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ABSTRACT: [Cp*RuCl]4 catalyzes the addition of iPr3SiCCX (X = H, Cl) across internal alkynes with formation of 1,3-enyne
or 1-chloro-1,3-enyne derivatives, respectively; the reaction follows an unorthodox trans-addition mode. The well-balanced affinities
of the different reaction partners to the ruthenium catalyst ensure that crossed addition prevails over homodimerization of the
individual components, as can be deduced from spectroscopic and crystallographic data of various intermediates; this includes a
dinuclear complex in which an internal alkyne bridges two [Cp*RuCl] fragments.

The addition of a terminal alkyne across an internal triple
bond is a conceptually appealing yet highly challenging

approach to 1,3-enynes (Scheme 1).1,2 For such a hydro-

alkynylation reaction to become useful, competing homodime-
rization, oligomerization, and/or cyclotrimerization of either
partner must be suppressed and regiocontrol be imposed when
working with unsymmetrical substrates (R1 ≠ R2). The
stereochemical course of the reaction is usually less of an
issue in that cis-hydroalkynylation is observed,1,2 except for
special cases: a notable exception employs biased N-sulfonyl
ynamides, which resulted in net trans-hydroalkynylation.3,4

Even more demanding are related halo-alkynylations.5 The fact
that the C−X bond of the resulting haloenyne product might
react with the catalyst used for its preparation poses an
additional challenge; unsurprisingly, perhaps, the few known
examples uniformly follow a cis-addition mode.6

Outlined below are an efficient trans-hydroalkynylation of
unbiased internal alkynes and the first trans-chloroalkynylation
reactions ever. Since 1,3-enynes in general serve as valuable
building blocks,1,2 the new entry is enabling. This is
particularly true for chloroenynes of type A (X = Cl), as
they comprise adjacent electrophilic and nucleophilic sites
amenable to orthogonal activation. Their dual reactivity can be
harnessed in small-molecule synthesis and material science
alike: the benzannulation strategy leading to polysubstituted

arenes by cycloisomerization/cross-coupling (see below)7,8

and the preparation of π-conjugated oligomers with valuable
optoelectronic properties,9 are deemed representative.
Following up on our investigations into ruthenium-catalyzed

trans-hydrogenation10,11 and trans-hydrometalation12−19 cata-
lyzed by {Cp*RuCl]4 or related complexes, we reasoned that
the reactivity pattern manifested in these unorthodox trans-
formations might be further extended.20 For their activated C−
H bonds, terminal alkynes were deemed promising candidates;
the desirable “crossed” addition mode seemed possible because
[Cp*RuCl] readily forms heteroleptic complexes comprising
two different π-ligands.21,22

To test this hypothesis, various terminal alkynes were
screened (see the SI), but only triisopropylsilylacetylene (1a)
gave good results (Scheme 2).23 In the presence of catalytic
[Cp*RuCl]4, 1a reacts with internal dialkylalkynes to form the
corresponding trans-addition products; the Z:E ratios are
generally excellent. The stereochemistry was assigned by NMR
and confirmed for product 9 by X-ray diffraction (see the SI).
As expected, the functional group tolerance is high, in that
ketones, esters, unprotected alcohols, acetals, aryl and alkyl
halides, as well as cyclopropyl rings, remain intact. Aromatic
substrates, however, react less well, likely because [Cp*Ru]
tends to form kinetically stable η6-arene adducts that may
sequester the catalyst (cf. 6; for further examples, see the SI);
this limitation has precedent in the trans-hydroelementation
reactions cited above.10−20

Unsymmetrical substrates usually afford mixtures of
regioisomers (see the SI), but propargyl alcohols of type 10
provide a handle to control the outcome (Table 1):
[Cp*RuCl]4 favors “proximal delivery” to give the α-trans
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Scheme 1. Challenge of Crossed Hydro(chloro)alkynylation
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addition product, whereas cationic [Cp*Ru(MeCN)3]SbF6
leads to the regio-complementary outcome, although the
overall selectivity is lower. As previously shown for analogous
trans-hydrometalations, proximal delivery is caused by
interligand hydrogen bonding between the [Ru-Cl] group
and the propargylic −OH substituent.18,19 The selectivity can
be further improved by using the bulkier complex 12 in
combination with nBu4NCl,

