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Abstract

Exertional heat stroke (EHS) is a life-threatening illness and an enduring problem

among athletes, military servicemen and -women, and occupational labourers who

regularly perform strenuous activity, often under hot and humid conditions or

when wearing personal protective equipment. Risk factors for EHS and mitigation

strategies have generally focused on the environment, health status, clothing, heat

acclimatization and aerobic conditioning, but the potential role of nutrition is largely

underexplored. Various nutritional and dietary strategies have shown beneficial

effects on exercise performance and health and are widely used by athletes and other

physically active populations. There is also evidence that some of these practices may

dampen the pathophysiological features of EHS, suggesting possible protection or

abatement of injury severity. Promising candidates include carbohydrate ingestion,

appropriate fluid intake and glutamine supplementation. Conversely, some nutritional

factors and low energy availability may facilitate the development of EHS, and

individuals should be cognizant of these. Therefore, the aims of this review are to pre-

sent an overview of EHS along with its mechanisms and pathophysiology, discuss how

selected nutritional considerations may influence EHS risk focusing on their impact
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on the key pathophysiological processes of EHS, and provide recommendations for

future research. With climate change expected to increase EHS risk and incidence in

the coming years, further investigation on how diet and nutrition may be optimized to

protect against EHSwould be highly beneficial.
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1 INTRODUCTION

Excessive heat exposure can impose significant physiological strain

and potentially result in heat-related illnesses. Heat stroke is the

most severe manifestation of heat-related illnesses that can result in

morbidity and mortality (Bouchama et al., 2022). Classic heat stroke

results from passive environmental heat exposure and typically occurs

in vulnerable and compromised populations (e.g., infants and elderly),

whereas exertional heat stroke (EHS) impacts individuals engaged in

physical activity in cool to hot environments (Epstein & Yanovich,

2019). Athletes, military servicemen and -women, and occupational

labourers (e.g., firefighters, construction and agricultural workers) who

regularly perform strenuous activities, often during high-heat stress

conditions, are populations who report the highest prevalence of EHS

(Epstein & Yanovich, 2019).

EHS is a leading cause of sudden non-traumatic death among

athletes (Hosokawa et al., 2021; Kucera et al., 2020). Between 1995

and 2020, a total of 70 football players in the USA died of EHS

(Kucera et al., 2020). Furthermore, the incidence of near-fatal EHS

during endurance events in warm weather was reportedly 10 times

greater than that for serious cardiac events (Yankelson et al., 2014).

In military and occupational settings, the US armed forces reported

475 cases of EHS in 2020, while at least 285 heat-related deaths

occurred among construction workers between 1992 and 2016 (Dong

et al., 2019; US Armed Forces, 2021). Notably, the high prevalence

and incidence of chronic kidney disease and kidney injury among

agricultural workers may render this population more vulnerable to

heat stress (Butler-Dawson et al., 2019; Johnson et al., 2019). As global

mean temperatures and humidity and the number of extreme weather

events continue to rise due to climate change, the incidence and risk

of heat stroke is expected to increase as more individuals become

exposed to dangerous levels of heat stress (Ebi et al., 2021).

Various risk factors for EHS and effective strategies for pre-

vention and mitigation are available (Pryor et al., 2020). These

typically focus on environmental conditions, health status, clothing,

heat acclimatization and aerobic conditioning, but the potential role of

nutrition is seldom considered, despite its importance in overall health.

Thus, we will discuss how nutrition can influence the development of

EHS, specifically in relation to its potential impact on the underlying

mechanisms of EHS.

2 EXERTIONAL HEAT STROKE

2.1 Definition

Though one of the oldest recognized medical conditions, a universally

accepted definition of EHS is still lacking (Laitano et al., 2019). EHS

is commonly characterized by signs and symptoms of marked central

nervous system disturbances (e.g., delirium, stupor, combativeness,

unconsciousness) with high deep-tissue temperatures (usually, but not

always, >40◦C) resulting from strenuous exercise, often in hot/humid

environments (Roberts et al., 2021). Clinical signs of organ (e.g., kidney,

liver) and tissue (e.g., gut, muscle) damage are also commonly observed

(Bouchama et al., 2022). As a medical emergency, EHS can lead to

multiple-organ failure and even death without early identification and

rapid reversal of hyperthermia (Filep et al., 2020). Although most

EHS victims survive, EHS can have long-term sequelae and adverse

health effects (Wallace et al., 2007). Recent epidemiological data from

heat stroke survivors show a ∼2.5 times and 4.4 times increased

risk of cardiovascular and kidney disease, respectively, during a 14-

year follow-up (Tseng et al., 2019; Wang et al., 2019). Permanent

neurological dysfunction has also been observed in ∼30% of EHS

survivors (Lawton et al., 2019; Yang et al., 2017). EHS is sometimes pre-

ventable and if victims undergo immediate cooling, the pathology can

bemarkedly reduced (Filep et al., 2020; Roberts et al., 2021).

