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Abstract For decades, the frontal alpha asymmetry (FAA) – a disproportion in EEG alpha

oscillations power between right and left frontal channels – has been one of the most popular

measures of depressive disorders (DD) in electrophysiology studies. Patients with DD often

manifest a left-sided FAA: relatively higher alpha power in the left versus right frontal lobe.

Recently, however, multiple studies failed to confirm this effect, questioning its reproducibility. Our

purpose is to thoroughly test the validity of FAA in depression by conducting a multiverse analysis

– running many related analyses and testing the sensitivity of the effect to changes in the analytical

approach – on data from five independent studies. Only 13 of the 270 analyses revealed significant

results. We conclude the paper by discussing theoretical assumptions underlying the FAA and

suggest a list of guidelines for improving and expanding the EEG data analysis in future FAA

studies.

Introduction
Electrophysiological studies on frontal alpha asymmetry (FAA) in depressive disorders (DD) have

almost 40 years of history, with first reports presented in 1983 (Schaffer et al., 1983). Since then,

many studies have reported relatively higher alpha band power in the left vs right frontal channels

(left-sided FAA) in subjects suffering from DD compared to healthy individuals (Allen et al., 2004;

Davidson, 1984; Davidson, 2004; Kemp et al., 2010; Schaffer et al., 1983). FAA index, calculated

by subtracting the left-side alpha power from the respective right-side channel, is one of the most

common electrophysiological indicators of DD in the current literature (de Aguiar Neto and Rosa,

2019). However, multiple studies failed to replicate the relationship between FAA and DD

(Allen et al., 2004; Carvalho et al., 2011; Deldin and Chiu, 2005; Gold et al., 2013; Kaiser et al.,

2018a; Kentgen et al., 2000; Knott et al., 2001; Mathersul et al., 2008; Szumska et al., 2021;

Vuga et al., 2006) and conclusions of meta-analyses remain skeptical (Thibodeau et al., 2006;

van der Vinne et al., 2017). In this light statements about FAA being a biomarker of depression

(Baskaran et al., 2012; Iosifescu et al., 2009) seem to be too far-fetched.

It is not clear what the causes of above-mentioned inconsistency in the literature are, but method-

ological issues are mentioned as one potential problem in a recent review by Kaiser et al., 2018b.

Factors like age, gender, or education are known to covary with depression (McFarland and Wag-

ner, 2015; Nolen-Hoeksema, 2001; Stordal et al., 2003) and alpha power or asymmetry

(Jesulola et al., 2017; Parameshwaran and Thiagarajan, 2019; van der Vinne et al., 2017), but are

often not controlled for during recruitment. While counter-balancing groups with respect to these

variables can be difficult their effect may be accounted for by including them as predictors in the

regression model. Although correlated predictors like education and depression can reduce each

other’s effect by explaining shared variance in the dependent variable, including confounding
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variables can also help remove variance unexplained by the variable of interest and therefore

increase its effect.

There are also other important methodological problems worth considering when trying to

resolve the validity of FAA in DD. Although much attention in the FAA literature has been paid to

the choice of EEG reference (see for example: Smith et al., 2017; or Stewart et al., 2014) other

aspects of signal processing and analysis seem to be more neglected. Many EEG studies on FAA

use and report FAA index calculated only for a few channel pairs (e.g. one or two pairs were used in

12 out of 17 studies [70.6%] included in the meta-analysis by van der Vinne et al., 2017). In combi-

nation with the fact that topographical maps of effects are rarely presented (4/17 studies [23.5%] in

van der Vinne et al., 2017) this significantly reduces the reliability and interpretability of the

reported effects. The FAA effects are frequently assumed to reflect frontal sources of alpha oscilla-

tions but without a topographical map to support this claim it is difficult to conclude whether such

interpretation is correct. For example, alpha asymmetry at frontal channels may, in principle, arise

due to asymmetrical projection from other, non-frontal, sources. This could be identified in the

topography, but not at the single channel pair’s level. Without a topographical map it is also more

difficult to assess the physiological reliability of the reported effect – significant effect on one chan-

nel pair without similar effects on surrounding channels calls for skeptical consideration (van Ede

and Maris, 2016). Therefore, it might be better to perform the analysis on many frontal channel-

pairs with relevant correction for multiple comparisons (for example, with the very popular cluster-

based permutation approach, Maris and Oostenveld, 2007). This is unfortunately rarely done in

FAA studies on DDs (0/17 studies in van der Vinne et al., 2017).

However, performing the analysis only at the channel level, when the research question pertains

to the neural source of the effects, can also lead to misinterpretations. Even if topographies are

shown, they can be inconclusive with respect to the underlying neural source. For this reason it might

be useful to perform source localization and continue the analyses in the source space. Given the

assumption of frontal alpha sources of FAA presented in the literature, source level analysis would

be appropriate. Regrettably, most FAA studies do not perform source localization, although there

are notable exceptions (for example, Lubar et al., 2003; Smith et al., 2018).

Incompatible results in FAA literature, summarized briefly above, suggest that the FAA relation-

ship with DD is sensitive to the choice of signal preprocessing and analysis steps. In such a case

applying multiverse analysis (Steegen et al., 2016), that is, presenting results of multiple justifiable

analysis paths, is a valuable tool to test the robustness of the studied effects. Multiverse analysis

seems to be especially well suited for neuroscience research, given the multitude of preprocessing

and data analysis choices that result in a complex ‘garden of forking paths’ (Gelman and Loken,

2014). As most neuroscience studies test only one analysis variant it is difficult to assess the robust-

ness of any individual effect, and it seems that at least some neuroscientific findings are sensitive to

the choice of signal analysis steps (Cohen, 2015; Cohen and Gulbinaite, 2014; see also Botvinik-

Nezer et al., 2019).