24 even though the reaction
proceeds more slowly. This result holds the promise that
more systematic ligand tuning will allow for further
optimization.
At this point, however, the search for yet other substrates

amenable to trans-addition was given priority. Gratifyingly,
(chloroethynyl)triisopropylsilane (1b) also reacts well, result-
ing in trans-chloroalkynylation of internal alkyne partners
(Scheme 3);25,26 to the best of our knowledge, this
transformation is unprecedented and the selectivity remarkably
high. The stereochemical outcome was ascertained by NMR
(see the SI). The structure of 21 in the solid state confirmed
the assignment (Figure 1).27

The scope is significantly broader than that of the trans-
hydroalkynylation in that good results were obtained in many
cases even for aromatic and/or unsymmetrical substrates
(Scheme 4). This is particularly true for propynylated arenes,
which gave excellent yields and notably high E/Z-ratios,
independent of whether electron-withdrawing or -donating
substituents were placed on the aromatic ring. Likewise,
propynylated pyridine or thiophene reacted well despite the
heteroatom donor sites. Tolane, in contrast, was the only
alkyne investigated so far in which cis-chloroalkynylation was
truly competitive (23, E:Z = 45:55). Collectively, these
examples illustrate the scope and notable functional group
compatibility of the reaction, which matches the experiences
previously made with various other ruthenium-catalyzed trans-
addition processes.20

The trans-chloroalkynylation of 3-hexyne was also carried
out on 12.2 mmol scale with a reduced catalyst loading of 1.25
mol%. While the yield of 13 remained unchanged (92%),28 the
E/Z-ratio was slightly improved (≥95:5 versus 93:7 at 2.5 mol
% [Cp*RuCl]4); this observation is consistent with the
mechanistic insights outlined below. Likewise, chloroenyne

Scheme 2. trans-Hydroalkynylation

a5 mol% of catalyst. bNMR yield.

Table 1. Catalyst-Dependent Regioselectivity

aIn the presence of nBu4NCl (10 mol%). bThe remainder is the α-cis
isomer.

Scheme 3. trans-Chloroalkynylation of Symmetrical
Alkynesa

a2.5 mol% catalyst, unless stated otherwise. b5 mol% catalyst.

Figure 1. Structure of compound 21 in the solid state. Thermal
ellipsoids at the 50% probability level.27

Journal of the American Chemical Society pubs.acs.org/JACS Communication

https://dx.doi.org/10.1021/jacs.0c08582
J. Am. Chem. Soc. 2020, 142, 18746−18752

18747

http://pubs.acs.org/doi/suppl/10.1021/jacs.0c08582/suppl_file/ja0c08582_si_001.pdf
https://pubs.acs.org/doi/10.1021/jacs.0c08582?fig=sch2&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.0c08582?fig=sch2&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.0c08582?fig=tbl1&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.0c08582?fig=tbl1&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.0c08582?fig=tbl1&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.0c08582?fig=tbl1&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.0c08582?fig=tbl1&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.0c08582?fig=tbl1&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.0c08582?fig=sch3&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.0c08582?fig=sch3&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.0c08582?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.0c08582?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.0c08582?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.0c08582?fig=fig1&ref=pdf
pubs.acs.org/JACS?ref=pdf
https://dx.doi.org/10.1021/jacs.0c08582?ref=pdf