High motivation (e.g., during competitions) and peer or

organizational pressure are theoretical risk factors of EHS as

it can drive individuals to override internal cues (e.g., excessive

fatigue, dizziness, nausea) to modify work rate or cease exercise and

instead continue exerting themselves (Corbett et al., 2018; Epstein

& Yanovich, 2019 Stacey et al., 2015). Other common risk factors

include environmental conditions (e.g., high ambient heat and/or

humidity), lack of heat acclimatization, low physical fitness and high

body mass index (Westwood et al., 2021). However, EHS can impact

low-risk persons who are apparently practicing sound heat mitigation

procedures (Gardner & Kark, 2001; Stacey et al., 2015). EHS often

occurs under conditions that the victim has been exposed to many

times before or while others are concurrently exposed to the same

condition without incident, which suggests that these victims were

inherently more vulnerable that day and/or some unique event or

illness triggered the heat injury (Carter et al., 2007).
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2.2 Physiology and pathophysiological features

During physical work in the heat, the most significant physio-

logical burden is cardiovascular support of high skin blood flow

for heat dissipation while compensatory mechanisms attempt to

maintain adequate blood pressure to perfuse tissues (Rowell, 1974).

Warm to hot skin is associated with a greater cutaneous vaso-

dilatation (skin blood flow) and venous compliance (skin blood

volume), which displaces blood away from the central circulation

augmenting cardiovascular strain (Kenefick et al., 2010). As ambient

temperature increases, sweat evaporation becomes the primary heat-

loss mechanism during exercise, resulting in high rates of sweat loss.

If excessive fluid losses are not replaced, the reduced plasma volume

(with hyperosmolality from dehydration) further elevates thermal

(body temperature) and cardiovascular strain (Sawka et al., 2015). As

a result, splanchnic and renal blood flow are reduced by strenuous

exercise, severe heat stress and dehydration (Rowell, 1974). When

these compensatory responses are insufficient, skin, muscle and even

brain blood flow are compromised, augmenting hyperthermia and

increasing the risk of EHS (Périard et al., 2021).

The greater the exercise intensity and/or heat stress, the greater

the hyperthermia, as evidenced by body core temperature (Tc) and

organ and skeletal muscle temperatures (Lee et al., 2010; Sawka et al.,

2011). Furthermore, faster running pace (greater exercise intensity)

is associated with an increased risk of EHS (Breslow et al., 2021;

Grundstein et al., 2019). Active skeletal muscle and organ/tissue

temperatures often exceed Tc values during physical exercise (Jay

et al., 2007; Nybo et al., 2002). Excessively high tissue temperatures

(heat shock: >41◦C) can produce direct tissue injury; the magnitude

and duration of the heat shock influence whether cells respond by

adaptation (acquired thermal tolerance), injury or death (apoptotic

or necrotic). Heat shock, ischaemia, and systemic inflammatory

responses can result in cellular dysfunction, disseminated intravascular

coagulation and multiorgan dysfunction syndrome (Bouchama et al.,

2022).

Figure 1 provides a conceptual progression of ‘normal’ physio-

logical responses to exertional-heat stress that progresses to

pathophysiological responses and culminate in EHS. When these

physiological perturbations are excessive, theywill induce pathological

events including increased intestinal permeability, endotoxaemia,

exaggerated acute phase response and systemic inflammatory

response syndrome (SIRS), coagulopathy, and cell death (Bouchama

et al., 2022; Sawka et al., 2011). Of particular concern is intestinal

barrier damage accentuating endotoxin leakage and potentiating

liver damage, endotoxaemia, SIRS and sepsis (Lim, 2018). Another

possibility is that liver damage and/or exercise-induced immuno-

suppression may promote endotoxaemia (Laitano et al., 2019).

Furthermore, reduced cerebral blood flow, combined with hyper-

thermia, abnormal local metabolism and coagulopathy, can lead

to dysfunction of the central nervous system. Heat-induced brain

abnormalities include cerebral oedema, Purkinje cell damage, loss

of grey and white matter discrimination, and microhaemorrhages

(Laitano et al., 2019).

New Findings

∙ What is the topic of this review?

The potential role of nutrition in exertional heat

stroke.

∙ What advances does it highlight?

Certain nutritional and dietary strategies used by

athletes and workers may exert a protective effect

the pathophysiological processes of exertional heat

stroke, whereas others may be detrimental. While

current evidence suggests that some of these

practices may be leveraged as a potential counter-

measure to exertional heat stroke, further research

on injury-related outcomes in humans is required.

3 NUTRITION AND EHS RISK

A large proportion of athletes, military personnel and working adults

utilize nutritional supplements and dietary strategies to optimize

health and performance (Knapik et al., 2016, 2021;Mishra et al., 2021).