The purpose of this article is to thoroughly test the robustness and credibility of FAA as a marker

of DDs and address the limitations of FAA research methodology by performing a multiverse analy-

sis of data coming from five independent studies. We performed 270 analyses in total differing in:

(a) the signal space used (channel space vs source space); (b) subselection of the signal space (chan-

nel pairs vs all frontal pairs with cluster-based correction); (c) statistical contrast used (group con-

trasts vs linear regression); (d) statistical control for confounding variables (gender, age and

education). Finally we perform analyses on data aggregated across studies and propose additional

guidelines to improve quality and reliability of the data analysis in FAA research.

Results
To investigate the validity and robustness of FAA as a marker of DDs we used the multiverse

approach (Steegen et al., 2016) and performed a total of 270 analyses of eyes-closed resting EEG

recordings (total N = 388) from five independent studies. These data sets differ in EEG recording

equipment, cap layout, and characteristics of subject groups (see Figure 1 and Materials and meth-

ods, sections: Participants and Electrophysiological data sets).

The analysis variants making up the multiverse analysis can be classified along four major dimen-

sions (Figure 2): (a) statistical contrast used: group comparisons or testing for a linear relationship,
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Figure 1. Diagram describing the five studies included in this article (Studies I, II, III, IV, and V). (A) Number of participants for each study and group

(see Table 12 for details). (B) Stacked histograms showing the distribution of BDI or PHQ-9 scores in each study and each group. (C) Channel montage.

Frontal channels used in cluster-based analyses are marked with gray dots. Channels used in channel-pairs analysis are marked with teal dots (F3–F4,

F7–F8, and corresponding channels in the EGI montage). (D) Rest period length and scheme.
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Figure 2. Analysis variants used (described in detail in Variants of statistical analysis section). (A) Schematic depiction of given statistical contrast: group

comparisons (left) vs regression (right). (B) Specification of each contrast against depression scores. Left panel shows a schematic range of depression

scores for each contrast: diagnosed vs healthy controls (DvsHC) and sub-clinical vs healthy controls (SvsHC). Right panel shows the range of depression

scores for data included in each linear contrast: regression on diagnosed subjects (DReg) uses only subjects with clinical diagnosis, while regression on

all subjects (allReg) uses all subject groups. The color legend for the subject groups is presented below these figures. (C) Analysis space: AVG –

channel level, average reference; CSD – channel level, current source density; SRC – source level, DICS beamforming. (D) Schematic depiction of

analysis method: selected channel pairs versus all frontal channels with cluster-based correction for multiple comparisons.
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(b) the signal space used: channel space (average reference – AVG: 120 analyses, 44%; current

source density reference – CSD: 120, 44%) or source space (DICS beamforming, 30, 11%); (c) subse-

lection of the signal space: channel pairs (120, 44%), all frontal pairs with cluster correction (60, 22%)

or all frontal channels with cluster-based correction and standardization instead of subtraction (60,

22%; see Signal analysis section); and (d) statistical control for confounding variables (135 without

and 135 with control for confounds).

We used four different statistical contrasts in the analyses: two group contrasts using indepen-

dent t-tests to compare FAA between groups; and two linear contrasts using linear regression to

Table 1. Results for all channel-pair analyses.

Each row represents two channel-pair results for a given contrast, study, and space combination; uncorrected for multiple compari-

sons. Electrode placement for each study is shown in Figure 1C. (N: number of participants included in given contrast; ES: effect size;

Cohen’s d for group comparison and Pearson’s r for regression; CI: bootstrap 95% confidence interval for the effect size).

No. Contrast Study Space N

Selected electrodes without correction

Pair 1 (F3–F4) Pair 2 (F7–F8)

t p ES CI t p ES CI

1 DvsHC I avg 29 vs 22 �2.073 0.043 �0.573 [�1.135,–0.024] �0.365 0.717 �0.101 [�0.644, 0.465]

2 DvsHC I csd 29 vs 22 0.132 0.896 0.038 [�0.550, 0.608] 0.553 0.583 0.153 [�0.415, 0.689]

3 DvsHC III avg 27 vs 21 0.904 0.371 0.247 [�0.316, 0.689] �0.536 0.595 �0.145 [�0.760, 0.452]

4 DvsHC III csd 27 vs 21 0.849 0.401 0.226 [�0.307, 0.721] �0.129 0.898 �0.035 [�0.590, 0.536]

5 DvsHC IV avg 22 vs 72 0.450 0.654 0.094 [�0.310, 0.510] 0.277 0.783 0.059 [�0.413, 0.463]

6 DvsHC IV csd 22 vs 72 0.767 0.449 0.212 [�0.287, 0.771] �1.396 0.172 �0.345 [�0.808, 0.167]

7 DvsHC V avg 24 vs 29 2.823 0.007 0.743 [0.218, 1.255] 1.927 0.061 0.501 [�0.023, 0.998]

8 DvsHC V csd 24 vs 29 0.748 0.458 0.208 [�0.380, 0.775] �0.727 0.471 �0.202 [�0.766, 0.370]

9 SvsHC II avg 23 vs 28 0.201 0.841 0.056 [�0.502, 0.614] �0.662 0.511 �0.179 [�0.780, 0.381]

10 SvsHC II csd 23 vs 28 1.144 0.258 0.318 [�0.221, 0.827] �0.199 0.843 �0.054 [�0.611, 0.508]

11 SvsHC III avg 33 vs 21 �0.852 0.398 �0.209 [�0.640, 0.306] �1.328 0.190 �0.332 [�0.804, 0.216]

12 SvsHC III csd 33 vs 21 �1.181 0.244 �0.280 [�0.730, 0.219] �1.094 0.280 �0.302 [�0.798, 0.219]

13 SvsHC IV avg 21 vs 72 1.359 0.184 0.346 [�0.198, 0.816] 1.247 0.219 0.254 [�0.138, 0.646]

14 SvsHC IV csd 21 vs 72 0.558 0.581 0.147 [�0.393, 0.655] 0.141 0.889 0.035 [�0.388, 0.605]

15 allReg I avg 54 �1.138 0.260 �0.156 [�0.397, 0.088] �0.180 0.858 �0.025 [�0.394, 0.258]