24 was formed on gram scale; after recrystallization, the
material was almost isomerically pure.
The chloroalkenes thus formed are relevant in that they

bring stereodefined tetrasubstituted alkenes into reach, as
illustrated by the iron-catalyzed formation of the polyfunction-
alized product 30 (Scheme 5).29 The π-acid-catalyzed
cycloisomerization of 31 derived from 25c showcases a very
different application: Catalytic PtCl2 affords the corresponding
naphthalene derivative 32, retaining a chloride substituent for
further manipulation;30,31 its iron-catalyzed borylation with

formation of 33 represents just one such possibility.32 The
many other ways of engaging a halide into all sorts of cross-
coupling bring innumerous arene derivatives into reach with
substitution patterns that are difficult to make otherwise.33,34

Equally important is the fact that the concept underlying this
new benzannulation is also applicable to the heterocyclic series,
as illustrated by the formation of chlorobenzothiophene 37.
Further flexibility is gained by the possibility of interchanging
the order of cycloisomerization/cross-coupling, as demon-
strated by the two sequences leading to 35. These enabling
virtues are subject to further study.
The fact that the “crossed” addition prevails over

homodimerization (oligomerization) of either reaction partner
speaks for a well-orchestrated coordination chemistry,
especially since neither substrate has to be used in large
excess. To gain insights, we first studied the interaction of the
individual components with the catalyst (Scheme 6). Addition

of [Cp*RuCl]4 (0.25 equiv) to 1a in CD2Cl2 at −50 °C leads
to a cherry-red solution containing some unbound 1a and a
single new species. Based on the diagnostic deshielding of the
alkyne C-atoms (135.7/137.5 ppm; compare: 85.9/94.8 ppm
in 1a) and the “olefinic” character of the alkyne proton (δH =
8.64 ppm; compare 2.43 ppm in 1a), this species can be safely
assigned as the corresponding π-complex 38.18,19 Its structure
in the solid state (Figure 2) shows the substantial elongation of
the C1−C2 (1.265(3) Å)35 bond, together with the notable
bending of the alkyne away from linearity (H1−C1−C2
144.5(4)°; C1−C2−Si1 153.0(2)°) as the result of substantial
electron back-donation from the filled metal d-orbitals into the
π*-orbitals of the bound alkyne.19 The silyl group is oriented
toward the chlorine ligand, which is favorable on steric as well
as electronic grounds:36 attractive interligand interactions
between a polarized [Ru-Cl] unit and a silyl substituent have
previously been invoked to explain the outcome of various
mechanistically different transformations.18,19,37 The fact that
only a single molecule of 1a is coordinated to the 14-electron
fragment [Cp*RuCl] is of particular relevance, as it leaves a
vacant site for uptake of the reaction partner as necessary for

Scheme 4. trans-Chloroalkynylation of Unsymmetrical
Alkynesa

aOnly the major product isomer is shown (isomer ratio). b5 mol%
catalyst. cNMR yield.

Scheme 5. Downstream Functionalization

Scheme 6. Reactive Intermediates
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crossed addition.38 It is here that the size of the TIPS group is
thought to come into play: slim Me3SiCCH in lieu of 1a is
rapidly consumed by homocyclodimerization39 and is therefore
no suitable substrate for trans-hydroalkynylation. Although 1a
will eventually also homodimerize upon warming, the reaction
is slow enough to leave the desired crossed addition time to
proceed.
Chloroalkyne 1b shows a similar coordination behavior, as

indicated by the massive downfield shifts of the alkyne C-
atoms (141.1/150.6 ppm; compare: 70.9/79.5 ppm in 1b).
Complex 39 also comprises only one alkyne ligand (Figure 3),

featuring the typical signs of partial rehybridization.19,40 When
a solution of this complex in CD2Cl2 is warmed from −50 °C
to room temperature, slow decomposition with formation of
the corresponding conjugated diyne and paramagnetic
[Cp*RuCl2]2

41 is observed.
In contrast, 3-hexyne as prototypical reaction partner for

1a,b leads to two new signal sets when reacted with
[Cp*RuCl]4 (0.25 equiv) at low temperature (Scheme 6).
While one of them certainly corresponds to the corresponding
monoalkyne complex 40, the second species is a [2:1]-adduct
in which two metal fragments ligate the same triple bond.42

