectively to avoid off-resonance dependency (Cencini

et al., 2019) and to achieve minimal acquisition time. The whole

schedule was repeated to increase k-space sampling. Each frame was

acquired with a single variable-density spiral interleave, followed by a

spoiling gradient along the z-axis at the end of the TR, achieving 4π

dephasing per pixel. The spiral interleave was rotated in-plane by lin-

ear increments within each TR, while the spiral plane underwent

golden-angle rotation within each schedule repetition to achieve 3D

k-space coverage.

Reconstruction was performed by processing under-sampled data

with k-space-weighted view-sharing for anti-aliasing. First, sampling

for each frame was increased by sharing data from the neighboring

880 frames (corresponding to the schedule length). The amount of

sharing was inversely proportional to the trajectory sampling density.

Then, k-space data were projected on a temporal subspace obtained

by Singular Value Decomposition (McGivney et al., 2014) of the MRF

dictionary. After subspace projection, gridding with nonuniform fast

Fourier transformation (FFT) and 3D FFT was used to obtain the 3D

volume in the image space. Final images were generated with adaptive

coil combination (Walsh, Gmitro, & Marcellin, 2000) after coil
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sensitivity estimation. Data from the first schedule repetition was

excluded from the reconstruction due to the different spin dynamics with

respect to the others. The acquisition parameters for MRF were as follows:

TR, 12 ms; TE, 0.5 ms; field-of-view (FOV), 200 mm × 200 mm × 200 mm;

matrix size, 200 mm × 200 mm × 200 mm; and acquisition time,

9 min 51 s.

Conventional 3D T1-weighted structural images were acquired for

calculating reference brain morphology metrics. FSPGR imaging parame-

ters were sagittal acquisition; TR/TE/inversion time (TI) (7.7/3.1/400 ms)

FOV (256 mm × 256 mm); matrix size (256 mm × 256 mm); section thick-

ness (1.0 mm); flip angle (11�); receiver bandwidth (244.1 Hz/pixel); and

acquisition time (5 min 45 s). FSPGR raw data were reconstructed using

the standard vendor reconstruction pipeline, including the application of a

radial Fermi apodization window in the k-space, Cartesian Fast Fourier

Transform, and Sum-Of-Squares channel combination. To eliminate the

effect of voxel size differences in the morphology metrics, the isotropic

MRF spatial resolution was set at 1.0 mm and matched with that of

FSPGR imaging. Based on the Alzheimer's Disease Neuroimaging Initiative

(ADNI) study (Jack Jr. et al., 2008), 1.0 mm isotropic data was chosen.

MRF and FSPGR images exhibiting common artifacts, such as ringing, blur-

ring, and ghosting, were excluded. One participant was excluded because

of the presentation of motion artifacts in both 3DMRF and FSPGR.

2.2 | Data processing

A dictionary was generated using the extended phase graph formalism

(EPG), with T1 values ranging from 10 to 100 ms, with 10 ms inter-

vals; 100 ms to 1 s, with 20 ms intervals; 1 to 2 s, with 50 ms inter-

vals; and 2 to 6 s, with 100 ms intervals, and T2 values ranging from

2 to 100 ms, with 2 ms intervals; 100 to 150 ms, with 5 ms intervals;

160 to 300 ms, with 10 ms intervals; 300 to 800 ms, with 50 ms inter-

vals; 800 to 1,600 ms, with 100 ms; and 1,600 to 3,000 ms, with

200 ms intervals (Naganawa et al., 2019). To account for the effect on

spin dynamics of schedule repetition, the EPG simulation was

repeated two times, using the magnetization state at the end of the

first iteration as an input for the second. The dictionary was obtained

by retaining the results of the second iteration. As shown in Figure S2,

after the second repetition the magnetization at the beginning of the

schedule reaches a pseudo-steady state, avoiding the necessity of fur-

ther iterations of the algorithms to obtain the signal evolution. This

also justifies the choice of discarding only the data from the first

schedule repetition during the image reconstruction step.