16 allReg I csd 54 �0.540 0.591 �0.075 [�0.309, 0.167] 0.077 0.939 0.011 [�0.335, 0.280]

17 allReg III avg 91 0.545 0.587 0.058 [�0.105, 0.263] �0.781 0.437 �0.083 [�0.271, 0.101]

18 allReg III csd 91 0.209 0.835 0.022 [�0.169, 0.207] 0.422 0.674 0.045 [�0.168, 0.225]

19 allReg IV avg 117 1.138 0.258 0.106 [�0.076, 0.264] 0.675 0.501 0.063 [�0.111, 0.212]

20 allReg IV csd 117 1.307 0.194 0.121 [�0.096, 0.312] �1.024 0.308 �0.095 [�0.265, 0.093]

21 allReg V avg 53 2.489 0.016 0.329 [0.106, 0.517] 1.463 0.150 0.201 [�0.023, 0.409]

22 allReg V csd 53 0.857 0.395 0.119 [�0.127, 0.361] �0.220 0.827 �0.031 [�0.262, 0.210]

23 DReg I avg 29 0.980 0.336 0.185 [�0.212, 0.531] 0.320 0.751 0.061 [�0.470, 0.522]

24 DReg I csd 29 �1.303 0.204 �0.243 [�0.540, 0.091] �0.504 0.618 �0.097 [�0.501, 0.337]

25 DReg III avg 27 0.278 0.784 0.055 [�0.268, 0.426] 0.055 0.957 0.011 [�0.273, 0.238]

26 DReg III csd 27 0.407 0.688 0.081 [�0.254, 0.413] 1.347 0.190 0.260 [�0.047, 0.498]

27 DReg IV avg 22 1.754 0.095 0.365 [0.012, 0.643] �0.114 0.910 �0.026 [�0.459, 0.427]

28 DReg IV csd 22 1.938 0.067 0.398 [�0.043, 0.632] �0.415 0.683 �0.092 [�0.519, 0.351]

29 DReg V avg 24 1.497 0.149 0.304 [0.045, 0.563] �0.367 0.717 �0.078 [�0.444, 0.285]

30 DReg V csd 24 0.789 0.438 0.166 [�0.264, 0.501] 0.635 0.532 0.134 [�0.320, 0.615]

DvsHC – diagnosed and healthy controls; SvsHC – sub-clinical and healthy controls; allReg – linear regression for all subjects together; DReg – linear

regression for only diagnosed subjects; avg – average reference; csd – current source density.
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test the relationship between psychometric depression score and FAA. Group contrasts included:

comparison between diagnosed and healthy controls (DvsHC) or sub-clinical and healthy controls

(SvsHC). The inclusion of SvcHC contrast is motivated by the fact that in some FAA studies depres-

sion is not diagnosed by conducting a structured clinical interview – instead groups are created

based on score thresholds from psychometric depression questionnaires (for example, De Raedt

et al., 2008; Imperatori et al., 2019; Schaffer et al., 1983). For group contrasts we used Welch

t-test, which does not assume equal variance of the compared groups (Delacre et al., 2017). Linear

contrasts were performed either for all subjects together (allReg) or only for the diagnosed subjects

Table 2. Results for all channel-pair analyses corrected for confounds.

Each row represents two channel-pair results for a given contrast, study, and space combination; uncorrected for multiple compari-

sons. Electrode placement for each study is shown in Figure 1C. (N: number of participants included in given contrast; ES: effect size;

Cohen’s d for group comparison and Pearson’s r for regression; CI: bootstrap 95% confidence interval for the effect size).

No. Contrast Study Space N

Selected electrodes corrected for confounds

Pair 1 (F3–F4) Pair 2 (F7–F8)

