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Background: COVID-19 (Coronavirus Disease-19), a disease caused by the SARS-CoV-2 virus,

has been declared as a pandemic by theWorld Health Organization on March 11, 2020. Over

15 million people have already been affected worldwide by COVID-19, resulting in more

than 0.6 million deaths. Proteineprotein interactions (PPIs) play a key role in the cellular

process of SARS-CoV-2 virus infection in the human body. Recently a study has reported

some SARS-CoV-2 proteins that interact with several human proteins while many potential

interactions remain to be identified.

Method: In this article, various machine learning models are built to predict the PPIs be-

tween the virus and human proteins that are further validated using biological experi-

ments. The classification models are prepared based on different sequence-based features

of human proteins like amino acid composition, pseudo amino acid composition, and

conjoint triad.

Result: We have built an ensemble voting classifier using SVMRadial, SVMPolynomial, and

Random Forest technique that gives a greater accuracy, precision, specificity, recall, and F1

score compared to all other models used in the work. A total of 1326 potential human target

proteins of SARS-CoV-2 have been predicted by the proposed ensemble model and vali-

dated using gene ontology and KEGG pathway enrichment analysis. Several repurposable

drugs targeting the predicted interactions are also reported.

Conclusion: This study may encourage the identification of potential targets for more

effective anti-COVID drug discovery.
According to the World Health Organization (WHO), the

coronavirus disease (COVID-19) pandemic, caused by a novel

strain of coronavirus called severe acute respiratory
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syndrome coronavirus 2 (SARS-CoV-2) virus infection, is one

of the most crucial diseases in the current scenario. It has

infected over 15 million people from more than 200 countries
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At a glance of commentary

Scientific background on the subject

A comprehension of how SARS-CoV-2 virus proteins

interact with the host cells for survival and reproduction

is essential for drug exploitation. Protein-Protein Inter-

action (PPI) is one way the viruses interact with their

hosts. Identifying PPIs between the virus and the host

proteins help explain how these virus proteins replicate

and cause the disease.

What this study adds to the field

This study may encourage the identification of potential

target human proteins of the SARS-CoV-2 virus. A

number of repurposable drugs of these predicted human

proteins are also reported, which may accelerate anti-

COVID drug discovery.
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while causing death of more than 0.6 million people. The

disease has created immense pressure and tension in the

worldwide healthcare systems. At the end of the year 2019,

Wuhan city of China reported the first case of the novel

coronavirus infection. Now from Asia to Europe and America,

its deadly effect is threatening the whole world [1]. Genomic

analysis showed that SARS-CoV-2 is phylogenetically related

to SARS-like bat viruses. Hence, bats could be the possible

source of the viral replication [2]. Pangolins have also been

identified as a potential intermediate host of novel coronavi-

rus [3]. The usual symptoms of COVID-19 affected patients are

pneumonia, shortness of breath, cough and cold, fever, and

multiple organ failure [4]. The genetic characteristics of SARS-

CoV-2 should be well understood to fight against this virus. It

is a single-stranded RNA virus consisting of approximately

27e32 kb with particle size ranging from 65 to 125 nm in

diameter [3]. The world healthcare systems are rigorously

searching for a vaccine to mitigate the spread of the virus.

Besides that, they isolate the infected patients along with

some general medicine as immediate treatment and care.

SARS-CoV-2 comprises four main structural proteins

including spike (S) glycoprotein, small envelope (E) glycopro-

tein, membrane (M) glycoprotein, and nucleocapsid (N) pro-

tein, in addition to many accessory proteins [5]. A

comprehension of how these virus proteins interact with the

host cells for survival and reproduction is essential for drug

exploitation. ProteineProtein Interaction (PPI) is one way the

viruses interact with their hosts. Identifying PPIs between the

virus and the host proteins helps explain how the virus pro-

teins work and how they replicate and cause the disease. Over

the past decades, experimental strategies for recognizing PPIs

have been established. Nevertheless, these experimental

high-throughput screens are primarily used to classify intra-

species PPIs while inter-species interactomes remained

largely understudied. In comparison, laboratory identification

of PPIs is usually time-consuming, laborious, and difficult to

achieve complete protein interactomes. Therefore, efficient

computational methods for PPI prediction are used to bridge
the gap by presenting experimentally testable hypotheses and

removing protein pairs having a low probability of interaction

to reduce the selection of PPI candidates. Computational

techniques have been popularly used for predicting viralehost

interactions previously [6e8].

Few works have already pursued a broad range of applica-

tions of Artificial Intelligence (AI) andMachine Learning (ML) to

cover medical challenges and outbreak prediction of COVID-19

pandemic, described in Ref. [9,10]. Kassani et al. have used

publicly available COVID-19 dataset of chest X-ray [3] and Bar-

stugan et al. analyzed Computerized Tomography (CT) images

in Ref. [11] for automatic COVID-19 classification using deep

learning method. Horry et al. [12] have also followed the same

path of X-ray based COVID-19 detection using Artificial Intelli-

gence and pre-trained deep learning models. However, Bar-

stugan et al. used only CT images for COVID-19 classification

using a k-fold Support vector machine (SVM) classifier [4,11].

Thesemethods have some drawbacks. There is a possibility to

raise the issue of over-fitting in deep learning due to the limited

number of trained images [3,12]. Besides that, it also has limi-

tations in classifying more challenging instances with vague,

low contrast boundaries, and the presence of artifacts [13].