The MRF T1 and T2 maps were obtained by performing a maxi-

mum inner product search (Ma et al., 2013). MRF-derived T1 maps

were postprocessed using voxels and the following formula to gener-

ate synthetic T1-weighted images:

S=1−2e−TI=T1

S is the output signal, T1 is the T1 value obtained by MRF, and TI

is the inversion time, virtually set to 1,300 ms. Inspired by MPRAGE-

based morphometry (O'Brien et al., 2014), proton density was not

included in the synthetic T1-weighted generation to avoid the need of

a bias field correction step. We performed this redundant process

because the automatic brain segmentation software only accepts

input of T1-weighted contrast images.

2.3 | Brain segmentation

Each T1-weighted structural image was analyzed using automatic

brain segmentation software. Individual and specific regional cortical

thickness defined in the Desikan–Killiany Atlas (Desikan et al., 2006),

was obtained using FreeSurfer (Version 6.0) (Dale, Fischl, &

Sereno, 1999; Fischl, 2012) with the default recon-all command. The

subcortical structural volumes (Patenaude, Smith, Kennedy, &

Jenkinson, 2011) were obtained with the default run_first_all com-

mand in the FMRIB integrated registration and segmentation tool

(FIRST), implemented in the FMRIB Software Library v. 5.0.9 in addi-

tion to FreeSurfer, because of the high variability reported in subcorti-

cal gray matter segmentation when using FreeSurfer (Dale

et al., 1999). The segmented masks were applied to the original T1

and T2 maps to calculate the mean T1 and T2 values for each anatom-

ical region. Because the quantitative maps are inherently aligned with

the T1-weighted images, no additional registration steps were

required for alignment with the masks. Bilateral regional values were

averaged for subsequent analysis. No manual corrections were per-

formed because the aim of the study was to evaluate whether the

maps obtained with 3D MRF could be reliably used for automated

volumetric analysis.

2.4 | Statistical analyses

R program v. 3.3.0 (R Core Team [2016]. R: A language and environ-

ment for statistical computing. R Foundation for Statistical Comput-

ing, Vienna, Austria. URL https:// www.R-project.org/) was used for

all statistical analyses, and figures were produced using the ggplot2

package (Wickham, 2016). Scan–rescan repeatability was assessed by

the within-subject coefficient of variation (wCV) and intraclass corre-

lation coefficient (ICC) for each anatomical volume/thickness. We

would consider MRF repeatable if the wCV was low and the ICC was

high. Bland–Altman plots were generated to assess the agreement

between repeated measurements across brain regions. The limits of

agreement (LOA) were defined as the mean ± 1.96 × SD of the differ-

ence between the scan and rescan values. Reproducibility between

the 3D MRF and FSPGR sequence-derived measurements was

assessed by calculating the percent relative difference and ICC for

each anatomical volume/thickness. We would consider MRF repro-

ducible if the percent relative difference was low and the ICC was

high. The ICC estimates of agreement were categorized as follows:

poor (0.01–0.39), fair (0.40–0.59), good (0.60–0.74), and excellent

(0.75–1.00) (Cicchetti, 1994).
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3 | RESULTS

Twenty participants were included in the final analysis (11 women

and 9 men; mean age, 41.7 ± 14.8; age range, 22–72 years). Repre-

sentative 3D MRF sequence-derived T1-weighted images obtained

with FreeSurfer and FIRST outputs are shown in Figure 1.

3.1 | Measurement of cortical thickness

The wCV of cortical thickness was similar across all regions between

3D MRF (1.4 ± 0.6%) and FSPGR (1.4 ± 1.0%) (Figure 2). Cortical

thicknesses corresponding to all regions showed less than 5% wCV in

both 3D MRF and FSPGR, except the entorhinal cortical thickness

F IGURE 1 Representative (a) FreeSurfer and (b) FMRIB Integrated Registration and Segmentation Tool (FIRST) labels created from
automated segmentation of brain regions using 3D magnetic resonance fingerprinting (MRF)-based T1-weighted images. Segmentation results
are overlaid with the 3D MRF-based T1-weighted images