t p ES CI t p ES CI

1 DvsHC I avg 29 vs 22 �2.679 0.010 �0.789 [�1.413,–0.218] �0.782 0.438 �0.230 [�0.691, 0.288]

2 DvsHC I csd 29 vs 22 0.269 0.789 0.079 [�0.501, 0.681] 0.305 0.762 0.090 [�0.404, 0.622]

3 DvsHC III avg 27 vs 21 0.204 0.839 0.064 [�0.642, 0.684] �1.161 0.252 �0.366 [�0.994, 0.310]

4 DvsHC III csd 27 vs 21 �0.162 0.872 �0.051 [�0.691, 0.547] �0.703 0.486 �0.221 [�0.998, 0.558]

5 DvsHC IV avg 22 vs 71 0.310 0.757 0.077 [�0.338, 0.504] 0.085 0.933 0.021 [�0.412, 0.450]

6 DvsHC IV csd 22 vs 71 0.978 0.331 0.244 [�0.250, 0.816] �1.484 0.141 �0.370 [�0.842, 0.135]

7 DvsHC V avg 24 vs 29 1.862 0.069 0.540 [0.033, 1.044] 1.817 0.075 0.527 [�0.008, 1.101]

8 DvsHC V csd 24 vs 29 0.518 0.607 0.150 [�0.415, 0.742] �0.722 0.474 �0.209 [�0.689, 0.235]

9 SvsHC II avg 23 vs 28 0.351 0.728 0.105 [�0.444, 0.746] �0.654 0.516 �0.196 [�0.883, 0.450]

10 SvsHC II csd 23 vs 28 1.293 0.203 0.387 [�0.152, 0.943] 0.035 0.972 0.010 [�0.653, 0.532]

11 SvsHC III avg 33 vs 21 �1.169 0.248 �0.350 [�0.946, 0.285] �1.768 0.084 �0.529 [�1.071, 0.029]

12 SvsHC III csd 33 vs 21 �1.382 0.173 �0.414 [�1.086, 0.160] �1.197 0.237 �0.358 [�0.997, 0.212]

13 SvsHC IV avg 21 vs 71 1.058 0.293 0.269 [�0.232, 0.776] 0.466 0.642 0.118 [�0.293, 0.515]

14 SvsHC IV csd 21 vs 71 0.739 0.462 0.188 [�0.302, 0.649] �0.263 0.793 �0.067 [�0.524, 0.483]

15 allReg I avg 54 �1.352 0.182 �0.188 [�0.440, 0.078] �0.349 0.728 �0.049 [�0.369, 0.240]

16 allReg I csd 54 �0.431 0.668 �0.061 [�0.313, 0.187] �0.019 0.985 �0.003 [�0.335, 0.304]

17 allReg III avg 91 0.233 0.816 0.025 [�0.156, 0.263] �1.170 0.245 �0.127 [�0.313, 0.092]

18 allReg III csd 91 �0.005 0.996 �0.001 [�0.190, 0.204] �0.060 0.953 �0.007 [�0.238, 0.224]

19 allReg IV avg 116 0.904 0.368 0.085 [�0.088, 0.237] 0.355 0.723 0.034 [�0.139, 0.197]

20 allReg IV csd 116 1.461 0.147 0.137 [�0.064, 0.316] �1.300 0.196 �0.122 [�0.296, 0.059]

21 allReg V avg 53 1.685 0.099 0.236 [�0.014, 0.449] 1.544 0.129 0.218 [�0.034, 0.433]

22 allReg V csd 53 0.769 0.446 0.110 [�0.148, 0.339] �0.058 0.954 �0.008 [�0.214, 0.185]

23 DReg I avg 29 0.767 0.450 0.152 [�0.324, 0.503] 0.265 0.793 0.053 [�0.452, 0.564]

24 DReg I csd 29 �1.273 0.215 �0.247 [�0.588, 0.156] �0.506 0.617 �0.101 [�0.504, 0.437]

25 DReg III avg 27 �0.054 0.958 �0.012 [�0.434, 0.485] �0.079 0.937 �0.018 [�0.425, 0.346]

26 DReg III csd 27 0.055 0.957 0.012 [�0.407, 0.408] 1.375 0.184 0.294 [�0.096, 0.614]

27 DReg IV avg 22 1.979 0.063 0.423 [�0.001, 0.719] �0.062 0.951 �0.015 [�0.409, 0.473]

28 DReg IV csd 22 1.761 0.095 0.383 [0.004, 0.674] �0.269 0.791 �0.063 [�0.538, 0.418]

29 DReg V avg 24 0.926 0.366 0.208 [�0.209, 0.565] �0.707 0.488 �0.160 [�0.571, 0.278]

30 DReg V csd 24 0.723 0.478 0.164 [�0.345, 0.554] 0.298 0.769 0.068 [�0.569, 0.735]

DvsHC – diagnosed and healthy controls; SvsHC – sub-clinical and healthy controls; allReg – linear regression for all subjects together; DReg – linear

regression for only diagnosed subjects; avg – average reference; csd – current source density.

Kołodziej et al. eLife 2021;10:e60595. DOI: https://doi.org/10.7554/eLife.60595 6 of 34

Research article Neuroscience

https://doi.org/10.7554/eLife.60595


(DReg). allReg contrast quantifies the linear relationship between FAA and BDI across all participants

while DReg contrast tests whether FAA increases with depression severity measured with BDI ques-

tionnaire (or PHQ-9 in Study V).

Combining all the analytical pathways (studies � statistical contrasts � analysis spaces � analysis

approaches � control for confounds) leads to 270 analyses, the results of these analyses are summa-

rized in Tables 1–8.

Channel-pair analyses
We report results of all the channel-pair analyses in Tables 1 and 2. Only 3 out of 60 analyses with-

out control for confounds gave significant results. This is expected by chance, p=0.583, binomial test

for a probability of significant result greater than 5%. For analyses controlling for confounds only 1

out of 60 was significant, which is also expected by chance, p=0.954, binomial test. We focus the

description below on results from the analyses without control for confounds.

Figure 3. Selected results for channel-pairs level analyses, depressed vs healthy controls (DvsHC) contrast. Panels A and B show 2 of 3 significant

channel pair results: average referenced F3–F4 channel pair for Studies I (A) and V (B). The remaining panels (C and D) show other channel pair analysis

variants: specifically those that differ by exactly one parameter (underlined text) from the result presented in the panel A. Horizontal lines represent

averages for each group, and shaded areas show standard error of the mean.
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Two of the significant results were found for the diagnosed vs healthy controls contrast (DvsHC)

for the average referenced (AVG) F3–F4 channel pair in Study I and V. In Study I right–left alpha

asymmetry was lower for the diagnosed group than for healthy controls, t = �2.073, p=0.043

(Figure 3A). However, Study V showed the reverse: alpha asymmetry was higher for the diagnosed

group compared to healthy controls, t = 2.823, p=0.007 (Figure 3B). Because we use right minus

left alpha asymmetry only results with more negative asymmetry values in depressed individuals

(negative t values) are congruent with the classical FAA effect.