Specific recommendations for the application of these interventions

have been promoted by the International Olympic Committee,

American College of Sports Medicine and Union of European Football

Associations (Collins et al., 2021; Maughan et al., 2018; Thomas

et al., 2016). Contextual factors have huge importance on the

guidance provided in sports nutrition position statements; however,

to date there has been limited guidance for nutritional counter-

measures that could help prevent EHS during arduous physical

activity. Furthermore, certain supplements and dietary practices

may increase EHS risk and should be cautioned against (Westwood

et al., 2021). The major pathophysiological features of EHS that are

likely modifiable by nutrients and diet are cardiovascular stability,

hydration, intestinal permeability and microbial translocation, cellular

thermotolerance, systemic inflammation and/or immune activation,

and central drive (Figure 1). The following section provides an over-

view of selected nutritional factors (excluding pharmaceuticals) that

may have protective (Table 1) or harmful (Table 2) effects on EHS

pathophysiology.

3.1 Protective strategies

3.1.1 Carbohydrate

Carbohydrate is themainmacronutrient in thewesterndiet,with inter-

national health authorities widely recommending 45–75% of habitual

energy intake from carbohydrate (Buyken et al., 2018). Sport nutrition

guidelines recommend consuming 30–90 g h−ź of carbohydrates
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Environmental heat stressPhysical exercise

Body temperatures
(Core and skin)

Ischaemia
ROS and RNS

Increased intestinal
permeability

Injury
Coagulopathy

Death
Apoptosis
Necrosis

Tolerance
HSP

Stress kinase

Cell heat shock and ischaemia
(brain, endothelium, intestine, hepatic,

renal, myocardium, muscle)

Microbial
translocation

EHS, CNS and organ damage
via fever, shock, DIC, haemorrhage, 

stroke and rhabdomyolysis

Cardiovascular responses

NO

Splachnic organs constrict
Intestine, stomach, liver,
kidney, spleen, pancreas

Skin
dilates

Muscle
dilates

Dehydration

Exaggerated acute
phase response

F IGURE 1 Conceptual pathogenesis of the progression from ‘normal’ exercise heat stress to exertional heat stroke. CNS, central nervous
system; DIC, disseminated intravascular coagulation; ROS, reactive oxygen species; RNS, reactive nitrogen species; NO, nitric oxide; HSP,
heat-shock protein. (Adapted from Sawka et al., 2012)

during exercise lasting ≥90min to optimize performance and recovery

(Jeukendrup, 2014).

The influence of acute carbohydrate availability on EHS risk has

never been directly examined in either humans or animals, although

carbohydrate is well understood to protect intestinal permeability,

skeletal muscle injury, systemic cytokinaemia, innate immune function

andperceivedphysical exertion in response togeneral aerobic exercise.

Many studies report 30–108 g h−ź of liquid carbohydrate (i.e., glucose,

sucrose, sucrose + glucose, or maltodextrin + fructose) increases

splanchnic perfusion and protects intestinal permeability in response

to 1–2 h moderate-intensity aerobic exercise (Flood et al., 2020;

Jonvik et al., 2019 Snipe et al., 2017). It is also well established that

30−60 g h−ź of carbohydrate attenuates the rise in some plasma cyto-

kines (interleukin (IL)-1ra, IL-6 and IL-10) during exercise (Nieman

et al., 2003). Conversely, low pre-exercise carbohydrate availability

increases cytokine secretion (Nieman et al., 2003). Several days on a

low (<20% total energy intake) versus high (>60% total energy intake)

carbohydrate diet increases plasma cytokines and blunts leukocyte

function during fasted exercise, whereas such effects are reduced

after ingestion of a pre-exercise mixed-macronutrient meal (Bishop

et al., 2001). From a whole-body integrated perspective, carbohydrate

ingestion during exertional-heat stress does not influence Tc elevation

during physical exercise, despite being a more efficient energy sub-

strate than fat (Jentjens et al., 2006).

Overall, 30–90 g h−ź carbohydrate ingestion during subclinical

exercise favourably impacts intestinal permeability, plasma cytokine

concentrations and leukocyte function, which could protect against

EHS. Alternatively, carbohydrate supplementation may elevate EHS

risk by increasing central drive, lowering perceived physical exertion

and extending exercise capacity in the heat (Carter et al., 2003).

Ingestion of large doses of carbohydrate, particularly gels, bars

and high-osmolality beverages, can cause vomiting and/or diarrhoea

during exercise, which, without adequate fluid replacement to prevent

dehydration, can exacerbate EHS risk (deOliveira & Burini, 2014).