These approaches are time-consuming, carrying extra cost,

space, and overhead. There is a portability issue of collecting

sufficient input X-ray and CT images of COVID-19 patients for

the learningprocess.Ozkayaetal. proposedfusing, and ranking

deep features to detect COVID-19 [14]. In this work, they

generated two (16 � 16 and 32 � 32) sub-datasets of 150 CT

images. After improving the performance by deep feature

fusion and ranking method, SVM has been applied for classifi-

cation. Apart from image-based analysis and prediction, some

works have been done on the optimistic drug discovery of

COVID-19. Edisonetal. introducedaVaxignreversevaccinology

tool and the newly developedVaxign-MLmachine learning tool

to predict COVID-19 vaccine candidates [15]. In an article [16],

the authors have used network-based toolset to COVID-19 for

recovering the primary pulmonary manifestations of the virus

in the lung as well as observed comorbidities associated with

cardiovascular diseases. They predicted that the virus can

manifest to some special tissues such as the reproductive sys-

tem, and brain regions using network proximity, diffusion, and

AI-based metrics techniques. However, similar kind of works

on data-driven drug repositioning framework discovery using

machine learning and statistical analysis approaches have

been proposed in Refs. [17,18]. It helps systematically integrate

large-scale knowledge graph, literature, and transcriptome

data to discover the potential drug candidates against SARS-

CoV-2 [17]. In Ref. [19], a novel combination of machine

learning, bioinformatics, and supercomputinghas beenused to

predict antibody structures capable of targeting the SARS-CoV-

2 receptor binding domain. The potential result of this article

[19] suggests that their predicted antibodymutantsmay bind to

the SARS-CoV-2 RBD and nullify the virus. Batra et al. [18]

explored the knowledge of small-molecule treatment against

COVID-19. It also provided a pipeline to perform high-

throughput computational modeling and ensemble docking

simulations for screening of COVID-19 therapeutic agents.

In this article, we have tried to predict the target human

proteins of the SARS-CoV-2 virus based on their protein se-

quences combining amino acid composition, pseudo amino
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acid composition, and conjoint triad features using machine

learning techniques. The problem has been posed as a two-

class classification problem, where the two classes corre-

spond to the interacting and non-interacting proteins of the

virus and the host, respectively. This is the first work in this

domain as per our knowledge. Initially, we have employed the

Learning Vector Quantization (LVQ) technique for feature sub-

set selection as a preprocessing step. Subsequently, after

feature reduction, we have used some popular supervised

learning algorithms such as Support Vector Machine (SVM),

Naive Bayes (NB), Random Forest (RF) and K-Nearest Neighbor

(KNN) along with a deep multi-layer perceptron model and

ensemble techniques (Voting classifier, XGBoost, AdaBoost) for

classification and prediction. We have used 10-fold cross-

validation, repeated 10 times strategy for the supervised

learning process. In terms of accuracy perspective on the test

dataset, the voting classifier ensemble technique performs

better than the other algorithms. Therefore, we have predicted

the 1326 newpotential humanprotein targets of the SARS-CoV-

2 virus using an ensemble Algorithm. Gene ontology and

pathway enrichment for these predicted interactions are

investigated. Moreover, we have reported a number of repur-

posable drugs which target the predicted interactions.
Materials and methods

In this section, we describe the data sets used for our work

followed by the methodologies employed.

Datasets

This section describes the different data sets used in this

study.

SARS-CoV-2-human PPI database
In [5], Gordon et al. prepared a SARS-CoV-2-human

proteineprotein interactions (PPIs) database between human

proteins and novel coronavirus proteins using affinity-
Fig. 1 SARS-CoV-2 proteins' frequency of
purification mass spectrometry (AP-MS). The database con-

tains 332 unique interactions between 332 human proteins

and four structural and as well as 20 accessory coronavirus

proteins. The degree distribution of the SARS-CoV-2 proteins

in the SARS-CoV-2-human PPI network is given in Fig. 1. These

experimentally validated 332 human proteins are used to

construct positive training and testing datasets in our study. A

summary of the PPI network of SARS-CoV-2-human is shown

in Fig. 2 using Cytoscape [20]. The total network is given in

Supplementary File S5.

Negative dataset
There is no “gold standard” for planning a negative dataset in

the PPI network since non-interacting protein (negative sam-

ple) pairs are not experimentally established. Therefore,

negative samples must be chosen with care, which may

adversely influence the accuracy of predicted PPIs. There are

two main sampling methods, namely random pairing, and

subcellular localization. Most of the studies have generated

non-interacting proteins at random and then eliminates the

pairs used in the positive examples [7,21]. Some studies

construct the negative samples having different subcellular

localization compared to the positive samples [22]. However,

both of these methods are not completely reliable. In the case

of random sampling, it may incorrectly take a significant

number of positive samples as negative samples and produce

different accuracy for different random pairing. In Ref. [21]

Ben-Hur et al. proved that in PPI prediction, subcellular

localization based methods may generate biased accuracy.

We have prepared the negative samples in this article by

selectinghumanproteins from theHPRDdatabase release 9 [23]

that are not present in the positive dataset and that have a low

degree in the human PPI network. Viral protein pathway-based

research showed that they appeared to target higher-degree

human proteins rather than lower-degree proteins [24]. With

the aid of Cytoscape, we determined the degree of each human

protein in theHPRDdatabase and ordered it in ascending order.