Table 3. Results for cluster-based permutation test on frontal asymmetry space.

Each row represents cluster-based results for a given contrast, study, and space combination (N: number of participants included in

given contrast; min t, max t: lowest and highest t value in the search space, respectively; n significant points: total number of significant

points in the search space before cluster-based correction; n clusters: number of clusters found in given analysis; largest cluster size:

number of channels participating in the cluster; largest cluster p: p-value for the largest cluster, NA means that no cluster was found in

given analysis).

No. Contrast Study Space N

Cluster-based permutation test on frontal asymmetry space

Min t Max t n significant points n clusters Largest cluster size Largest cluster p

1 DvsHC I avg 29 vs 22 �2.110 0.023 3 1 3 0.069

2 DvsHC I csd 29 vs 22 �0.720 1.983 0 0 NA NA

3 DvsHC III avg 27 vs 21 �1.172 1.058 0 0 NA NA

4 DvsHC III csd 27 vs 21 �1.258 1.875 0 0 NA NA

5 DvsHC IV avg 22 vs 72 �0.751 2.069 1 1 1 0.345

6 DvsHC IV csd 22 vs 72 �1.600 1.142 0 0 NA NA

7 DvsHC V avg 24 vs 29 �1.260 2.823 6 2 5 0.026

8 DvsHC V csd 24 vs 29 �2.901 1.425 2 2 1 0.156

9 SvsHC II avg 23 vs 28 �2.581 0.201 1 1 1 0.164z

10 SvsHC II csd 23 vs 28 �0.855 1.254 0 0 NA NA

11 SvsHC III avg 33 vs 21 �1.410 1.021 0 0 NA NA

12 SvsHC III csd 33 vs 21 �2.315 2.101 2 2 1 0.227

13 SvsHC IV avg 21 vs 72 �1.356 2.760 2 1 2 0.052

14 SvsHC IV csd 21 vs 72 �1.193 1.296 0 0 NA NA

15 allReg I avg 54 �1.519 0.022 0 0 NA NA

16 allReg I csd 54 �0.727 1.052 0 0 NA NA

17 allReg III avg 91 �1.207 0.906 0 0 NA NA

18 allReg III csd 91 �1.290 2.210 1 1 1 0.287

19 allReg IV avg 117 �1.807 2.153 1 1 1 0.202

20 allReg IV csd 117 �1.173 1.353 0 0 NA NA

21 allReg V avg 53 �1.001 2.489 3 1 3 0.077

22 allReg V csd 53 �3.291 1.552 2 2 1 0.187

23 DReg I avg 29 �0.159 1.552 0 0 NA NA

24 DReg I csd 29 �1.303 0.487 0 0 NA NA

25 DReg III avg 27 �2.041 0.976 0 0 NA NA

26 DReg III csd 27 �1.420 1.662 0 0 NA NA

27 DReg IV avg 22 �1.155 1.754 0 0 NA NA

28 DReg IV csd 22 �0.415 1.938 0 0 NA NA

29 DReg V avg 24 �1.482 1.497 0 0 NA NA

30 DReg V csd 24 �2.254 1.554 1 1 1 0.555

DvsHC – diagnosed and healthy controls; SvsHC – sub-clinical and healthy controls; allReg – linear regression for all subjects together; DReg – linear

regression for only diagnosed subjects; avg – average reference; csd – current source density.
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We now examine the FAA-congruent result from Study I in a wider context, comparing it to the

outcome of related analyses that differ in a single parameter. Applying CSD instead of average refer-

ence to the same channel pair did not reveal a significant result (same study, same contrast, F3–F4

pair, CSD reference, t = 0.132, p=0.896). The results were also not significant for the other channel

pair, irrespective of reference (same study, same contrast, F7–F8 pair: average reference,

t = �0.365, p=0.717; CSD reference, t = 0.553, p=0.583). Performing the same analysis on data

from Study III or IV also did not give rise to a significant outcome (same contrast, F3–F4 pair, AVG

reference, Study III: t = 0.904, p=0.371; Study IV: t = 0.450, p=0.654). For Study II the DvsHC con-

trast was not available, but conceptually closest contrast – Sub-clinical vs Healthy Controls (SvsHC) –

was found insignificant for both channel pairs using either AVG or CSD reference. Only this FAA-con-

gruent DvsHC effect on F3–F4, AVG in Study I survives control for confounding variables

(t = �2.679, p=0.010).

Another significant result was observed for linear relationship between FAA and BDI score (allReg

contrast) on the average referenced F3–F4 channel pair in Study V: more positive values of alpha

asymmetry were associated with higher BDI scores (t = 2.489, p=0.016). This result is not consistent

with the standard FAA effect, which, when calculated as right minus left alpha, should manifest as a

negative correlation (negative t).

However, as we argued in the introduction, single channel analyses are not a particularly good

approach to testing FAA. They may be sensitive to small changes in the topography pattern and do

not provide any information about the source or physiological plausibility of the effect.

Figure 4. Selected results of cluster-based analyses: topographies of DvsHC contrast effects in a reference by study matrix. More positive (red) t values

indicate more right-sided (less left-sided) alpha asymmetry for diagnosed participants. More negative (blue) t values indicate more right-sided (less left-

sided) FAA for healthy controls. Channels that are part of a cluster are marked with white dots.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Results of cluster-based analyses for allReg contrast (regression on all subjects).

Figure supplement 2. Results of cluster-based analyses for DReg contrast (regression on diagnosed subjects).