3.1.2 Hydration

Adequate hydration is essential for optimizing physiological and cell

function, and both cognitive and physical performancewith heat stress
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TABLE 1 Summary of nutritional strategies that may help protect against exertional heat stroke (EHS), their mechanisms of action and
considerations

Dietary intervention

or supplement Dosing

Potential mechanisms of protection

against EHS Considerations

Carbohydrate 30–90 g h−1 during physical

activity

∙ ↓ Intestinal permeability (Flood et al.,

2020; Jonvik et al., 2019; Snipe et al.,

2017)
∙ ↓Cytokinaemia (Bishop et al., 2001;

Nieman et al., 2003)
∙ ↑ Leukocyte function (Bishop et al., 2001)

∙ ↑Central drive and ↓ perceived

effort may increase EHS risk (Carter

et al., 2003)
∙ Large dosesmay induce GI

symptoms (deOliveira & Burini,

2014)

Hydration Euhydration before exercise,

individualized drinking

plan during activity (Burke,

2021)

∙ ↑Cardiovascular stability (Montain &

Coyle, 1992; Trangmar &

Gonzalez-Alonso, 2017)
∙ ↓ Intestinal and blood–brain barrier

permeability (Costa et al., 2019;Watson

et al., 2006)
∙ ↓Acute kidney injury (Chapman et al.,

2020)

∙ Avoid pre-exercise alcohol (Elamin

et al., 2014; Hobson &Maughan,

2010)
∙ Avoid over-drinking during exercise

(Hew-Butler et al., 2017)

Glutamine 0.3−0.9 g kg−1,>6 h before

exercise for≥1 day

∙ ↑ Intracellular HSP70 (Zuhl et al., 2014,

2015)
∙ ↓ Intestinal permeability (Pugh et al.,

2017; Zuhl et al., 2014, 2015)

∙ Higher dosesmay induce GI

symptoms (Ogden et al., 2020)
∙ No beneficial effect at low doses

(Ogden et al., 2021; Pugh et al.,

2017)

Bovine colostrum 20 g day−1 for 14 days ∙ ↓ Intestinal permeability and epithelial

injury (Davison et al., 2016;March et al.,

2019)

∙ Less effective with greater

exertional-heat stress (McKenna

et al., 2017;Morrison et al., 2014)

Antioxidants

(flavonoids,

curcumin, ascorbic

acid)

∙ May ↓ intestinal permeability andmicrobial translocation, but findings are inconsistent (Ashton et al., 2003; Kuennen

et al., 2011; Lee et al., 2022; Szymanski et al., 2018)
∙ More evidence is required

Probiotics ∙ No beneficial effects in humans (Mooren et al., 2020; Pugh et al., 2019, 2020; Shing et al., 2014)
∙ May ↑ endotoxaemia and cytokinaemia (Gill et al., 2016)
∙ More evidence is required

Arginine ∙ No beneficial effects in humans (Buchman et al., 1999)
∙ More evidence is required

GI, gastrointestinal; HSP, heat-shock protein. [Correction made on 28 June 2022, after first online publication: Incorrect references were cited in Table 1;

the correct references have been cited in this version.]

TABLE 2 Summary of ergogenic aids and their potential adverse effect on exertional heat stroke (EHS) pathophysiology

Ergogenic supplement/aid Dosing Potential harmful effects on EHS risk

Sodium bicarbonate (Grgic et al.,

2021)

0.2−0.5 g kg−1 before exercise ∙ May induce diarrhoea and/or vomiting, potentially leading to

dehydration

Oral menthol (mouth-rinsing)

(Barwood et al., 2020)

0.1−0.5 g l−1 ∙ ↓ Thermal sensationmay increase the risk of exceeding safe

Tc levels

Dietary nitrate (beetroot)

(Maughan et al., 2018)

200-300mg before exercise or for

>3 days

∙ May induce GI discomfort (nausea)
∙ May ↑ Tc responses to exercise-heat stress (Kuennen et al.,

2015;McQuillan et al., 2018)

Creatine 20 g day−1 for 5 days, then 3−5 g

day−1 (Maughan et al., 2018)

∙ No adverse effects on exercise-heat tolerance or hydration

status (Lopez et al., 2009)
∙ Unlikely a concern for EHS

GI, gastrointestinal; Tc, body core temperature. [Correction made on 28 June 2022, after first online publication: Incorrect references were cited in Table 2;

the correct references have been cited in this version.]
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(Périard et al., 2021; Wittbrodt & Millard-Stafford, 2018). However,

sweat losses during physical activity often outpace fluid intake, leading

to a progressive loss of body water or dehydration that, if substantial,

exacerbates physiological strain and if excessive can predispose to EHS

and possible death (Adolph, 1947; Périard et al., 2021).

Hydration is often considered as an important strategy to alleviate

the risk of EHS (Racinais et al., 2015). Proper fluid and electrolyte

intake during physical work/exercise to avoid excessive dehydration,

especially in hot conditions, may protect against EHS by mitigating

hyperthermia, sustaining cardiovascular stability and supporting organ

and tissue perfusion (Montain & Coyle, 1992; Trangmar & Gonzalez-

Alonso, 2017). Maintaining euhydration (normal level of total body

water) was also shown to attenuate exercise-associated increases in

intestinal permeability, blood–brain barrier permeability and acute

kidney injury, comparedwith dehydration (Chapman et al., 2020; Costa

et al., 2019; Watson et al., 2006). In heat-exposed sugarcane cutters,

an association between dehydration and a higher incidence of acute

kidney injury was found, whereas hydration interventions appeared

somewhat protective (Butler-Dawson et al., 2019; Glaser et al., 2020).

