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Abstract
Severe infection with respiratory syncytial virus (RSV) during infancy is strongly associated

with the development of asthma. To identify genetic variation that contributes to asthma fol-

lowing severe RSV bronchiolitis during infancy, we sequenced the coding exons of 131

asthma candidate genes in 182 European and African American children with severe RSV

bronchiolitis in infancy using anonymous pools for variant discovery, and then directly geno-

typed a set of 190 nonsynonymous variants. Association testing was performed for physi-

cian-diagnosed asthma before the 7th birthday (asthma) using genotypes from 6,500

individuals from the Exome Sequencing Project (ESP) as controls to gain statistical power.

In addition, among patients with severe RSV bronchiolitis during infancy, we examined

genetic associations with asthma, active asthma, persistent wheeze, and bronchial hyperre-

activity (methacholine PC20) at age 6 years. We identified four rare nonsynonymous vari-

ants that were significantly associated with asthma following severe RSV bronchiolitis,

including single variants in ADRB2, FLG and NCAM1 in European Americans (p = 4.6x10-4,

1.9x10-13 and 5.0x10-5, respectively), and NOS1 in African Americans (p = 2.3x10-11). One

of the variants was a highly functional nonsynonymous variant in ADRB2 (rs1800888),

which was also nominally associated with asthma (p = 0.027) and active asthma (p = 0.013)

among European Americans with severe RSV bronchiolitis without including the ESP. Our

results suggest that rare nonsynonymous variants contribute to the development of asthma
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following severe RSV bronchiolitis in infancy, notably in ADRB2. Additional studies are
required to explore the role of rare variants in the etiology of asthma and asthma-related

traits following severe RSV bronchiolitis.

Introduction
Asthma is a complex disease caused by both genetic and environmental factors, and the inter-
actions between them.[1] Among the many environmental risk factors for asthma are viral
respiratory infections, which are important, common triggers of asthma exacerbations in chil-
dren.[2,3] Bronchiolitis due to respiratory syncytial virus (RSV) is a leading cause of hospitali-
zation among infants and children before the age of two.[4] Multiple studies have reported that
infants hospitalized for severe RSV bronchiolitis are at significantly increased risk for wheezing
illness and asthma later in childhood.[5–8] However, not all children exposed to RSV experi-
ence subsequent recurrent wheezing illness, and not all children who experience subsequent
episodes of wheezing illness are eventually diagnosed with asthma, suggesting that genetic fac-
tors may also play a role in this phenomenon.

More than 100 genes have been associated with asthma and asthma-related traits, however
there is marked variability in replication attempts in independent studies.[9] This may in part
be due to low statistical power from small samples, inadequate control for multiple compari-
sons, heterogeneity in environmental exposures and outcome measurement, and differences in
study design. Genome-wide association (GWA) studies have focused on the search for com-
mon genetic risk variants (allele frequencies> 5%) that influence complex diseases.[10] Never-
theless the risk alleles identified through these studies have explained only a small proportion
of the heritability of this complex disease.[11]

The evolution of the common disease/rare variant hypothesis suggests that the majority of
the missing heritability in common and complex phenotypes is instead due to rare or private
DNA variants.[10] Previous studies have implicated rare variants in asthma and asthma related
traits for a number of relevant genes,[12–15] suggesting that rare variants may indeed play an
important role in asthma susceptibility; however, this has not been studied in the context of
severe RSV bronchiolitis in infancy. In the current study, we performed pooled anonymous
sequencing of coding exons from 131 asthma candidate genes in 182 individuals with severe
RSV bronchiolitis in infancy from the RSV Bronchiolitis in Early Life (RBEL) study [16] for
variant discovery. We then genotyped a set of 190 nonsynonymous variants, and tested for alle-
lic associations with physician-diagnosed asthma before the 7th birthday (asthma) following
severe RSV bronchiolitis in infancy using the ESP as controls to gain statistical power. Lastly,
among patients with severe RSV bronchiolitis during infancy, we examined genetic associa-
tions with asthma, active asthma, persistent wheeze, and bronchial hyperreactivity (methacho-
line PC20) at age 6 years.