Figure supplement 3. Results of cluster-based analyses for SvsHC (comparison between subclinical and healthy controls) contrast.

Figure supplement 4. An example of a more detailed visualization of asymmetry effects: group-level averages for DvsHC, Study V, AVG from F.
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Cluster-based analyses
The next set of analyses consisted of cluster-based analyses on all frontal channel pairs (Tables 3

and 4). This approach gives a better view of the whole FAA space (correcting for multiple compari-

sons) especially when coupled with presentation of the effects’ topographies. We observe only one

significant effect out of 30 for standard analyses (p=0.785, binomial test) and one out of 30

(p=0.785) when controlling for confounding variables.

Table 4. Results for cluster-based permutation test on frontal asymmetry space corrected for confounds.

Each row represents cluster-based results for a given contrast, study and space combination (N: number of participants included in

given contrast; min t, max t: lowest and highest t value in the search space, respectively; n significant points: total number of significant

points in the search space before cluster-based correction; n clusters: number of clusters found in given analysis; largest cluster size:

number of channels participating in the cluster; largest cluster p: p-value for the largest cluster, NA means that no cluster was found in

given analysis).

No. Contrast Study Space N

Cluster-based permutation test on frontal asymmetry space corrected for confounds

Min t Max t n significant points n clusters Largest cluster size Largest cluster p

1 DvsHC I avg 29 vs 22 �2.679 �0.149 5 1 5 0.023

2 DvsHC I csd 29 vs 22 �1.020 1.591 0 0 NA NA

3 DvsHC III avg 27 vs 21 �1.506 1.361 0 0 NA NA

4 DvsHC III csd 27 vs 21 �1.310 1.378 0 0 NA NA

5 DvsHC IV avg 22 vs 71 �0.814 1.812 0 0 NA NA

6 DvsHC IV csd 22 vs 71 �1.812 0.978 0 0 NA NA

7 DvsHC V avg 24 vs 29 �1.618 2.341 3 3 1 0.327

8 DvsHC V csd 24 vs 29 �3.017 0.738 2 2 1 0.205

9 SvsHC II avg 23 vs 28 �2.622 0.351 1 1 1 0.177

10 SvsHC II csd 23 vs 28 �0.838 1.742 0 0 NA NA

11 SvsHC III avg 33 vs 21 �1.768 1.218 0 0 NA NA

12 SvsHC III csd 33 vs 21 �2.090 1.899 1 1 1 0.358

13 SvsHC IV avg 21 vs 71 �1.584 1.490 0 0 NA NA

14 SvsHC IV csd 21 vs 71 �1.400 0.739 0 0 NA NA

15 allReg I avg 54 �1.726 0.039 0 0 NA NA

16 allReg I csd 54 �0.816 0.987 0 0 NA NA

17 allReg III avg 91 �1.231 0.722 0 0 NA NA

18 allReg III csd 91 �1.540 2.119 1 1 1 0.335

19 allReg IV avg 116 �1.804 1.852 0 0 NA NA

20 allReg IV csd 116 �1.300 1.461 0 0 NA NA

21 allReg V avg 53 �1.286 2.350 1 1 1 0.324

22 allReg V csd 53 �3.541 0.832 2 2 1 0.173

23 DReg I avg 29 �0.244 1.516 0 0 NA NA

24 DReg I csd 29 �1.291 0.565 0 0 NA NA

25 DReg III avg 27 �1.700 0.852 0 0 NA NA

26 DReg III csd 27 �1.311 1.574 0 0 NA NA

27 DReg IV avg 22 �1.173 2.728 1 1 1 0.121

28 DReg IV csd 22 �0.269 2.235 1 1 1 0.260

29 DReg V avg 24 �1.593 0.926 0 0 NA NA

30 DReg V csd 24 �2.075 2.586 2 2 1 0.376

DvsHC – diagnosed and healthy controls; SvsHC – sub-clinical and healthy controls; allReg – linear regression for all subjects together; DReg – linear

regression for only diagnosed subjects; avg – average reference; csd – current source density.
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The significant result for standard analyses corresponds to DvsHC contrast for the average refer-

enced data in Study V (cluster p=0.026). This is the same analysis combination as the significant

channel-pair result for Study V reported in the previous section. And just like in the previous section

it represents a result that is not congruent with the classical FAA effect: the positive t values mean

more positive right minus left FAA in depressed compared to healthy controls. We compare this

effect to other analyses for DvsHC contrast in Figure 4. We do not observe any other significant

effect in standard cluster-based results: neither contrasting sub-clinical vs healthy controls nor look-

ing for a linear relationship between FAA and depression questionnaire score. Although single chan-

nels sometimes pass the significance threshold (see n significant points column in Table 3) these

effects are not significant at the cluster level. In other words the clusters formed by these channels

were not convincingly stronger from clusters observed under the null hypothesis (that is, when per-

muting the data).

However, we observe an interesting effect of controlling for confounds. The significant result

mentioned in the previous paragraph is no longer present after controlling for age, gender, and edu-

cation (see Figure 5A). This change might be related to the fact that the diagnosed group has signif-

icantly lower education than the control group in Study V (t = �3.07, p=0.004, see Figure 5B), so a

part of the FAA differences between the groups can be explained away by education. On the other

hand, one result close to the significance threshold in the standard analyses (DvsHC, Study I, AVG,

cluster p=0.069) becomes significant after controlling for gender and age (p=0.023), which may be

related to the difference in age between the depressed and the control group in this study (t = 2.73,

p=0.0095).