Although adequate rehydration during exertional-heat stress is

beneficial, the role of dehydration in many EHS cases is unclear.

Dehydration was not found to be a contributing factor in 83% of

military EHS cases, while marked dehydration (∼ 5% body mass loss)

has been reported in endurance runners competing in warm/humid

climates without ill effects (Carter et al., 2005; Tan et al., 2021). Non-

etheless, individuals should ensure they begin physical work/exercise

in a euhydrated state. Prior alcohol consumption should also be

avoided, as it may increase intestinal permeability as well as induce

diuresis (Elamin et al., 2014; Hobson & Maughan, 2010). Regarding

fluid and electrolyte replacement strategies during physical activity,

an individualized approach based on contextual and personal factors

would likely be optimal (Burke, 2021). Caution should also be exercised

to avoid drinking in excess of sweat losses (gain in body mass) which

may lead to exercise-associated hyponatraemia (Hew-Butler et al.,

2017).

3.1.3 Glutamine

Glutamine is a conditionally essential nutrient, where supplementation

prevents nutritional deficiency during extreme physiological stress

(Wischmeyer et al., 2014). Although required for several important

regulatory functions (e.g., cell proliferation, acid–base regulation,

intracellular heat-shock protein expression), general sports nutrition

guidelines do not presently recommend glutamine to athletic

populations (Bermon et al., 2017).

The influence of glutamine on EHS risk has not been directly

examined in humans, though glutamine supplementation reduces

mortality from classic heat stroke in rats. These effects that were

attributed to increased cellular heat-shock protein expression across

multiple organs and blunted intestinal permeability (Singleton &

Wischmeyer, 2006). In humans, glutamine consumed either over

7 days or as a single acute bolus (0.9 g kg−1) 2 h before exertional-

heat stress enhanced intracellular heat-shock protein 70 (HSP70)

concentrations (in peripheral blood mononuclear cells) and blunted

intestinal permeability (Pugh et al., 2017; Zuhl et al., 2014, 2015).

However, this supplementation strategy is poorly tolerated in some

individuals (Ogden et al., 2020). Lowering the glutamine dose to

≤0.3 g kg−1 improves tolerance, but has no meaningful protective

effects (Ogden et al., 2021; Pugh et al., 2017). Available data do not

indicate any influence of glutamine supplementation on Tc elevation

during aerobic exercise in humans (Ogden et al., 2021; Pugh et al.,

2017; Zuhl et al., 2014).

Ignoring tolerance constraints associated with high-dose glutamine

supplementation, a multi-day supplementation protocol that ceases

>6 h prior to exertional-heat stress could offer some protective

benefits. Whether glutamine supplementation influences the

development of cellular thermotolerance with heat acclimation is

an important question that warrants clarification.

3.1.4 Bovine colostrum

Bovine colostrum is themilk produced by themammary glands of dairy

cows during the initial 24–48 h following birth. It is a rich natural

source of macro- and micronutrients, immunoglobulins, hormones

and peptides with anti-microbial, immune modulatory and/or growth-

factor activity (Playford & Weiser, 2021). Bovine colostrum has

received recognition in sports nutrition guidelines as an emerging

supplement that may support immune health (Bermon et al., 2017).

The influence of bovine colostrum on EHS risk has never been

directly examined in either humans or animals, but does impact several

processes involved in the pathophysiology of EHS in human subclinical

exercise models, particularly intestinal permeability. Two weeks of

bovine colostrum supplementation (20 g day−1) had clear beneficial

effects on small intestinal permeability and epithelial injury in response

to 20 min of high-intensity running under mild heat strain, but had

little or no impact during more pronounced heat strain (Davison et al.,

2016; March et al., 2019; McKenna et al., 2017). Similarly, 7 days of

supplementation at a higher dose (1.7 g kg day−1) did not improve small

intestinal epithelial injury or plasma inflammatory cytokine profile (IL-

6, IL-8 or IL-10) after 75min exercise in a 30◦Cambient environment in

humans, but offered good protection of intestinal permeability in a rat

model of classic heat stroke (Morrison et al., 2014; Prosser et al., 2004).

Finally, 5 weeks of bovine colostrum (10 g day−1) had no influence

on serum IL-6, IL-10, tumour necrosis factor-α (TNF-α), interferon-
γ or IL-12p40 concentrations following a 40 km cycling time trial in

temperate conditions (Shing et al., 2007). Available data donot indicate

any influence of bovine colostrum supplementation on Tc elevation

from physical exercise in humans (Davison et al., 2016; March et al.,

2019;McKenna et al., 2017;Morrison et al., 2014; Shing et al., 2007).

Whilst evidence does not currently support the use of bovine

colostrum to mitigate the risk of EHS by protecting intestinal integrity

or attenuating cytokinaemia, further research is still warranted

focusing on specific doses, timings and product formulations in relation

to bioactivity.
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3.1.5 Antioxidants

Large concentrations of reactive oxygen species (ROS) and reactive

nitrogen species (RNS) – unstable molecules with a missing electron

which can damage various cellular components – are produced during

arduous exercise by skeletal muscle and leukocytes (King et al., 2016).