Materials and Methods

Study populations
RBEL. In the RSV Bronchiolitis in Early Life (RBEL) prospective cohort study, 206 infants

(12 months of age or less) were enrolled from 1998 to 2001, of which 182 had DNA samples
available and were included in the current study (Table 1). Complete selection criteria for the
study population and characteristics of the cohort at study entry are described in detail else-
where.[17] Included infants were required to have bronchiolitis severe enough to require
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emergency department care or hospitalization, a positive nasopharyngeal swab result confirm-
ing infection with RSV, and physician-documented wheezing during the acute illness. Exclu-
sion criteria were a history of previous wheezing or a diagnosis of asthma, congenital
abnormalities of the heart and lung, cystic fibrosis diagnosed in the patient or immediate fam-
ily, regular use of anti–gastroesophageal reflux medication, bronchodilators, or anti-inflamma-
tory medications.

A child was classified as having physician-diagnosed asthma (henceforth, “asthma”) if the
parent/guardian answered “Yes” to “Has your child ever been diagnosed with asthma by a phy-
sician?” at any time before the child’s 7th birthday. A persistent “No” response defined children
without physician diagnosed asthma. We defined active asthma as physician-diagnosed
asthma at any time along with parent-reported wheezing during the last year of follow-up
between the child’s 3rd and 7th birthdays. We defined persistent wheezing as having at least
one wheezing episode in first three years of life and at least one wheezing episode between the
child’s 3rd and 7th birthdays. Methacholine bronchoprovocation was performed at age 6 as pre-
viously reported.[17] We defined bronchial hyperreactivity as the provocation concentration
of inhaled methacholine that caused a 20% drop in baseline forced expiratory volume in one
second (methacholine PC20).

Table 1. Summary of clinical characteristics of participants in the RBEL study.

Physician-Diagnosed
Asthma (N = 96)

No Asthma
(N = 96)

Demographics

Age at enrollment, days 122 ± 107 152 ± 107

Male (%) 55.2 (53) 62.8 (54)

Caucasian (%) 47.9 (46) 61.6 (53)

Hospitalization Data

Length of stay in hospital (days) 2.6 ± 2.5 2.4 ± 2.7

Lowest SaO2 in hospital (%) 92 ± 6 91 ± 8

Family History

Maternal history of asthma (%) 26.0 (25) 6.98 (6)

Maternal history of eczema (%) 5.21 (5) 8.14 (7)

Maternal history of allergic rhinitis (%) 26.0 (25) 14.0 (12)

Clinical History and Other Exposures

Smoking in home during 1st year of life (%) 64.2 (61) 72.3 (60)

Dog in home (%) 42.7 (41) 40.2 (33)

At least one positive skin test to aeroallergen at 3
years of age (%)

39.7 (31) 22.2 (14)

Lab Tests at Entry

IgE (IU/mL) 25.7 ± 53.7 20.6 ± 33.2

Blood Eosinophils (%) 1.64 ± 2.39 2.08 ± 2.85

Lung Function at Age 6

FEV1%predicted, pre-BD 99 ± 15 103 ± 18

FEV1/FVC, pre-BD 0.91 ± 0.10 0.90 ± 0.11

% change in FEV1 post-BD 4.83 ± 13.2 4.08 ± 10.3

Methacholine PC20 (mg/mL) 0.56 ± 0.67 1.08 ± 1.26

Abbreviations used: SaO2 = lowest oxygen saturation recorded during index hospitalization;

IgE = immunoglobulin E; FEV1 = forced expiratory volume in one second; BD = bronchodilator; PC20 =

provocative concentration of methacholine that causes a 20% decline in FEV1.

doi:10.1371/journal.pone.0142649.t001
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This study was approved by the Washington University School of Medicine Institutional
Review Board (RBEL), and the Boston Children’s Hospital Institutional Review Board
(BRASS). Written informed consent was obtained from parents or guardians.

BRASS. A detailed description of the Boston RSV bronchiolitis cohort (BRASS) is avail-
able elsewhere.[18] Briefly, 207 otherwise healthy children hospitalized for RSV bronchiolitis
at Boston Children’s Hospital were identified from the hospital database of positive RSV labo-
ratory test results (rapid test and/or culture) and were recruited retrospectively. Self-reported
non-Hispanic White individuals from the BRASS study were included for replication of the
findings from the RBEL cohort if they were hospitalized before 1 year of age, to be consistent
with the RBEL enrollment criteria.