Then the negative samples are prepared taking into account

the minimal degree of human proteins. This degree-based
interactions with human proteins.

https://doi.org/10.1016/j.bj.2020.08.003
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Fig. 2 A glimpse of SARS-CoV-2-human PPI network. Purple ovals indicate SARS-CoV-2 proteins, blue ovals indicate human

proteins and edges indicate SARS-CoV-2-human protein interactions.
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method of negative sample generation achieves better accu-

racy on the training dataset compared to the random pairing

and subcellular localization [Table 1]. In order to prevent sta-

tistical differences, the same scale is assumed for the positive

and negative sample, i.e., the ratio 1:1.

Independent dataset
An independent dataset is prepared to predict unknown

human proteins that may indulge in proteineprotein inter-

action with corona viral proteins. All the human proteins of

the HPRD database (around 9155 proteins) except the proteins
Table 1 Comparison of accuracy of all supervised learning
algorithms on 1:1 positive:negative training dataset
considering random sampling, subcellular localization
and degree distribution of preparing negative samples.

Algorithms Degree
Distributaion
Accuracy

Random
Sampling
Accuracy

Subcellular
Localization
Accuracy

SVMRadial 68.97 57.76 54.51

SVMLinear 59.16 52.13 54.47

SVMPolynomial 67.16 56.06 53.09

KNN 67.09 52.12 58.90

NB 61.38 53.08 54.78

RF 67.28 57.78 55.07

XGBoost 51.53 49.56 52.13

AdaBoost 49.53 56.78 55.67

DMLP

(epochs ¼ 50,

Batch-

Size ¼ 10)

70.91 57.78 64.13
that are present in the positive and negative datasets are

considered as the independent dataset.
Supervised machine learning algorithms

A set of well-known supervised machine learning algorithms

[25], such as SVM, Naive Bayes, Random forest, Deep Learning,

KNN, and ensemble techniques are used for predicting PPIs.We

have implemented all these algorithms in Python frameworks.

Support Vector Machine (SVM)
Support Vector Machines (SVM) is one of the most powerful

supervised learning algorithms which is based on the concept

of hyperplane and it is a generalization of a simple and intu-

itive classifier called themaximalmargin classifier. For a given

training sample, the Algorithm generates an optimal hyper-

plane that maximizes the margin between data points of

different classes. For a two-class dataset, the nearest objects

from each class should be well separated from the decision

boundary [26,27]. SVM supports the concept of soft margin

classifier because it can be violated by some of the training

observations [28]. It can be represented as,

Maximize b0;b1;…;bPM;
XP

i¼1

b2
j ¼ 1;

yi

�
b0 þ b1xi1 þ b2xi2 þ…þ bpxip

� � Mð1� εiÞ; εi � 0;
Xn

i¼1

εi � C:

(1)

In equation (1), C is a nonnegative tuning parameter, M is

the width of the margin and the optimization problem

https://doi.org/10.1016/j.bj.2020.08.003
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chooses b0, b1, …, bp to maximize M. ε0, ε1, …, εn are slack

variables that allow individual observations to be on the

wrong side of the margin or the hyperplane. x* are the ob-

servations [28].

K-Nearest Neighbor(KNN)
K-Nearest Neighbor (KNN) Algorithm is one of the simplest

supervised learning algorithm used for both classification and

regression problems. It is also called as the lazy learner as it

uses all the data for training while doing prediction [26,27].We

have to choose the value of K first ðK� ffiffiffi
n

p Þ, where n is the size

of the data. Then it calculates the distance between test data

and each row of training data with the help of any distance

metric function (use Hamming distance for categorical data).

Now, it sorts them in ascending order according to the

calculated distance values. Then top K rows from the sorted

array are chosen and finally, it will assign a class to the test

point based on themost frequent class of these rows (Majority

of voting) [29].

Naive Bayes (NB)
Naive Bayes is a probabilistic classifier, based on Bayes' the-
orem. In simple terms, a Naive Bayes classifier assumes that

the presence of a particular feature in a class is unrelated to

the presence of any other feature. So, each feature makes an

independent and equal contribution to the outcome. Bayes'
Theorem finds the probability of an event occurring given the

probability of another event that has already occurred. Bayes’

theorem is stated mathematically as the following equation

PðAjBÞ¼ PðBjAÞPðAÞ
PðBÞ (2)

In equation (2), P(AjB) is the posterior probability, P(BjA) is
the maximum likelihood and P(A) is the prior probability.

Basically, we are trying to find the probability of eventA, given

the event B is true. Event B is also termed as evidence. In Naive

Bayes perspective, P(yjX), y is class variable and X is a depen-

dent feature vector (of size n) where, X ¼ (x1, x2, x3, ……, xn).

Therefore, we can rewrite the Naive Bayes equation for a set of

independent features as,

Pðyjx1; x2; x3;…; xnÞ¼ Pðx1jyÞPðx2jyÞ…PðxnjyÞPðyÞ
Pðx1ÞPðx2Þ…PðxnÞ (3)

Now, we need to create a classifier model. For this, we find

the probability of a given set of inputs for all possible values of

the class variable y and pick up the output with maximum

probability. This can be expressed mathematically as,

y¼argmax
y

PðyÞPn
i¼1Pðx1jyÞ (4)

In equation (4), P(y) is also called class probability and P(xijy)
is called conditional probability. Naive Bayes has been suc-

cessfully used to predict the proteineprotein interactions and

binding sites of DNA/RNA. For PPI, the Algorithm generates

binary classification output based on the protein sequence

vector [26,28].
Ensemble techniques
Ensemble modeling is a powerful way to improve the perfor-

mance of the model. In order to improve the performance of
the model, it combines several base models into an optimal

predictivemodel. There are two kinds of ensemble techniques

Bagging and Boosting.