Antioxidants are chemical compounds and enzymes that exist as a

natural means of quenching excessive ROS/RNS. Proponents of anti-

oxidant supplementation argue that dietary intervention is required to

prevent oxidative stress, though evidence is inconclusive on whether

excessive production in response to exercise is even detrimental to

human health (Bermon et al., 2017). Circumstances in which anti-

oxidant supplementation could be recommended are in preventing

nutritional deficiencies and during severe exertional-heat stress (King

et al., 2016). To date, certain antioxidants have shown some protective

effects from classic heat stroke in rats and subclinical exertional-heat

stress in humans, though results are inconsistent.

Quercetin is a flavonoid polyphenol that is highly concentrated

in many fruits and vegetables. In rats, quercetin administration (15–

30 mg kg−1) 1 h before heat stroke increased intracellular anti-

oxidant capacity across several organs, which had a favourable effect

on multi-organ injury, systemic pro-inflammatory cytokines, peak Tc
and survival rate (Chen et al., 2014; Lin et al., 2017). At larger

doses (∼ 400 mg kg−1), however, quercetin inhibited cellular thermo-

tolerance without influencing plasma cytokine concentrations, overall

increasing mortality (Lam et al., 2013; Yan et al., 2017). Inconsistent

results with quercetin supplementation have also been reported in

humans. For example, 3 weeks of quercetin (1 g day−1) had no

influence on plasma cytokine responses to 3 h of moderate-intensity

cycling, but a single 2 g dose blunted intestinal permeability, micro-

bial translocation and plasma TNF-α following 40 min of exertional-

heat stress (Kuennen et al., 2011; Nieman et al., 2007). One recent

human study reported that 7 days’ supplementationwith anthocyanin-

rich blackcurrant extract, another flavonoid antioxidant, protected

intestinal permeability in response to exertional-heat stress; however,

these benefits did not extend to blunted microbial translocation or

systemic inflammation (Lee et al., 2022).

Curcumin is the principal curcuminoid of turmeric and is a popular

spice. In rats, curcumin supplementation at increasing doses (50, 100

and 200 mg kg−1) for 7 days prior to classic heat stroke attenuated

intestinalmicrobial translocation in a dose-dependentmanner (Li et al.,

2020). In humans, 3 days of curcumin supplementation (0.5 g day−1)

blunted intestinal injury in response to 1 h of exertional-heat stress,

but had no meaningful influence on plasma cytokine concentrations

(Szymanski et al., 2018).

Ascorbic acid (vitamin C) is an essential vitamin. The impact

of ascorbate acid on oxidative stress-related diseases is widely

considered to be marginal because of its poor oral bioavailability

and rapid clearance (Padayatty et al., 2004). In mice, parenteral

administration of ascorbic acid (100–500 mg kg−1) immediately

following onset of classic heat stroke drastically improved 24-h

survival rates and markedly attenuated heat stroke-induced systemic

inflammation, coagulation, oxidative tissue injury and multiple-

organ injury (Chang et al., 2016). In humans, oral ascorbic acid

supplementation (1 g) blunted intestinal microbial translocation when

ingested 2 h before graded-intensity exercise to fatigue, but a similar

dose supplemented over 7 days did not influence plasma cytokines in

response to running in the heat (Ashton et al., 2003; McAnulty et al.,

2004). Available data do not indicate any influence of antioxidant

supplementation on Tc elevation from physical exercise (Cheuvront

et al., 2009; Kuennen et al., 2011; McAnulty et al., 2004; Szymanski

et al., 2018).

Overall, inconsistent data are presented for the influence of anti-

oxidant supplementation on EHS risk, which can be attributed to

differences in the supplementation regime (i.e., type, timing and dose),

severity of heat strain and selected outcomemeasures.

3.1.6 Probiotics

Probiotics are live microorganisms that, when administered in

adequate amounts, confer a health benefit to the host. Probiotics

are best known for microbiome management in the intestinal tract,

though they are said to also support healthy immune, central nervous

system and endocrine function (Sanders, 2008). Therefore, the

consumption of probiotic supplements and/or fortified food products

has become popular in athletes during periods of intensified training,

competition or ill-health (Möller et al., 2019). Several recent meta-

analyses conclude that probiotics do not support intestinal health in

the general population, though more promising evidence has been

published using specific probiotic formulations (Parker et al., 2018).

The key pathways for how probiotics could mitigate EHS risk include

inhibition of pathogenic bacterial overgrowth by competition for

binding sites on mucins and/or epithelial cells, increased neutralizing

of mucosal immunoglobulin and antimicrobial protein secretion,

increased electrolyte and water absorption, and reduced intestinal

permeability (Armstrong et al., 2018).