DNA sequencing
A total of 99 European Americans (EA) and 83 African Americans (AA) from the RBEL study
were sequenced in four anonymous pools for variant discovery. These pools were “anony-
mous” in that DNA from a single individual was not barcoded prior to pooling DNA for
sequencing, and thus the resulting variants could not be assigned to a single individual (but
rather to a pool of individuals). Genomic DNA was extracted from whole blood using Wizard
genomic DNA purification kit (Promega) and individually quantified by NanoDrop 2000 spec-
trophotometer (Thermo Scientific). Insufficient DNA yield samples (n = 65) were amplified
using REPLI-g Mini Kit (Qiagen Inc) and subsequently purified using QIAamp DNA blood
mini kit (Qiagen Inc). 200 ng DNA from each individual was combined into four separate
anonymous pools, with separate pools for European and African Americans, and for asthma
cases and asthma controls.

A total of 131 candidate genes were selected from published studies that demonstrated a
prior, positive association with asthma (S1 Table). Coding exons of 131 genes were individually
PCR amplified using custom primers designed using Primer3 (frodo.wi.mit.edu/), and using in
silico PCR on the UCSC Genome Browser[19,20] to confirm the specificity of each primer pair
(S2 Table). PCR amplification using 40 ng of pooled DNA per reaction and preparation of the
PCR products for sequencing on the Illumina Genome Analyzer I or II was performed as previ-
ously described.[21] Briefly, amplicons were purified from primers and residual nucleotides by
Qiaquick column separation (Qiagen), combined into mixtures containing an equivalent num-
ber of molecules of each amplicon (1x1011), and concatenated overnight at 22°C with T4 DNA
ligase and T4 polynucleotide kinase (New England Biolabs) in the presence of 15% (w/v) poly-
ethylene glycol, MW8000 (Sigma-Aldrich).

Positive and negative control DNA amplicons were included in ligations to monitor base
calling accuracy.[22] After 10-fold dilution in buffer PB (Qiagen), random fragmentation by
sonication (Diagenode Bioruptor XL), and purification on Qiaquick columns (Qiagen Inc),
DNA sequencing libraries for each pool were prepared according to Illumina protocols. Librar-
ies were sequenced on the Illumina Genome Analyzer IIx platform in Washington University’s
Genome Technology Analysis Center.

Sequence Analysis and Variant Calling
Sequence analysis and variant calls was performed using SPLINTER.[22] A model of sequenc-
ing error was determined by the analysis of a non-variant 1,934 bp amplified sequence from
the pGem-T Easy backbone, which was incorporated into each library. Sensitivity was deter-
mined by the ability to identify variants in positive controls. These controls dictated p-values
for variant calling from each individual set of raw sequence data, and were then used for variant
calling within the remaining reads that uniquely aligned to targeted sequences. Sequencing
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output was aligned to the human reference genome (hg19) allowing for 2 mismatches or fewer
for each read. Any read with more than 2 mismatches or that aligned to multiple locations in
hg19 was discarded.

Genotyping and Quality Control
We performed custom genotyping of 384 variants using an Illumina GoldenGate array for all
individuals within each of the four anonymous pools. A total of 710 unique nonsynonymous
variants were identified through pooled sequencing, and scored as to their designability for the
GoldenGate array (https://icom.illumina.com/Custom/UploadOpaPrelim/). A total of 384 var-
iants in coding exons were chosen for custom array design (designability rank 1; n = 309, and
designability rank 0.5; n = 75), which included 190 nonsynonymous variants. Genotyping was
performed concurrently on all 182 individuals from the RBEL study (the discovery cohort),
and 177 individuals from the BRASS study (the replication cohort).

Genotyping on the custom GoldenGate array (Illumina Inc, San Diego) was performed
according to the manufacturer’s Instructions (ref. GoldenGate Genotyping Assay Guide
15004065 B). An iScan System was used for chip scan and image acquisition. Genotypes were
called using Genome Studio v.2009.1 software (Illumina Inc), and quality control was per-
formed using PLINK.[23] Subjects were filtered based on call rate< 90% (n = 4 subjects from
RBEL, n = 12 subjects from BRASS), and variants were filtered based on call rate< 95% and/or
Hardy-Weinberg p-value< 0.05 within each self-reported ethnicity/study. Carriers of four
associated rare variants underwent additional validation using Sanger sequencing.