∙ In Bagging (Bootstrapping and Aggregation) technique, we

create multiple bootstrapped subsamples (row sampling

with replacement) from the original one and apply the

Decision Tree learning model on each of the bootstrapped

subsamples. After each subsample Decision Tree has been

formed, an Algorithm is used to aggregate over the Deci-

sion Trees to form the most efficient predictor. In order to

choose the most efficient predictor, it follows the majority

of the voting classifier technique. This Bagging concept is

also applicable to various sets of classifier models. In our

work, we have applied the majority voting classification

technique on combining SVM-polynomial, SVM-radial and

RF models to achieve the best accuracy among all models

[28,29]. A single decision tree classification gives low bias

and high variancewhereas a RandomForest classifier gives

low bias and low variance. This bagging algorithm is also

known as the Random Forest classifier.

∙ Boosting is an ensemble technique where new models are

added to correct the errors made by existing models.

Models are added sequentially until no further improve-

ments can be made. The Adaptive boosting (AdaBoost)

Algorithm helps us to combine multiple “weak classifiers”

into a single “strong classifier”. The weak learners in Ada-

Boost are decision trees with a single split, called decision

stumps. AdaBoost works by putting more weight on diffi-

cult to classify instances and less on those already handled

well. It is used for both classification and regression pur-

poses [28,29].

∙ The Extreme Gradient Boosting (XGBoost) Algorithm is an

implementation of gradient boosted decision trees

designed for speed and performance. It has a wide range of

applications, portable, flexible implementation and cloud

integration of this model is easy. XGBoost is an ensemble

tree method that applies the principle of boosting weak

learners (CARTs generally) using the gradient descent ar-

chitecture [28]. XGBoost algorithm provides high bias and

low variance [29].
Deep multi-layered perceptron (DMLP)
MLP isamultiple feedforwardartificialneuralnetwork thatmaps

input vectors to output vectors [30]. It can be represented by a

directed graphwithmultiple node layers, where the bottom and

top layers are input andoutput layers respectively andothers are

hidden layers. DMLP is a fully connected network where every

node in the upper level has connectionswith all the nodes in the

lower level. Each node represents a neuron (or processing unit)

withanonlinearactivation functionexcept for input layernodes.

Multiplehidden layersareallowed thatmakes it deepneural [31].

Inourwork,wehaveusedanadaptive learning rateoptimization

Algorithm which is designed specifically for training our deep

neural network [32]. We have created a five hidden layers MLP

network along with the ReLU (Rectified Linear Unit) activation

function and ‘sigmoid’ function at the output layer. We have

fitted our model with varying epochs, varying batch-sizes, and

binary-cross-entropy as a loss function.

https://doi.org/10.1016/j.bj.2020.08.003
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Sequence-based features

A total of 3 sets of sequence-based features, namely, amino

acid composition, conjoint triad, and pseudo amino acid

composition of the human proteins are considered to train the

machine learning models. The FASTA sequences of human

proteins are gathered from UniProt and the values of these

features are extracted from protr [33]. These 3 feature sets are

described below.

Amino acid composition (AAC)
The composition of amino acids explains the percentage of a

type of amino acid found in a protein chain. This is one of the

simple and effective predictive functions of PPIs. The

arrangement of amino acids reflects only the abundance in a

sequence of each amino acid [26].

Conjoint triad (CT)
Many studies have used conjoint triad to completely explain

the essential PPI details to represent the properties of amino

acid [34,35]. In the conjoint triad system, the 20 amino acids

are divided into seven classes based on their amounts of di-

poles and side chains [Table 2]. Every amino acid of a protein

chain is then replaced by the number of clusters.

Pseudo-amino-acid composition (PseAAC)
Chou first proposed the composition of pseudo-amino acids

in 2001 [36]. AAC only displays the frequency of each amino

acid in a sequence, but information on sequence order is lost.

Compared to AAC, PseAAC finds protein sequence order

along with amino acid compositions [37,38]. The order of

sequence can be extracted from sequence similarity vari-

ables such as hydrophobicity, hydrophilicity, and side-chain

mass.

Feature selection

The performance of prediction depends on two aspects. They

are feature extraction and performance of the classifier.

Feature selection is one of the important tasks in classifica-

tion algorithms. The datasets used for classification contain

a large number of features. Most of them are either partially

or completely irrelevant and redundant to the classifier.

Therefore, feature selection is used to select a number of

important features so that it can achieve acceptable classi-

fication accuracy compared to considering all features. In
Table 2 The seven clusters of amino acids based on their
dipoles and side-chain volumes.

Cluster number Protein groups

Cluster 1 A, G, V

Cluster 2 I, L, F, P

Cluster 3 Y, M, T, S

Cluster 4 H, N, Q, W

Cluster 5 R, K

Cluster 6 D, E

Cluster 7 C
this work, we have used a well-known Kohonen's Learning

Vector Quantization (LVQ) technique to identify important

features and remove redundant features from the original

dataset [39]. LVQ is a simple, universal, and efficient learning

classifier. It is very similar to the k-Nearest Neighbors. In an

N-dimensional feature space, LVQ tries to approximate

optimal decision borders between different classes with a

number of labeled codebook vectors. The Euclidean distance

measure helps to label the closest codebook vector of an

example vector. A feature selection strategy using LVQ is

evaluated to optimize the hypothesis margin of LVQ classi-

fication through minimizing its loss function [40] and it

generates importance score of each feature based on the

class identification.

Methodology

Our proposed methodology is represented in terms of algo-

rithmic steps below.