F IGURE 2 Scan-rescan repeatability of cortical thickness for 3D MRF and 3D FSPGR. (a) Scan-rescan within-subject coefficient of variation
(wCV) among scans are overlaid on an inflated brain surface for 3D MRF and 3D FSPGR. (b) Scan-rescan wCV of cortical thickness for 3D MRF
and FSPGR (Boxes indicate the interquartile range [25–75%] and circles indicate sample data points). (c) Bland–Altman plots of the scan-rescan
variation of cortical thickness across all subjects in all regions using (top) 3D MRF and (bottom) 3D FSPGR
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obtained using FSPGR. The mean ICC values across all regions were

0.88 and 0.94 for 3D MRF and FSPGR, respectively (Table S1). The

Bland–Altman plots for scan-rescan repeatability of local cortical

thickness in all regions are shown in Figure 2c. The upper and lower

LOA values were 0.18 and − 0.20 mm for 3D MRF and 0.22 and

− 0.20 mm for FSPGR. Both methods demonstrated excellent

repeatability.

The percent relative difference between 3D MRF and FSPGR

in cortical thickness across all regions was 8.0 ± 3.2%, indicating

good reproducibility (Figure 3). Overall, MRF-derived thicknesses

were slightly thinner (0.17 mm) than that of FSPGR. Noticeable

bias between the two, were observed in the cortex areas with thin

cortical thickness (Figure 3b), especially in the primary visual cor-

tex area (Figure S3). The ICC across all regions was 0.67 ± 0.21,

and 62% of the regional areas showed good to excellent agreement

(Table S1). The mean whole brain cortical thicknesses determined

using 3D MRF and 3D FSPGR were 2.3 ± 0.1 mm and

2.5 ± 0.1 mm, respectively. The T1 and T2 values obtained by MRF

of the same cortical regions varied by 0.3–1.1% and by 3.9–8.2%,

respectively (Figure 4).

3.2 | Volumetry of subcortical structures

The wCV of the subcortical volume was 2.9 ± 2.0% with 3D MRF and

3.0 ± 2.1% with FSPGR using FIRST (Figure 5). All structures showed

less than 10% wCV in both 3D MRF and FSPGR. The mean ICC across

all regions was 0.85 ± 0.10 and 0.90 ± 0.08 for 3D MRF and FSPGR,

respectively (Table S1). All structures showed good to excellent agree-

ment in both 3D MRF and FSPGR. The Bland–Altman plots showing

scan-rescan repeatability for local subcortical structure volumes in all

regions are presented in Figure 5c. The upper and lower LOA values

were 16 and − 14% with 3D MRF and 11 and − 11% for FSPGR. Vol-

ume of the nucleus accumbens in MRF showed relatively low scan-

rescan repeatability (wCV of 9.3%). The wCV of the subcortical vol-

ume was 1.6 ± 1.1% with 3D MRF and 1.9 ± 2.1% with FSPGR using

FreeSurfer (Figure S4). The volume of the nucleus accumbens in

FSPGR showed relatively low scan-rescan repeatability, with wCV of

7.5%, using FreeSurfer.

The percent relative difference between 3D MRF and FSPGR in

subcortical structure volume across all regions was 7.1 ± 3.6%, indi-

cating high reproducibility (Figure 6). No noticeable bias was observed

F IGURE 3 Difference between MRF- and FSPGR-derived cortical thickness. (a) Percent relative difference between MRF- and FSPGR-
derived cortical thickness (Boxes indicate the interquartile range [25–75%] and circles indicate sample data points). (b) Bland–Altman plots of

showing bias of cortical thickness across all subjects in all regions using 3D MRF and 3D FSPGR. Slight bias was observed between MRF and
FSPGR-derived cortical thicknesses in areas with relatively thin cortical thickness (see Figure S3 for detail)
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F IGURE 4 Scan-rescan repeatability of T1 and T2 value of cortices derived with 3D MRF. (a) Scan-rescan within-subject coefficient of
variation (wCV) of 3D MRF-derived T1 and T2 values (Boxes indicate the interquartile range [25–75%] and circles indicate sample data points).
(b) Bland–Altman plots of scan-rescan variation in 3D MRF-derived (top) T1 and (bottom) T2 values of cortices across all subjects