Association Testing
Association testing at individual variants genotyped on the GoldenGate array was performed
using logistic or linear regression within each ethnicity in PLINK.[23]We tested for an association
with asthma following severe RSV bronchiolitis in infancy vs. population controls from the exome
sequencing project [ESP]. Variants identified using the ESP as controls were further examined for
an association with asthma, active asthma, persistent wheeze, and bronchial hyperreactivity at age
6 (methacholine PC20, log transformed) among individuals with severe RSV bronchiolitis in
infancy (excluding the ESP). Covariates examined included age at severe RSV bronchiolitis, sex,
daycare attendance, maternal smoking during pregnancy and at time of enrollment, smoke expo-
sure from other family members in home, and asthma status for bronchial hyperreactivity.

Genotype counts from the ESP were downloaded from the NHLBI Exome Sequencing Proj-
ect Exome Variant Server (ESP6500SI-V2)[24], converted into PLINK format using custom
perl scripts, and merged with genotypes from the RBEL study. A total of 17 variants showing
an association at p<0.01 with asthma following severe RSV were subject to additional QC in
the RBEL study by visual inspection of cluster plots for GoldenGate genotypes, and compari-
sons of allele frequencies from GoldenGate genotyping vs. those estimated from pooled anony-
mous sequencing. Any variants that showed questionable distinction between genotype
clusters, or were discordant in frequency from pooled sequencing vs. direct genotyping
whereby the frequency from pooled sequencing was more similar to the ESP were removed
from further consideration (N = 12). Replication for asthma following severe RSV bronchiolitis
vs. no asthma was similarly performed using logistic regression on genotypes obtained from
the same custom GoldenGate array in the BRASS study.

Results
We obtained a total of 695,366 base pairs (bp) of targeted sequencing at an average depth of
52–353x coverage/allele at variable sites in 182 individuals in the RBEL study (Table 2). We
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observed differences in sequencing coverage across pools, which could have lead to differences
in the number of variant calls between pools (Table 2). Therefore, we calculated a p-value
threshold for variant calls using internal positive and negative controls within each pool rather
than across pools to best account for this. Specifically, we normalized the p-value threshold
within each pool by sequencing coverage to maximize sensitivity and specificity. Using the
SPLINTER algorithm, we identified a total of 5,496 single nucleotide variants (SNVs), includ-
ing 710 nonsynonymous, 441 synonymous, and 4,372 non-coding variants. As expected, the
majority of variants were at low frequency or rare (Fig 1, Table 2), and many of the rare vari-
ants were private to asthma cases or controls within each population (Table 3).

A total of 384 rare and common variants, including 190 nonsynonymous variants were gen-
otyped directly in the same samples included in the anonymous pools on a custom GoldenGate
array. Of these, 264 variants passed stringent quality control filters. Of the 120 variants failing
QC, 76 had call rates below 95%, 61 had Hardy-Weinberg p-values< 0.05 in the African
American samples, and 38 had Hardy-Weinberg p-values< 0.05 in the European American
samples. Not all variants identified through sequencing were identified as being polymorphic
on the GoldenGate array, which may be due to the variants being absent (false positive calls) or
difficulties in clustering carriers of rare variants (false negative calls). However, variants were
confirmed, and carriers of minor/rare alleles were identified at 78 variants in the African Amer-
ican samples, and 49 variants in the European American samples. Individuals from the replica-
tion study (BRASS, European Americans) were genotyped using the same custom array using
whole genome amplified DNA; 275 variants passed QC (87 had call rates below 95%, 72 had
Hardy-Weinberg p-values< 0.05, 247 of which also passed QC in RBEL); a total of 76 variants
were found to be polymorphic in BRASS. Across both studies combined (RBEL and BRASS), a
total of 92 variants were brought forward for association testing.