Algorithm. Steps of Proposed PPI Prediction Methodology

between SARS-CoV-2 Virus and Human

Input:

I1. Collect the human proteins that interact with SARS-

CoV-2 virus [5] (Positive dataset).

I2. Collect non-interacting human proteins from HPRD

using the concept of degree distribution (Negative dataset).

Output: Predicted potential human target proteins.

Procedure:

1. Combine I1 and I2 to construct the training dataset.

2. Construct the feature vector using AAC, CT, and PseAAC.

3. Collect reduced feature-subset using Learning Vector

Quantization (LVQ) feature selection technique.

4. Apply SVM, RF, KNN, NB and DMLP classifiers for training

the model and do comparative analysis for the prediction

of new sets of interactions.

5. Identify target human proteins using majority voting-

based ensemble classifier.

6. Assess the predictions using literature search, Gene

Ontology (GO) enrichment, KEGG pathway analysis.

7. Predict repurposable drugs targeting the identified human

proteins.

The pictorial representation of the PPI prediction method-

ology has been shown in Fig. 3.

Performance measures

The performance of each classifier is evaluated with 10-fold

cross-validation in 10 repeat runs to acquire average values.

Different measurements like accuracy, Kappa, sensitivity,

specificity, precision, and F1 score are calculated considering

1:1 positive and negative datasets. These parameters are

defined as per equations (5)e(10).

Accuracy¼ TPþ TN
TPþ FPþ TNþ FN

*100% (5)

https://doi.org/10.1016/j.bj.2020.08.003
https://doi.org/10.1016/j.bj.2020.08.003
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Fig. 3 Block diagram of proteineprotein interaction prediction methodology.
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Kappa¼Observed accuracy� Expected accuracy
1� Expected accuraccy

; (6)

where,

Expected accuracy ¼ ððTNþ FPÞ*ðTNþ FNÞÞ þ ððFNþ TPÞ*ðFPþ TPÞ
ðTPþ FPþ TNþ FNÞ*ðTPþ FPþ TNþ FNÞ

Specifity ¼ TN
FPþ TN

*100%;

(7)

Precision¼ TP
TPþ FP

*100%; (8)

Recall¼ TP
TPþ FN

*100%; (9)

F1 score¼2*ðRecall*PrecisionÞ
ðRecallþ PrecisionÞ *100% (10)
where, TP, FP, FN, and TN respectively denote the numbers of

true positives, false positives, false negatives, and true

negatives.
Results

Performance of the classifiers

In this work, we have started with 3 types of features (amino

acid composition, conjoint triad, and pseudo amino acid

composition) of human proteins which results in a 413-

dimensional feature vector. The importance of all these fea-

tures are calculated using LVQ. Afterthat, the knee point is

evaluated to detect a large change in the importance score and

extract the most important features. We have extracted 38

significant features from413 features of the original dataset by

applying the procedure.

Table 3 shows the comparison of performance between

selected best 38 features vs all 413 features using all the used

https://doi.org/10.1016/j.bj.2020.08.003
https://doi.org/10.1016/j.bj.2020.08.003


Table 3 Comparison of cross-validation performance
between all features vs selected best 38 features using all
supervised learning algorithms on 1:1 positive and
negative training dataset. The best accuracy values for
each classifier are highlighted in boldface.

Method All features Selected
features

Accuracy Kappa Accuracy Kappa

SVMRadial 68.97 36.93 69.45 36.90

SVMLinear 59.16 23.34 65.86 31.79

SVMPolynomial 67.16 35.93 67.78 34.58

KNN 67.09 34.19 59.27 28.53

NB 61.38 29.88 62.23 30.91

RF 67.28 34.50 68.72 36.90

XGBoost 51.53 23.01 59.13 28.23

AdaBoost 49.53 20.31 53.84 24.02

DMLP(epochs ¼ 50,Batch-

Size ¼ 10)

68.91 36.61 70.51 38.72
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supervised learning algorithms. All these values have been

calculated by 10 fold cross-validation repeated 10 times and

then the average of them is reported. In case of DMLP classi-

fier, the batch size of 32 or 25 is acceptable, with epochs ¼ 100

unless the dataset is very large. For large datasets, a batch size

of 10 with epochs between 50 and 100 can be considered. In

our case, our COVID-19 PPI dataset is quite large in terms of

the number of features (413-dimensional feature vectors) for

the training dataset. Therefore, we have used epochs¼ 50 and

batch-size ¼ 10. After the feature selection, we kept the same

set of epochs and batch-size for showing parity in the result

analysis. It can be seen from the Table that these 38 important

features achieved higher accuracy than considering all the

features used together for all classifiers except KNN. KNN

classification averages the labels of K-Nearest neighbor sam-

ples to come to a decision. However, when the number of

neighbors reduces due to feature selection, it reduces the ac-

curacy sometimes.
Performance of the classifiers using blind datasets

The blind dataset is used to prevent bias of the classifiers. 124

proteins (62 interacting þ 62 non-interacting) from the
Table 4 Comparison of performance of all supervised learning