The influence of probiotics on EHS risk has not been directly

examined in humans, though probiotic supplementation (Bacillus

licheniformis) was reported to reducemortality in rats. Mechanistically,

Bacillus licheniformis lowered peak heat strain, increased intestinal

tight-junction protein expression, and alleviated multiple-organ injury

(intestine, kidney, liver and skeletal muscle) and systemic cytokinaemia

(Li et al., 2021). This conclusion is consistent with two earlier rat

studies involving subclinical passive hyperthermia (peak Tc = 40.3 ±

0.2◦C) and exhaustive exercise (peak Tc = 39.3 ± 0.3◦C), where

2 days of Bacillus subtilis supplementation (108 colony-forming units

(CFU) day−1) entirely preventedmorphological intestinal injury, micro-

bial translocation and cytokinaemia (Ducray et al., 2020; Moore

et al., 2014). Less favourable results have been reported in humans,

where various probiotic formulas have failed to influence intestinal

permeability, hepatic injury, microbial translocation, cytokinaemia and

Tc in response to sub-clinical exercise (Mooren et al., 2020; Pugh et al.,

2019, 2020; Shing et al., 2014). In one study, 7-day supplementation

with an increased dose of Lactobacillus casei (45 × 1011 CFU day−1)

actually worsened plasma endotoxin and TNF-α concentrations in
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response to 2 h of moderate-intensity running in a 34◦C ambient

environment (Gill et al., 2016).

Prebiotics are non-digestible dietary components that have

beneficial effects for the host through affecting the growth and/or

activity of the intestinal microbiota. To date, no research has been

undertaken on the impact of prebiotic supplementation on physio-

logical responses relevant to EHS.

In summary, several weeks of probiotic supplementation has little

influence on any pathophysiological feature of EHS in humans, though

research in rats has returned more positive outcomes. It is not

possible to elucidate whether inconsistent results are attributable

to differences between probiotic formulations, species or research

design. Future research should replicate the exact probiotic inter-

vention demonstrated in rats to human exertional-heat stress.

3.1.7 Arginine

Arginine is also a conditionally essential nutrient, where

supplementation prevents nutritional deficiency in response to

extreme physiological stress (Drover et al., 2011). Arginine is required

for several important regulatory functions, including nitrogen trans-

port, urea synthesis and creatine synthesis. Supplementation with

arginine has become an increasingly popular strategy to improve

aerobic exercise performance, though specific nutritional guidelines

do not currently exist (Viribay et al., 2020).

The influence of arginine on EHS risk has not been directly

examined inhumans. In rodents, argininemayboth increase and reduce

mortality from classic heat stroke, depending on the dose and timing

of administration. Intravenous injection of arginine (30−120 g kg−1)

either 1 h before or following the onset of heat stroke increased

mortality, whereas 120 g kg−1 injected 2−4 h following heat stroke

initiated the repair pathway (e.g., HSP70, p53, Th2 cytokines) and pre-

vented mortality (Chatterjee et al., 2005; Chen et al., 2008; Poduval

et al., 2003). Favourable results are likely attributable to a shift in

arginine metabolism towards arginase with a concomitant decrease

in the expression of inducible nitric oxide synthase (Chatterjee et al.,

2005). When administered prior to exhaustive exertional-heat stress

(130 g day−1 for 7 days), arginine blunted intestinal permeability and

microbial translocation inmice (Costa et al., 2014).

There is currently a lack of relevant data examining the influence

of arginine supplementation on clinically relevant outcome measures

in humans, except for one study reporting no influence of 14 days’

supplementation on intestinal permeability following a 42.2-km

marathon (Buchmanet al., 1999).When ingestedbefore exercise, other

nitric oxide precursors like sodium nitrate and beetroot juice have

little impacton intestinal permeability, butmayaccelerate theexercise-

induced Tc elevation via reduced cutaneous vasodilatation (Jonvik

et al., 2019; Kuennen et al., 2015;McQuillan et al., 2018).

At present, acute pre-administrationof arginine, citrulline or dietary

nitrate cannot be recommended as a strategy to help prevent EHS.

The effects of post-exposure arginine in rodents are interesting,

though later stage clinical trials are required before recommendations

aremade.

3.2 Harmful factors

3.2.1 Ergogenic aids

In 1994, the US Congress reduced the ability of the Food and

Drug Administration (FDA) to regulate the manufacture and sale

of nutritional products (US Public Law no. 103-417), resulting

in potentially dangerous ingredients being included in nutritional

supplements used by athletes and workers. Since 1994, an increased

number of fatal EHSs in athletes has been reported with concern that

use of dietary supplements may be responsible (Bailes et al., 2002).

Indeed, the use of ephedrine-containing dietary supplements has been

implicated as a contributing factor in previous EHS cases, including

one fatality (Charatan, 2003;Oh&Henning, 2003). Ephedrine alkaloids

may induce thermoregulatory dysfunction and adverse cardiovascular

events while masking fatigue (Bailes et al., 2002; Landry, 2003). The

FDA has since banned the sale of supplements containing ephedrine

alkaloids (FDA, 2004). Of note, caffeine, a widely used (and legal)

stimulant among athletes and adults, may also increase EHS risk as it

reduces perception of effort, fatigue and pain, and may exacerbate Tc
elevation during exercise in the heat (Guest et al., 2021; Peel et al.,

2021). However, there is no evidence of caffeine directly contributing

to EHS.