To have sufficient statistical power, we included 6,503 individuals from the Exome Sequenc-
ing Project (ESP6500) as controls, including 2,203 African Americans and 4,300 European
Americans. Following additional QC, allele frequencies in asthma cases from the RBEL study
were in general consistent with frequencies in the ESP (Fig 2). However, we identified four
nonsynonymous variants that were significantly associated with increased risk of asthma fol-
lowing severe RSV bronchiolitis in infancy, including one in African Americans in NOS1 (Bon-
ferroni threshold: α78 = 6.4x10-4) and three in European Americans in FLG, ADRB2, and
NCAM1 (α49 = 1.0x10-3) (Table 4). All of the variants were low frequency (MAF<5%) or rare
(MAF<1%) in the ESP. Rs1800888 in ADRB2 was also nominally associated with asthma
(p = 0.027) and active asthma (p = 0.013) among European Americans with severe RSV bron-
chiolitis in infancy, without including the ESP as controls (Table 5). Rs35576001in NCAM1
was associated with asthma in European Americans including the ESP as controls (rs35576001,
p = 5.0x10-5, Table 4), however, the same variant was protective for persistent wheeze among

Table 2. Overview of total and rare variants called in anonymous pooled sequencing of coding exons for 131 candidate genes using the SPLINTER
algorithm. EA = European American, AA = African American, MAF = minor allele frequency.

Pool Population N Aligned Reads (million) Total Variants Total Rare Variants (MAF<5%) Mean Coverage/Allele at Variable Sites

1 EA Cases 39 32.1 2,673 1,573 52

2 AA Cases 48 19.4 3,432 1,567 72

3 EA Controls 60 21.8 2,258 883 87

4 AA Controls 34 20.4 1,123 236 353

TOTAL 181 93.7 5,496 3,433*

*MAF<5% in at least one pool.

doi:10.1371/journal.pone.0142649.t002
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Fig 1. Iceberg plot showing how the majority of coding variants identified per gene are at minor allele frequencies (MAF) at or below 10% in both
European American (EA, N = 39) and African American (AA, N = 49) asthma cases and controls following severe RSV bronchiolitis in infancy. A
total of 131 asthma genes were sequenced; each vertical bar represents a gene with at least one coding variant detected in the sample.

doi:10.1371/journal.pone.0142649.g001

Table 3. Counts of rare and private rare variants in asthma cases vs. controls in anonymous pooled sequencing of coding exons of 131 candidate
genes. Private variants are those private to either cases or controls within an ethnicity. NS = nonsynonymous, Syn = synonymous, NC = non-coding.

Rare Variants Private Rare Variants

Pool NS Syn NC NS Syn NC

African Americans: Cases (N = 48) 258 129 1180 230 99 1049

Controls (N = 34) 32 30 174 10 16 79

European Americans: Cases (N = 39) 213 72 1288 180 43 1081

Controls (N = 60) 95 71 717 71 51 471

doi:10.1371/journal.pone.0142649.t003
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African Americans with severe RSV bronchiolitis in infancy (p = 0.021, Table 5). For all but
rs1800888, allelic associations were driven by a single carrier of the minor allele in asthma
cases with severe RSV bronchiolitis in infancy, with no individual carrying>1 associated vari-
ant. Further validation of these variants through Sanger sequencing in asthma cases confirmed
the presence of the minor allele in 6 carriers of rs1800888 in ADRB2 (European Americans),

Fig 2. QQplot showing the results of association testing at nonsynonymous variants for physician-diagnosed asthma following severe RSV
bronchiolitis in infancy.Genotypes from the exome sequencing project (ESP) were used as controls. The shaded area represents the 95% confidence
interval.

doi:10.1371/journal.pone.0142649.g002
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Table 4. Results of allelic association testing for physician-diagnosed asthma following severe RSV bronchiolitis in infancy including genotypes
from the Exome Sequencing Project (ESP) as controls.