F IGURE 5 Scan-rescan repeatability of subcortical volumes for 3D MRF and 3D FSPGR. (a) Scan-rescan within-subject coefficient of
variation (wCV) among scans is overlaid on an inflated brain surface for 3D MRF and 3D FSPGR. (b) Scan-rescan wCV of subcortical volumes for
3D MRF and FSPGR (Boxes indicate the interquartile range [25–75%] and circles indicate sample data points). (c) Bland–Altman plots of the scan-
rescan variation in subcortical structure volumes across all subjects in all structures using (top) 3D MRF and (bottom) 3D FSPGR
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between MRF-derived volumes of subcortical structures and that of

FSPGR (Figure S4). The ICC across all regions was 0.78 ± 0.15, and all

regions except the amygdala showed good to excellent agreement

(Table S1). The T1 and T2 values obtained by MRF of the same sub-

cortical regions varied by 0.5–2.0% and by 3.6–12.9%, respectively

(Figure 7 and Figure S5).

4 | DISCUSSION

The evaluation of repeatability and reproducibility is essential for

the effective use of quantitative metrics. The present study evalu-

ated the in vivo scan-rescan repeatability of MRF and evaluated

the reproducibility by comparing the MRF-derived measurements

to that of conventional 3D T1-weighted structural imaging. The

findings of this study indicate that 3D MRF provides highly repeat-

able measurements of regional cortical thicknesses and subcortical

volumes, and overall good agreement with conventional 3D

T1-weighted structural imaging-derived measurements. To our

knowledge, this is the first study to evaluate the repeatability and

reproducibility of 3D MRF-derived morphometry of the human

brain.

The repeatability of 3D MRF-derived metrics was comparable

with that of FSPGR for cortical thickness and subcortical volumes.

Relatively low repeatability was observed in the cortical thickness of

the entorhinal region, temporal pole, and frontal pole and the volume

of the nucleus accumbens, in both 3D MRF and FSPGR datasets. This

result was consistent with those of previous studies, which reported

relatively low reliability in these regions based on conventional 3D

T1-weighted imaging (Morey et al., 2010; Tustison et al., 2014). The

cortical thickness estimated by 3D MRF tended to be thinner than

that estimated by FSPGR, possibly due to the different flip angle and

acquisition settings, resulting in different gray/white matter contrast.

The range of cortical thicknesses determined using MRF were compa-

rable to those reported by previous studies based on both

postmortem and conventional T1-weighted imaging studies (Desikan

et al., 2006). Although the agreement between the measurements

obtained by the two sequences were high, we found noticeable bias

between the two in cortex areas with thin cortical thickness

(Figure 3b), where MRF measurements were thicker than that of

FSPGR. Figure S3 helps explain the reason, where FSPGR seemed to

missegment in the primary visual areas. The FSPGR tend to have rela-

tively low gray/white matter contrast compared to other T1-weighted

imaging, which has been explained by a previous study (Han

et al., 2006). The contrast due to high degree of myelination, well

known in the primary visual areas (Braitenberg & Schüz, 1998), has

decreased the gray/white matter contrast resulting in mis-

segmentation in FSPGR.

It should be emphasized that the variability of the segmentation

does not depend exclusively on the acquisition sequence but also

depends on the compatibility with the post-processing software. We

have performed subcortical structure segmentation using two seg-

mentation software, FreeSurfer and FIRST, to evaluate the effects of

software and that of the MRF sequence. Although the exact separa-

tion of the variability arising from the sequence and software is diffi-

cult, the results show that the MRF keeps wCV of volumes of

subcortical structures less than 10% in either software, and thus, we

expect the errors derived from the sequence scheme to be in single-

digit percentages, at most.