Algorithms Accuracy Rec

SVMRadial 69.67 58.0

SVMLinear 63.93 58.0

SVMPolynomial 68.03 56.6

KNN 64.17 66.1

NB 65.03 65

RF 68.93 66.1

XGBoost 61.2 63

AdaBoost 54.3 59.8

DMLP(epochs ¼ 50,Batch-Size ¼ 10) 63.47 60

Ensemble Technique 72.33 71.6
training dataset are treated as test datasets. The rest of the

proteins are used as the training dataset. The performance of

the classifiermodels using a blind dataset is given in Table 4. It

can be seen from the table that SVMRadial, SVMPolynomial, and

Random Forest method achieved better accuracy, specificity,

and F1 score over other classifiers. Although, DMLP gives

better accuracy on the training datasets, on the test dataset it

can't do well compared to the other models. Therefore, to in-

crease the prediction accuracy and minimize the false posi-

tives we have built a majority voting based Ensemble model

using these threemethods SVMRadial, SVMPolynomial and Random

Forest) to predict unknown SARS-CoV-2 target proteins of

human. It can be seen that the ensemble method achieved

better accuracy (72.33%), recall (71.67%), specificity (74.41%),

precision (72.41%), and F1 score (72.03%) than all the other

classifier models.
Prediction of potential human protein targets of SARS-CoV-2

On both positive and negative 1:1 dataset we measured AAC,

conjoint triad, and PseAAC features. This dataset is used as

the training dataset. All the human proteins of the HPRD

database, which are not present in the positive and negative

dataset, are considered for prediction analysis. We have

applied the Ensemble method on these large numbers of

human proteins (9155) of the HPRD dataset and predicted 3603

potential interacting human proteins. The prediction results

are listed in Supplementary File S1 along with their average

probability prediction score. However, standard SVM and

Random Forest assume that the probability threshold for both

classes is equal, i.e., 0.5 for binary classification problem. In

this work, we have changed the probability threshold from 0.5

to 0.7 so that we can predict all high probability human target

proteins and avoid possible false positives. A higher threshold

indicates higher confidence in predicting the positive class.

The average probability of the predicted human proteins

varies from 0.926 to 0.461. Our motivation is to predict high-

throughput target human proteins. If we consider the

threshold of the average probability 0.9, then we get only 10

target human proteins. For probability factor 0.8, we obtain

340 proteins. Therefore, we have set the probability value to

0.7, so that a reasonable number of target human proteins can
algorithms on blind dataset.

all Specificity Precision F1-Score

6 73.33 62.85 67.68

6 70 61.76 65.63

4 80 64 70

3 56.67 61.81 59.12

56.45 66 65.18

3 70 66.67 68.29

55.23 61 63.29

4 60 60 60.17

57.9 61.01 60.53

7 74.41 72.41 72.03
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Table 5 The top 10 high-degree predicted target human
proteins with their degrees and average prediction
scores.

Protein Name Degree Average Prediction Score

THEM4 168 0.707725

OMG 156 0.724195

RTN4RL1 154 0.772267

ANXA4 135 0.846931

TTC3 131 0.723774

MYO1A 130 0.749535

TEX10 88 0.797231

NOSIP 81 0.755477

PCSK1N 76 0.711644

MYH11 74 0.841619
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be predicted. Using this procedure, the potential number of

target human proteins comes down to 1326 from 3603 (File S2).

We have also calculated the degree of these predicted human

proteins with respect to all the proteins of the HPRD database

using Cytoscape and included in the supplementary files. The

degree value varies from 1 to 168. The top 10 high-degree

proteins with the degree and prediction score are listed in

Table 5.
Discussion

Gene ontology (GO) term enrichment

GO is one of the most used annotation systems to obtain the

biological relevance of high-throughput experiments. To

examine the functional characteristics of these predicted 1326

high-probability human target proteins, GO term analysis is
Table 6 The significant KEGG pathways of the predicted huma

KEGG Pathway Protein
Count

Proteasome (p ¼ 2.3615E-8) 19 PSMB

PSMC

PSMD

Endocytosis (p ¼ 2.5126E-7) 49 LDLR

PIP5K

ARPC

SH3G

ARFG

ARF3

Biosynthesis of antibiotics (p ¼ 7.0351E-5) 44 LDOA

PDHB

CAT,

ACLY

CBS,

Carbon metabolism (p ¼ 1.02674E-6) 29 ALDO

HK3,

PFKL

Biosynthesis of amino acids (p ¼ 5.6641E-6) 21 ALDO

IDH3

Glycolysis/Gluconeogenesis (p ¼ 6.9568E-6) 20 ALDO

ALDH

Central carbonmetabolism in cancer (p¼ 6.3733E-4) 16 PFKL

HK3,
done on the biological process (BP), cellular component (CC),

and molecular function (MF) categories. It has been noticed

that the proteins that have similar cell locations or involved in

some biological process or molecular function, are likely to

interact with each other. We have collected GO annotations of

all predicted human proteins from DAVID 6.8 [41] having

corrected p-values less than 0.05 to validate the predictions.

We have found that some of the most enriched GO-CC terms

of the predicted human proteins are cytosol, extracellular

exosome, cytoplasm, membrane, and nucleoplasm. The GO-

CC term describes the different locations of a cell, at the

levels of subcellular structures and macromolecular com-

plexes. Being an RNA-based virus, the novel coronavirus at-

tacks either the nucleus or cytoplasm of the host cell and

causes a respiratory block in the lungs. Therefore, the proteins

involving in these CC terms are likely to act as potential

coronavirus targets.