RBEL European Americans: RBEL African Americans:

Position (hg19) rsID Gene Alleles (A1/
A2)

Freq A1 asthma
cases

Freq A1
ESP

P-value
ESP

Freq A1 asthma
cases

Freq A1
ESP

P-value
ESP

chr1:152283023 NA FLG T/A 0.013 0.0001 1.9x10-13 0 0 NA

chr5:148206885 rs1800888 ADRB2 T/A 0.064 0.015 4.6x10-4 0 0.0032 0.58

chr11:113076804 rs35576001 NCAM1 A/G 0.013 0.0006 5x10-5 0.021 0.027 0.74

chr12:117768154 rs76090928 NOS1 A/G 0.013 0.004 0.23 0.011 0 2.3x10-11

doi:10.1371/journal.pone.0142649.t004

Table 5. Results of further association testing of candidate variants within individuals with severe RSV bronchiolitis in infancy, without including
genotypes from the ESP. Phenotypes include physician diagnosed asthma, active asthma, persistent wheeze, and methacholine PC20 at age 6 years. P-
values < 0.05 are in bold italics, Freq = allele frequency, OR = odds ratio, SE = standard error.

Physician Diagnosed Asthma:
European Americans: 39 cases, 60
controls

African Americans: 49 cases, 34 controls

Position (hg19) rsID Gene Alleles (A1/
A2)

Freq A1
cases

Freq A1
controls

p-value
(OR)

Freq A1
cases

Freq A1
controls

p-value
(OR)

chr1:152283023 NA FLG T/A 0.013 0 0.22 (NA) 0 0 NA

chr5:148206885 rs1800888 ADRB2 T/A 0.064 0.0085 0.027 (8.0) 0 0 NA

chr11:113076804 rs35576001 NCAM1 A/G 0.013 0 0.22 (NA) 0.021 0.015 0.78 (1.4)

chr12:117768154 rs76090928 NOS1 A/G 0.013 0 0.22 (NA) 0.011 0 0.40 (NA)

Active Asthma:

European Americans: 16 cases, 49
controls

African Americans: 26 cases, 25 controls

Position (hg19) rsID Gene Alleles (A1/
A2)

Freq A1
cases

Freq A1
controls

p-value
(OR)

Freq A1
cases

Freq A1
controls

p-value
(OR)

chr1:152283023 NA FLG T/A 0 0 NA 0 0 NA

chr5:148206885 rs1800888 ADRB2 T/A 0.063 0 0.013 (NA) 0 0 NA

chr11:113076804 rs35576001 NCAM1 A/G 0.031 0 0.079 (NA) 0.019 0.02 0.98 (0.96)

chr12:117768154 rs76090928 NOS1 A/G 0 0 NA 0.02 0 0.31 (NA)

Persistent Wheeze:

European Americans: 57 cases, 36
controls

African Americans: 50 cases, 19 controls

Position (hg19) rsID Gene Alleles (A1/
A2)

Freq A1
cases

Freq A1
controls

p-value
(OR)

Freq A1
cases

Freq A1
controls

p-value
(OR)

chr1:152283023 NA FLG T/A 0.0088 0 0.43 (NA) 0 0 NA

chr5:148206885 rs1800888 ADRB2 T/A 0.035 0.014 0.38 (2.6) 0 0 NA

chr11:113076804 rs35576001 NCAM1 A/G 0.0088 0 0.43 0 0.053 0.021 (0)

chr12:117768154 rs76090928 NOS1 A/G 0.0088 0 0.43 0.010 0 0.53 (NA)

Bronchial Hyperreactivity (logPC20):
European Americans: N = 67 African Americans: N = 51

Position (hg19) rsID Gene Allele (A1) Beta SE p-value Beta SE p-value

chr1:152283023 NA FLG T 1.0 1.3 0.43 NA NA NA

chr5:148206885 rs1800888 ADRB2 T -0.37 0.66 0.58 NA NA NA

chr11:113076804 rs35576001 NCAM1 A -0.18 1.3 0.89 -0.45 1.1 0.69

chr12:117768154 rs76090928 NOS1 A NA NA NA 0.21 1.1 0.86

doi:10.1371/journal.pone.0142649.t005
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one carrier of rs35576001 in NCAM1 (a European American), and one carrier of rs76090928 in
NOS1 (an African American).

Replication of four variants associated with physician-diagnosed asthma was attempted in
an independent study (BRASS, N = 63 asthma cases and 102 controls of European American
ethnicity, Table 6). Genotypes from the ESP were not included in the replication as to maintain
independence. Three of the variants were absent in BRASS, highlighting the difficulty of repli-
cating rare variants in a small number of independent samples. However, rs1800888 in ADRB2
was present in the BRASS study at similar frequencies (asthma cases = 1.6% vs. con-
trols = 0.49%, p = 0.31).