An inherent benefit of using MRF for morphometry is its perfect

alignment with quantitative property maps. Because the acquisition is

performed in a single scan, all the quantitative property maps directly

correspond to the patient's anatomy. This property allows the direct

use of segmentation results as the volume of interest (VOI) for mea-

suring local quantitative values. The most commonly used method to

measure a particular region is the manual region of interest (ROI)-

based approach. However, the ROI-based approach has an inherent

bias introduced by selecting individual regions of the brain, whereas

automated segmentation eliminates inter-observer variance and pro-

vides an unbiased and comprehensive assessment. The results of this

F IGURE 6 Difference between MRF- and FSPGR-derived subcortical volumes. (a) Percent relative difference between MRF- and FSPGR-
derived subcortical volumes (Boxes indicate the interquartile range [25–75%] and circles indicate sample data points). (b) Bland–Altman plots of
showing bias of subcortical volumes across all subjects in all structures using 3D MRF and 3D FSPGR
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study show that MRF provides reliable morphological information that

could be used for automated VOI analysis, as well as to obtain

regional cortical thickness and volumes.

Accurate volumetric segmentation of the brain is a prerequisite

for the detection of subtle regional changes in quantitative relaxation

times, which are caused by numerous diseases (Blystad et al., 2016;

Dean 3rd et al., 2017; Hagiwara et al., 2019; House et al., 2006;

Townsend et al., 2004; von Oertzen et al., 2002). Our results demon-

strate that 3D MRF provides anatomical information that is as reliable

as that provided by conventional 3D T1-weighted imaging. Along with

the highly reliable T1 and T2 value quantification, 3D MRF can iden-

tify subtle regional changes that may have been obscured during

observation of large regions. The wCV of the regional changes of T1

and T2 measured by 3D MRF were highly repeatable (0.3–2.0% and

by 3.6–12.9%, respectively). Morphometry and relaxometry provide

complementary information, and using both may provide insights into

tissue abnormalities.

We recognize several limitations associated with our study. First,

we could not obtain the truly basal morphometric measurements,

which is the case with other studies involving living human subjects.

Objectively evaluating morphological information from MRI is difficult,

which justifies the comparison of MRF-derived measures with

standard 3D T1-weighted image-derived thickness estimation.

Although the results are dependent on the segmentation algorithm

and cannot be generalized, employing commonly used automatic mea-

surement software could be appropriate for surrogate metrics. Sec-

ond, this study was performed in a healthy population. Although

repeatability and reproducibility in patients may be desired for clinical

trials, performing scan-rescan tests in patients is impractical and

unethical. Third, we only included a single scanner, in a single institu-

tion. Further longitudinal and multicenter studies incorporating scan-

ners from different sites with different field strengths and

manufacturers would be beneficial for establishing biomarkers with

MRF that can be robustly used in clinical practice.

The repeatability reported in this study could potentially be

improved using an optimized acquisition schedule, a more advanced

reconstruction algorithm (Asslander et al., 2018; Bustin et al., 2019;

Pierre, Ma, Chen, Badve, & Griswold, 2016) or by reducing the dis-

cretization of dictionary using a finer step size or dictionary-free neu-

ral network based inference (Cohen, Zhu, & Rosen, 2018; Golbabaee,

Chen, Gómez, Menzel, & Davies, 2019; Gómez et al., 2020; Virtue,

Yu, & Lustig, 2017). Additionally, the use of multichannel inputs

(e.g., T1 and T2 maps), which could be obtained from a single 3D MRF

sequence scan, could potentially improve the robustness of

F IGURE 7 Scan-rescan repeatability of T1 and T2 value of subcortical structures derived with 3D MRF. (a) Scan-rescan within-subject
coefficient of variation (wCV) of 3D MRF-derived T1 and T2 values (Boxes indicate the interquartile range [25–75%] and circles indicate sample
data points). (b) Bland–Altman plots of scan-rescan variation in 3D MRF-derived (top) T1 and (bottom) T2 values of subcortical structures across
all subjects
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segmentation algorithms that rely only on T1-weighted images. This

could increase robustness on the brain surface, where a large gradient

in T2 relaxation time is produced by cerebrospinal fluid.

5 | CONCLUSIONS

3D MRF-derived measurements of human brain cortical thickness and

subcortical volumes are highly repeatable and are similar to the met-

rics obtained using the conventional 3D T1-weighted images. How-

ever, a slight but consistent bias exists between the two, and thus

careful attention is required when combining data from MRF and con-

ventional acquisitions.
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