Figure 5. Selected results of cluster-based analyses showing the influence of statistical control for confounding variables like age, gender (Studies I and

V), and education (Study V). (A) The logic of the topographical plots is the same as in Figure 4. (B) Swarmplots corresponding to studies in panel A

showing the between-group difference in the selected confounding variables. Detailed results for analyses taking into account confounding variables

can be found in Table 4.
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Cluster-based analyses on standardized data
All previous analyses assume that asymmetry can be detected by subtracting right and left homolo-

gous channels. Because some asymmetry effects may not match such strict left vs right pattern, we

performed further analyses to alleviate this issue: in this set of analyses we relied on standardization

of alpha power at frontal channels instead of right minus left subtraction. Additionally, to minimize

the risk of averaging out an effect confined to a narrow frequency range, we also analyzed all

Table 5. Results for all cluster-based analyses on standardized data.

Each row represents cluster-based results for given contrast, study, and space (N: number of participants included in given contrast).

Results for cluster-based permutation test on frontal asymmetry space (min t, max t: lowest and highest t value in the search space,

respectively; n significant points: total number of significant points in the search space before cluster-based correction; n clusters:

number of clusters found in given analysis; largest cluster size: number of channels by frequency points participating in the cluster;

largest cluster p: p-value for the largest cluster, NA means that no cluster was found in given analysis).

No. Contrast Study Space N

Cluster-based analyses on standardized data

Min t Max t n significant points n clusters Largest cluster size Largest cluster p

1 DvsHC I avg 29 vs 22 �1.453 1.434 0 0 NA NA

2 DvsHC I csd 29 vs 22 �2.227 1.879 3 2 2 0.718

3 DvsHC III avg 27 vs 21 �1.999 2.326 2 1 2 0.468

4 DvsHC III csd 27 vs 21 �2.917 3.882 23 3 16 0.063

5 DvsHC IV avg 22 vs 72 �4.256 3.053 129 2 66 0.007

6 DvsHC IV csd 22 vs 72 �3.180 2.582 22 7 6 0.259

7 DvsHC V avg 24 vs 29 �2.516 2.267 21 3 15 0.223

8 DvsHC V csd 24 vs 29 �2.703 2.420 10 6 3 0.723

9 SvsHC II avg 23 vs 28 �1.685 2.185 1 1 1 0.774

10 SvsHC II csd 23 vs 28 �2.059 1.714 1 1 1 0.941

11 SvsHC III avg 33 vs 21 �1.906 1.946 0 0 NA NA

12 SvsHC III csd 33 vs 21 �2.284 3.091 7 4 3 0.577

13 SvsHC IV avg 21 vs 72 �2.319 2.519 19 5 5 0.306

14 SvsHC IV csd 21 vs 72 �2.950 3.130 25 4 11 0.092

15 allReg I avg 54 �1.295 1.450 0 0 NA NA

16 allReg I csd 54 �2.082 1.899 1 1 1 1.000

17 allReg III avg 91 �1.814 1.949 0 0 NA NA

18 allReg III csd 91 �2.626 2.547 14 4 6 0.692

19 allReg IV avg 117 �3.406 2.701 75 4 40 0.079

20 allReg IV csd 117 �2.644 2.918 32 5 13 0.179

21 allReg V avg 53 �2.752 2.321 22 6 13 0.477

22 allReg V csd 53 �3.733 2.023 15 6 5 0.891

23 DReg I avg 29 �2.011 1.936 0 0 NA NA

24 DReg I csd 29 �2.721 2.093 8 5 3 1.000

25 DReg III avg 27 �4.167 3.824 89 2 53 0.025

26 DReg III csd 27 �3.525 3.285 34 4 17 0.105

27 DReg IV avg 22 �1.802 2.213 1 1 1 0.888

28 DReg IV csd 22 �2.219 2.890 12 4 9 0.316

29 DReg V avg 24 �2.926 4.155 58 7 18 0.354

30 DReg V csd 24 �3.551 3.084 46 9 14 0.387

DvsHC – diagnosed and healthy controls; SvsHC – sub-clinical and healthy controls; allReg – linear regression for all subjects together; DReg – linear

regression for only diagnosed subjects; avg – average reference; csd – current source density.
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Figure 6. Selected results of cluster-based analyses on standardized data. Heatmaps in the upper part of each panel represent regression t values for

channel by frequency search space. More positive/negative t values indicate higher/lower power with higher BDI. Clusters are indicated in the

heatmaps with white outline. In each panel we present two topographies below the heatmap: showing average effect for lower and higher frequency

ranges determined by the positions of the clusters. Channels that are part of a cluster are marked with white dots in the topographical plots.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Results of cluster-based analyses on standardized data for allReg contrast (linear regression between FAA and BDI on all
subjects together).

Figure supplement 2. Results of cluster-based analyses on standardized data for DReg contrast (linear regression between FAA and BDI restricted to
the non-diagnosed subjects).

Figure supplement 3. Results of cluster-based analyses on standardized data for DvsHC contrast (comparison between diagnosed and healthy
controls).

Figure supplement 4. Results of cluster-based analyses on standardized data for SvsHC contrast (comparison between subclinical and healthy
controls).
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frequency bins in the 8–13 Hz range. This strategy is used in a set of 60 analyses (30 without and 30

with control for confounds) – we report their results in Tables 5 and 6.

Only two out of 30 analyses on standardized data without control for confounds showed statisti-

cally significant result – this is expected by chance given our alpha level (p=0.447, binomial test).

Specifically, the significant results were found for: (a) DReg contrast, Study III (cluster p=0.025) and

(b) DvsHC contrast, Study IV (p=0.007), both for average referenced data. Both these effects are

potentially interesting, because they show a similar pattern – a positive relationship between (a)

Table 6. Results for all cluster-based analyses on standardized data corrected for confounds.