Discussion
We identified over 700 nonsynonymous variants by sequencing the coding exons of 131
asthma-associated genes in 182 individuals who experienced severe RSV bronchiolitis in
infancy. Following this, we genotyped a set of 190 nonsynonymous variants, and performed
association testing for physician-diagnosed asthma before the 7th birthday following severe
RSV bronchiolitis in infancy. Given the rareness of severe RSV bronchiolitis in the first year of
life, we substantially strengthened our power for association testing by including over 6,503
individuals from the Exome Sequencing Project (ESP) as controls. This allowed us to identify
four nonsynonymous variants that were significantly associated with asthma following severe
RSV bronchiolitis for follow-up studies. All four of the nonsynonymous variants were low fre-
quency or rare in the ESP (MAF< 5%), and were at higher frequency in individuals with
asthma following severe RSV bronchiolitis in infancy (MAF from 1–6%).

We identified a nonsynonymous variant in ADRB2 (rs1800888) that showed a significant
association with asthma following severe RSV bronchiolitis in European Americans when
using the ESP as controls. Rs1800888 was also nominally associated with asthma and active
asthma within individuals with severe RSV bronchiolitis in infancy, without including the ESP
as controls. ADRB2 is a G protein-coupled receptor that along with other proteins forms a
receptor-channel complex involved in smooth muscle relaxation and bronchodilation. Nota-
bly, rs1800888 has the most profound functional consequence of all known nonsynonymous
variants in ADRB2, and is associated with a 5-fold reduction in sensitivity to beta-2-receptor
agonist-mediated vasodilation resulting in increased vasoconstriction.[25] This variant is
located in a helical transmembrane domain, and is within an amino acid that is both solvent
accessible and in the proximity of amino acids that are conserved across the protein superfam-
ily including ADRB2 (Fig 3). Although rs1800888 has not been previously associated with
asthma, other variants within and upstream of ADRB2 have been associated with both asthma
and bronchodilator drug response.[26–30]

We similarly observed an association with asthma following severe RSV bronchiolitis and
rare nonsynonymous variants in FLG and NCAM1 in European Americans, and NOS1 in Afri-
can Americans. These associations were driven by a single carrier of each variant and thus

Table 6. Results of replication in the BRASS study of four variants associated with asthma following severe RSV bronchiolitis in infancy (number
of asthma cases = 81, number of asthma controls = 126).

Position (hg19) rsID Gene Alleles (A1/A2) Freq A1 Cases Freq A1 Controls P-value

chr1:152283023 NA FLG T/A 0 0 NA

chr5:148206885 rs1800888 ADRB2 T/A 0.016 0.0049 0.31

chr11:113076804 rs35576001 NCAM1 A/G 0 0 NA

chr12:117768154 rs76090928 NOS1 A/G 0 0 NA

doi:10.1371/journal.pone.0142649.t006
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require additional study. FLG encodes the filaggrin protein, which functions in differentiation
of the epidermis and maintaining barrier function.[31] Common variants in FLG have been
associated with atopic dermatitis[32–34], eczema[33,35–38], and asthma.[35,36] NCAM1 is a
neural cell adhesion molecule involved in the proliferation of T-cells and dendritic cells, and is
a member of the immunoglobulin superfamily. While the function of rs35576001 in NCAM1 is
unknown, it is predicted to be probably damaging by PolyPhen2.[39] NOS1 is a neuronal nitric
oxide synthase involved in the synthesis of nitric oxide, which acts as a messenger molecule in
several processes including the neural regulation of smooth muscle.[40] Rs76090928 resides
within the first exon of NOS1, which contains a hypoxia-responsive promotor and is only tran-
scribed in hypoxic conditions.[40] Variants in NOS1 have been associated with atopy[41,42],
total IgE levels[43,44], and asthma.[44–47] However, it is important to note that we did not
account for population structure in our African American samples due to the absence of suffi-
cient genetic data to estimate ancestry. And thus, it remains possible that the association at
NOS1 is due to an imbalance in the proportion of European admixture, rather than a true
genetic association with asthma following severe RSV.