Antigen processing and presentation of exogenous peptide

antigen via MHC class I, TAP-dependent, NIK/NF-kappaB

signaling, regulation of the cellular amino acid metabolic

process, positive regulation of ubiquitin-protein ligase activity

involved in the regulation of mitotic cell cycle transition,

negative regulation of ubiquitin-protein ligase activity

involved in the mitotic cell cycle, etc. are five most enriched

GO-BP terms collected from the DAVID server. Some of the

most enriched GO-MF terms are like protein binding, ATP

binding, GTP binding, cadherin binding involved in cellecell

adhesion, poly(A) RNA binding, etc. In Ref. [42], the authors

examined that the coronavirus proteins especially the spike

proteins bind with target human proteins and increase cell

adhesion during infection. All the enriched GO terms along

with involved human proteins and p-values are listed in

Supplementary File S3.
n proteins.

Predicted Human Proteins

10, SHFM1, PSMB8, PSMA2, PSMB4, PSMC5, PSMD12, PSMA6, PSMB1,

4, PSMA5, PSMC3, PSMC2, PSMD1, PSMC1, PSMB2, POMP, PSMD4,

7

, CHMP4B, TSG101, CHMP5, CAPZA2, CHMP6, PIP5K1C, CLTC, SMAP1,

L1, VPS4B, SPG21, KIF5B, KIF5A, RAB4A, HLA-A, HLA-B, HLA-E, HLA-F,

1A, ARPC1B, RAB11FIP5, RAB11FIP3, CHMP1B, ACAP3, ACAP1, RAB5A,

L1, VPS29, SNX5, SNX2, SNX1, ARPC4, HSPA1A, SNX4, ARPC5,

EF2, CHMP2B, SH3GLB1, RAB11A, EHD1, EHD2, RAB31, ARF1, RAB35,

, RAB22A, VPS28, DNM1

, HSD17B10, LDHB, LDHA, ADPGK, PGAM1, HK2, HK1, ASL, AGXT,

, FDFT1, GOT1, IDH3G, HK3, ENO2, IDH2, GCSH, IDH1, ENO3, PDHA2,

RPIA, PDHA1, HADH, ENO1, SHMT1, PFKL, AK1, SUCLG1, FDPS, IDH3B,

, PFKM, IDH3A, NME5, ALDH7A1, PYCR2, NME2, PKLR, MVK, PRPS2,

PRPS1

A, ADPGK, GLUD1, PGAM1, HK2, HK1, AGXT, PDHB, GOT1, IDH3G,

IDH2, ENO2, IDH1, ENO3, PDHA2, CAT, RPIA, PDHA1, ENO1, SHMT1,

, SUCLG1, IDH3B, PFKM, IDH3A, PKLR, PRPS2, PRPS1

A, SHMT1, PFKL, PGAM1, IDH3B, PFKM, ASL, IDH3A, PYCR2, GOT1,

G, PKLR, ENO2, IDH2, ENO3, IDH1, RPIA, PRPS2, CBS, ENO1, PRPS1

A, LDHB, LDHA, PFKL, ADPGK, HK2, PGAM1, HK1, PFKM, PDHB,

3A1, G6PC, ALDH7A1, HK3, PKLR, ENO2, ENO3, PDHA2, PDHA1, ENO1

, MET, HK2, PGAM1, RAF1, HK1, SIRT6, PFKM, PDHB, SLC16A3, SLC1A5,

PDGFRB, PDHA2, MTOR, PDHA1

https://doi.org/10.1016/j.bj.2020.08.003
https://doi.org/10.1016/j.bj.2020.08.003


Table 7 The predicted human proteins that interact with the proteins of other viruses.

Virus Number of overlapping
proteins

Database Name Number of human proteins present in the
database

Reference

Dengue 174 DenvInt 480 [46]

HIV-1 1290 HIV-1 Human Interaction Database 4667 [47]

HCV 144 HCVpro 467 [48]

Ebola 16 Zhou et al. 60 [49]

Zika 5 ZikaBase 24 [50]

H1N1 160 Shapira et al. 617 [51]

Fig. 4 The diagrammatic representation of the predicted

target human proteins that interact with the proteins of

multiple viruses. Black circles represent human proteins.

Square boxes represent different viruses. Interactions of

human proteins with different viruses are represented as

edges colored as per the color of the boxes of respective

viruses.
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KEGG pathway analysis

Analysis of the KEGG pathway shows potential illnesses that

can develop in the human body due to COVID-19 infection. All

the significant pathways of 1326 predicted target human pro-

teins along with the corrected p-values are listed in Table 6.

Viruses are well known to be exploiting the machinery of

host cells for their own replication. The proteasome

pathway is one of these intracellular processes that are

hijacked by the viruses [43]. Myung et al. showed this pro-

teasome pathway is involved with different viruses like

retrovirus, human immunodeficiency virus type 1 (HIV-1),

simian immunodeficiency virus (SIV), and Moloney murine

leukemia virus (Mo-MuLV). Therefore, the probability of

association of this pathway with novel coronavirus is very

high. Endocytosis is a biological process of transporting

particles, such as large molecules, parts of cells, and even

whole cells, to bring into a cell. Experiments on the SARS-

CoV-2 virus have shown that the endocytic pathway is the

main pathways for regulating the entrance of CoVs into the

host cells and thus the endocytic pathway, as well as the
involved human proteins, can be extensively studied for the

target of anti-viral therapies [44]. In Ref. [45], Wenzhong Liu

et al. showed that because of the failure to regularly

combine carbon dioxide and oxygen during SARS-CoV-2

virus infection, the lung cells have highly severe toxicity

and inflammation, which ultimately results in ground-glass

pulmonary images. According to our results, novel corona-

virus can alter the synthesis of macromolecules and its

growth rate and can cause carbon metabolism. The term

biosynthetic pathway suggests manufacturing the antibi-

otics which can help to combat drug-resistant viruses and

diseases. One of the main public health issues of recent

times is the exponential growth of antibiotic-resistant

pathogens. Therefore, the predicted human proteins

involving this pathway need to be further studied to develop

antibiotics for the SARS-CoV-2 virus. The amino acid plays

an important role in the expression of the different viral

functions including synthesis of viral coat proteins and the

development of full infectious virions. Novel coronavirus

may alter this amino acid composition and cause several

other diseases in the human body. We can conclude from

the above pieces of evidence that the predicted human

proteins involving these pathways are strongly involved in

coronavirus infection and experimental validation is

required to establish direct interactions.
Interaction between predicted human proteins and other
viruses