Single crystals of putative 41 could not be grown, but
replacement of 3-hexyne by 1-bromo-4-(prop-1-yn-1-yl)-

benzene was met with success. In the resulting dinuclear
complex 43, one massively elongated alkyne (C2−C3 1.332(5)
Å) and the two chlorine atoms bridge the two Ru centers
(Figure 4).43,44

With all individual complexes identified, a 1:1:1 mixture of
[Cp*RuCl]4, chloroalkyne 1b, and 3-hexyne was investigated
with the hope of identifying the heteroleptic bis-alkyne
complex resulting in crossed chloroalkynylation. When mixed
at −50 °C in CD2Cl2, the hexyne-derived complexes 40 and 41
were the major species, whereas the chloroalkyne adduct 39
was minor. Upon gradual warming to room temperature, the
speciation changes in that 40 and 41 disappear and 39 is the
only complex left (product formation commences). Signs of a
mixed complex have not be detected at any point. Re-cooling
of the equilibrated sample to −50 °C does not restore the
original product distribution. Therefore, we conclude that
binding of 3-hexyne is kinetically favored, but the chloroalkyne
complex 39 is thermodynamically more stable.
The finding that an ordinary alkyne can bind two catalyst

fragments simultaneously raised the question as to whether
complex 40 or the [2:1] adduct 41 accounts for product
formation. Variable time normalization analysis45 proved that
the formation of the trans-chloroalkynylation product (E)-13 is
first-order in [Ru] (Figure 5, top), whereas the formation of
the minor cis-isomer shows a second-order dependence (see SI
Figure S28).46 The unexpected finding that the trans- and the
cis-addition follow different rate laws readily explains why the
E/Z-ratio depends on the catalyst concentration (Figure 6). In
this context we reiterate the observation made during scale-up
that lowering of the catalyst loading improved the selectivity to
≥95:5; for comparison, the stoichiometric control experiment
furnished 13 with a poor E/Z-ratio of 64:36.
Furthermore, the consumption of 3-hexyne and the

formation of the trans-addition product 13 show first-order
dependence on the concentration of complex 39. Hence, 39
likely represents the resting state of the catalytic process before
the turnover-limiting step (Figure 5, bottom).
Since a “loaded” complex carrying two different alkynes has

not been observed experimentally, we are currently not in the
position to rigorously exclude an outer-sphere process, in
which only the chloroalkyne is activated by coordination to
ruthenium and is then attacked by 3-hexyne. Although indirect

Figure 2. Structure of 38 in the solid state; thermal ellipsoids at the
50% probability level. The dotted green line indicates an attractive
interligand interaction between the [Ru-Cl] unit and the silyl group.36

Figure 3. Structure of 39 in the solid state; thermal ellipsoids at the
50% probability level. The dotted line indicates an attractive
interligand interaction.40 Selected bond lengths (Å) and angles
(deg): C1−C2 1.279(2), C1−Cl2 1.70(1), Cl2−C1−C2 141.4(5),
C1−C2−Si1 152.7(1).

Figure 4. Structure of complex 43 in the solid state; thermal ellipsoids
at the 50% probability level. Selected bond lengths (Å) and angles
(deg): C2−C3 1.332(5), C1−C2−C3 147.2(4), C2−C3−C4
142.3(4).
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evidence speaks for an inner-sphere mechanism,47 the final

answer must await further study.
In summary, we demonstrate herein that ruthenium-

catalyzed alkyne trans-addition chemistry can be expanded

beyond trans-hydrogenation and trans-hydrometalations. The

ease with which iPr3SiCCX (X = H, Cl) add across internal

alkynes in a highly selective trans-mode is remarkable and

suggests that further extensions of this unorthodox reactivity

paradigm might be possible.48 This aspect is subject to ongoing

studies in this laboratory.
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