The International Olympic Committee has approved a list of dietary

supplements with evidence for being ergogenic (Maughan et al.,

2018). However, aside from their benefits on performance, some of

these supplements have side effects that may make EHS more likely

(Table 2). Sodium bicarbonate may induce diarrhoea and/or vomiting

and potentially cause dehydration (Grgic et al., 2021). Gastrointestinal

symptoms with dietary nitrate are also possible. Oral menthol (mouth

rinsing) may increase EHS risk through reduced thermal sensation

and misjudgement of one’s internal thermal state (Barwood et al.,

2020; Stevens et al., 2018). Creatine monophosphate was previously

speculated to impair heat dissipation, exercise-heat tolerance, and

induce fluid imbalance and renal damage, but thesewere subsequently

not confirmed (Bailes et al., 2002; Gualano et al., 2012; Lopez et al.,

2009). As such, creatine is unlikely a concern regarding EHS.

3.2.2 Low energy availability

Low energy availability during training and competitions is common

among athletes due to high energy expenditures and/or inadequate

energy intake (Logue et al., 2020). The high energy demands ofmilitary

training and occupational work, coupled with other constraints that

limit energy intake, also often put soldiers and workers in an energy

deficit (Christie, 2008; Gan et al., 2022). In recent years, the popularity

of fasted or muscle glycogen-depleted training (‘train low’) has grown
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in individuals looking to optimize aerobic training adaptations (Impey

et al., 2018).

There is no evidence of a direct influence of energy status on EHS

risk; however, prolonged deficits in energy and nutrient intakes may

indirectly predispose to EHS through its negative effects on immune

function and susceptibility to viral illness or infections (Mountjoy et al.,

2018). Observational data in female athletes indicate an association

between low energy availability, assessed via questionnaire, and a

higher incidence of self-reported illness, including upper respiratory

tract infections (Drew et al., 2018). In another study, an 18% reduction

in the severity of energy deficit (via increased caloric intake) during

8 weeks of arduous military training attenuated the suppression of T-

lymphocyte function and reduced the incidence of infections (Kramer

et al., 1997). A recent or current viral illness or infection, in turn,

can increase one’s susceptibility to EHS (i.e., ‘multiple-hit’ hypothesis)

(Sawka et al., 2011). EHS victims often report experiencing mild illness

or infection several days prior to, or on the day of, the incident,

especially those who unexpectedly succumb to EHS under seemingly

low-risk conditions (Carter et al., 2007). Themechanism throughwhich

viral illness or infection increases EHS susceptibility is not fully under-

stood, but may involve an exaggerated hyperthermic response to

exertional-heat stress which can then trigger EHS, and/or elevated

cytokine levels that blunt cellular thermotolerance to heat injury

(Carter et al., 2007; Sonna et al., 2007).

However, the link between energy deficiency, immune function

and infection is currently tenuous and requires further investigation

(Walsh, 2019).

4 CONCLUSIONS AND FUTURE DIRECTIONS

EHS poses a significant threat to the health and safety of physically

active populations, which will be exacerbated by climate change. Risk

factors and mitigation strategies for EHS have traditionally focused

on the environment, health status, clothing, heat acclimatization

and aerobic conditioning. However, the potential impact of diet and

nutrition in protecting against or facilitating EHS is largely under-

explored, yet an important area of research. There is evidence that

some of the nutritional supplements and dietary strategies commonly

used by athletes can influence the pathophysiological processes

of EHS, either favourably or negatively. Regular carbohydrate

ingestion during subclinical exertional-heat stress is the one approach

shown to consistently dampen pathophysiological features of

EHS, though verification is still required in actual EHS patients.

Dehydration exacerbates physiological strain and if excessive

may predispose one to EHS, whereas proper fluid–electrolyte

replacement is protective. Preliminary evidence has shown some

benefit of amino acid, bovine colostrum, probiotic and antioxidant

supplements on EHS risk, yet inconsistent results currently make it

difficult to provide conclusive recommendations. Conversely, certain

ergogenic aids and low energy availability (via immune-suppressive

effects) may predispose to EHS, but these hypotheses have yet to be

tested.

Lastly, recommendations for further research include, but are not

limited to, the following:

∙ Verify positive findings with both field and laboratory studies in

humans.

∙ Investigate whether the results from rodent models of classic heat

stroke persist in EHS.

∙ Conduct randomized-crossover studies to ascertain the efficacy of

nutritional supplements, both in isolation and in combination, on

EHS-related outcomes.

∙ Investigate the effects of diet and nutrition on EHS in youths,

women, middle-aged andmulti-ethnic populations.
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