In this section, we have tried to find out the relation be-

tween our predicted 3603 human proteins with the other

viruses. Our research included six specific human-

pathogenic RNA viruses, namely, Dengue, HIV-1, HCV,

Ebola, Zika, and H1N1. We have found various pieces of

evidence that many predicted proteins interact with

different medically important viruses from published liter-

ature. Table 7 shows the number of overlapping predicted

human proteins and experimentally verified human pro-

teins with other viruses. We found a large number of pre-

dicted human proteins interact with more than one virus.

For example, human protein IKBKE has the highest degree

of 4. It interacts with four viruses, namely, Dengue virus

(DENV), HIV-1, HCV, and H1N1. A small PPI network of the

predicted target humans that interact with at least three

viruses is shown in Fig. 4. From Table 7 it can be seen that a

majority of the predicted human proteins of the SARS-CoV-2

virus overlaps with the HIV-1 virus. Recently, a study

https://doi.org/10.1016/j.bj.2020.08.003
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Table 8 List of drugs associated with the predicted target human proteins that interact with the proteins of at least 3
different viruses.

Sl. No. Drugs Name Human Protein Name

1. Remicade, Etanercept, Adalimumab, Thalidomide, Inamrinone,

Golimumab, Certolizumab Pegol, Chloroquine, Glucosamine, Clenbuterol

TNF

2. Atorvastatin, Cetrorelix HSPD1

3. Melatonin, Tretinoin, Gentamicin, Tenecteplase CALR

4. Aspirin, Fluorouracil HSPA5

5. Amlexanox, Procaine IKBKE

6. Thyroglobulin, Amikacin, Pembrolizumab B2M

7. Carfilzomib, Bortezomib, Ixazomib Citrate PSMB9

8. Rifabutin HSP90AA1

9. Lovastatin, Zinc Sulfate, Doxorubicin, Prasterone, Progesterone,

Octreotide, Epinephrine, Dactinomycin, Nandrolone Phenpropionate,

Candicidin

PIK3CB

10. Lithium Citrate Hydrate, Lithium Carbonate, Fluoxetine GSK3B

11. Albumin Human, Prednisone, Tretinoin, Ganciclovir, Triamcinolone,

Irbesartan, Vitamin E, Lorazepam, Soybean Oil, Gonadotropin, Chorionic

APOE

12. Mesalamine, Aminosalicylic Acid, Sulfasalazine, Acetylcysteine,

Ascorbate

CHUK
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revealed that the human protein called RBBP6 aids in the

fight against Ebola by interfering with its replication cycle.

This RBBP6 along with 16 other predicted human target

proteins overlaps with ebola related human proteins. The

rest of the human protein's name and their association with

the different viruses are listed in Supplementary File S4.

No effective drug has yet been discovered targeting SARS-

CoV-2 virus. The traditional mechanism for drug develop-

ment and its approval is much more expensive and time-

consuming. On the other hand, repurposing the existing

drugs is an alternative method for identification of effective

drugs. It can substantially shorten the time and minimize

costs relative to new drug development. The human proteins

that interact with the proteins of multiple viruses can be good

candidate for as targets for drug repurposing. We have found

30 predicted human proteins that interact with the proteins of

at least 3 viruses. The U.S. Food and Drug Administration

(FDA) approved drugs that interact with these human proteins

are queried using DGIdb (http://dgidb.org/) and reported in

Table 8. Most of these drugs are used in cancer-inhibiting

microtubules treatment, and other drug classes are used for

diseases like Atherosclerosis, Crohn's disease, antiin-

flammatory agent, tumor necrosis factor, blood circulation

and infection.
Conclusion

In this study, various sequence-based features and compu-

tational approaches are used for the first time in predicting

the potential human targets of the SARS-CoV-2 virus.We have

used the LVQ Algorithm for feature selection. HIV, influenza,

and other viruses are well researched in various literature

works compared to coronavirus proteins as SARS-CoV-2

which has emerged recently. HIV, the most well-studied

virus, is believed to have around 1000 direct interactions

with human proteins and 3000 indirect interactions. BothHIV-

1 and SARS-CoV-2 are enveloped RNA viruses. The SARS-CoV-
2 virus contains a large number of proteins, even more than

HIV-1. Therefore, it can be assumed that SARS-CoV-2 is a virus

expected to have a large number of interactions with human

proteins. However, due to the lack of experimentally validated

SARS-CoV-2-human PPIs,most of the possible interactions are

currently unknown. In this paper, we have predicted the 1326

potential target human proteins considering a high probabil-

ity factor (70%) using ensemble modeling. We have also

analyzed the GO terms and KEGG pathway of these predicted

human proteins and some of the pathways are also supported

by recent literature. Some repurposable drugs that target the

predicted interactions have also been reported. We hope that

this study will help biologists recognize possible associations

between novel coronavirus and human proteins and facilitate

the development of anti-viral drugs.
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