Given that all of our associations were with low frequency and rare variants, and that a
severe form of RSV bronchiolitis in infancy is relatively uncommon (0.5% of RSV bronchiolitis
cases in children< 24 months[48]), we were limited in our ability to replicate our findings in

Fig 3. Structural domains and crystal structure of ADRB2 (protein databank [PDR] structure 2r4r, images from LS-SNP/PDB [51]). (A) Structural
domains of ADRB2; rs1800888 is located in amino acid residue number 164 within a helical transmembrane domain (protein databank [PDB] structure 2r4r)
(B) crystal structure of ADRB2 showing the location of rs1800888; solvent accessibility for the amino acid residue at rs1800888 is 41% (exposed). (C)
Position conservation within protein superfamily (G-protein coupled receptor 1 family), red = high conservation, blue = low; 32% of protein sequences in the
alignment contain the most frequent amino acid residue at rs1800888.

doi:10.1371/journal.pone.0142649.g003
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an independent study. Further, we were limited in our ability to perform more powerful col-
lapsing methods that combine groups of rare variants for association testing (e.g. SKAT[49]),
as data was generated through anonymous pooled sequencing (variants could not be assigned
to an individual within a pool). Therefore, additional studies are required to confirm the role of
the rare variants we identified in the etiology of asthma, and to identify whether there are addi-
tional rare variants that contribute to asthma following severe RSV bronchiolitis in infancy.

It is important to note two limitations of using the ESP as controls in our study. First, given
the heterogeneous clinical characteristics of the ESP samples they cannot strictly be considered
“population controls” as some individuals may have experienced asthma following severe RSV
bronchiolitis in infancy. The goal of the ESP was to identify genetic variation relevant to heart,
lung, and blood disorders in well-phenotyped populations, and contains individuals from clini-
cal studies including 191 African Americans with asthma from the Severe Asthma Research
Program (SARP). This could have lead to rare variants that contribute to the development of
asthma following severe RSV in infancy being more common in the African American ESP as
compared to healthy controls, however this would not have lead to false positive associations,
and is not expected to have a large effect on our power to detect an association.[50] Further-
more, allele frequencies in the 1000 Genomes Project are similar to that observed in the ESP
for the variants we identified (Table 7). Second, different technologies were used to obtain
genotypes in the RBEL study (GoldenGate array) vs. the ESP (next-generation sequencing),
which could have lead to differences in allele frequencies caused by technical artifacts. How-
ever, we are reassured in that rs1800888 is nominally associated with asthma when not includ-
ing the ESP as controls (but rather asthma controls from within the RBEL study itself), and
that all four risk alleles are either absent or less frequent in both the ESP and asthma controls
from within the RBEL study, as compared to asthma cases.

In conclusion, we identified a number of novel, potentially functional nonsynonymous vari-
ants through the sequencing of anonymous pools of asthma cases and controls following severe
RSV bronchiolitis during infancy. Direct genotyping of a subset of these variants identified
four nonsynonymous variants associated with increased risk of asthma following severe RSV
bronchiolitis, including a highly functional rare variant in ADRB2. Additional studies are
needed to confirm these associations and determine the functional consequences of these
genetic variants.

Supporting Information
S1 Table. List of candidate asthma-associated genes.
(DOCX)

S2 Table. Forward and Reverse PCR primers for each amplified region of genomic DNA
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(DOCX)

Table 7. Minor allele frequencies of four nonsynonymous variants associated with asthma following severe RSV bronchiolitis in the ASW, AFR,
and EUR populations from the 1000 Genomes Project, and in European (EA) and African Americans (AA) from the Exome Sequencing Project
(ESP).

Position (hg19) rsID Gene ASW AFR ESP–AA EUR ESP—EA

chr1:152283023 NA FLG NA NA 0 NA 0.0001

chr5:148206885 rs1800888 ADRB2 0 0 0.0032 0.015 0.015

chr11:113076804 rs35576001 NCAM1 0.025 0.022 0.027 0 0.0006

chr12:117768154 rs76090928 NOS1 0 0 0 0 0.004

doi:10.1371/journal.pone.0142649.t007
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