Each row represents cluster-based results for given contrast, study, and space (N: number of participants included in given contrast).

Results for cluster-based permutation test on frontal asymmetry space (min t, max t: lowest and highest t value in the search space,

respectively; n significant points: total number of significant points in the search space before cluster-based correction; n clusters:

number of clusters found in given analysis; largest cluster size: number of channels by frequency points participating in the cluster;

largest cluster p: p-value for the largest cluster, NA means that no cluster was found in given analysis).

No. Contrast Study Space N

Cluster-based analyses on standardized data corrected for confounds

Min t Max t n significant points n clusters Largest cluster size Largest cluster p

1 DvsHC I avg 29 vs 22 �1.766 1.716 0 0 NA NA

2 DvsHC I csd 29 vs 22 �2.007 1.614 0 0 NA NA

3 DvsHC III avg 27 vs 21 �1.387 1.896 0 0 NA NA

4 DvsHC III csd 27 vs 21 �3.345 3.054 17 4 6 0.567

5 DvsHC IV avg 22 vs 71 �4.295 3.304 143 2 72 0.006

6 DvsHC IV csd 22 vs 71 �3.095 2.854 33 5 12 0.179

7 DvsHC V avg 24 vs 29 �1.982 1.976 0 0 NA NA

8 DvsHC V csd 24 vs 29 �2.026 2.798 10 4 7 0.772

9 SvsHC II avg 23 vs 28 �1.511 1.841 0 0 NA NA

10 SvsHC II csd 23 vs 28 �2.059 1.876 1 1 1 1.000

11 SvsHC III avg 33 vs 21 �2.964 2.422 22 5 10 0.374

12 SvsHC III csd 33 vs 21 �2.424 3.562 12 4 4 0.865

13 SvsHC IV avg 21 vs 71 �2.667 2.858 34 3 31 0.113

14 SvsHC IV csd 21 vs 71 �2.389 3.317 23 3 10 0.273

15 allReg I avg 54 �1.404 1.614 0 0 NA NA

16 allReg I csd 54 �1.752 2.155 4 2 2 1.000

17 allReg III avg 91 �2.119 1.963 5 1 5 0.612

18 allReg III csd 91 �2.558 2.825 25 3 17 0.112

19 allReg IV avg 116 �3.414 3.009 92 4 54 0.038

20 allReg IV csd 116 �2.571 3.112 32 6 11 0.216

21 allReg V avg 53 �1.942 2.057 1 1 1 1.000

22 allReg V csd 53 �3.005 2.362 11 5 5 0.945

23 DReg I avg 29 �1.902 1.990 0 0 NA NA

24 DReg I csd 29 �2.583 2.088 9 5 4 0.955

25 DReg III avg 27 �3.938 3.530 70 4 36 0.073

26 DReg III csd 27 �3.198 4.098 39 7 21 0.035

27 DReg IV avg 22 �2.213 2.662 4 2 2 0.659

28 DReg IV csd 22 �3.056 3.114 16 4 10 0.265

29 DReg V avg 24 �3.200 4.246 84 7 27 0.266

30 DReg V csd 24 �3.533 3.378 78 7 36 0.092

DvsHC – diagnosed and healthy controls; SvsHC – sub-clinical and healthy controls; allReg – linear regression for all subjects together; DReg – linear

regression for only diagnosed subjects; avg – average reference; csd – current source density.
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depression severity (BDI score, only the diagnosed subjects) or (b) diagnosis status and power in the

higher alpha band (DReg: 11–12.5 Hz, DvsHC: 10.5–12 Hz) across many frontal channels (see Fig-

ure 6). Because it is accompanied with an inverse effect in a lower frequency band (DReg: 9–10 Hz,

DvsHC: 8–9 Hz) at similar channels, averaging across the whole 8–13 Hz frequency range could lead

to both effects cancelling each other in the average. Such a pattern of inverse effects across frequen-

cies could arise due to a frequency shift of the individual alpha peak or the narrowing of the peak

with depression severity but it may also be a direct consequence of standardization. However, both

effects do not represent FAA as their topography is symmetrical (DReg: �
2(1)=0.153, p=0.696,

DvsHC: �2(1)=0.000, p=1) and were not replicated when using CSD reference in the same studies

(Study III, Dreg: cluster p=0.259; Study IV, DvsHC: p=0.105) or performing the same contrast on

data from other studies (see more: Table 5, Table 6, and Figure 6).

Although the conclusions that can be drawn from these standardization analyses are not in favor

of FAA–DD relationship, they demonstrate the strength of the proposed approach in detecting

effects that might be otherwise missed when averaging across the whole alpha range or when test-

ing only the differences on corresponding right–left channel pairs.

Source level analyses
Because observing the effect in the signal recorded from frontal channels does not guarantee that

the source of this effect is frontal we conducted a second set of additional analyses using source

localization with DICS beamforming. In these analyses the FAA was evaluated in the source space by

subtracting power of the corresponding right and left hemisphere vertices.

Results of source level analyses are reported in Tables 7 and 8. One of the 15 source space analy-

ses turned out statistically significant – this is expected by chance given our alpha value (p=0.537,

binomial test). The same number of significant results was found when controlling for confounding

variables (1/15, p=0.537).

Table 7. Results for all source level analyses.

Each row represents source level results for given contrast, study, and space (N: number of participants included in given contrast).

Results for cluster-based permutation test on frontal asymmetry source space (min t, max t: lowest and highest t value in the search

space, respectively; n significant points: total number of significant points in the search space before cluster-based correction; n clus-

ters: number of clusters found in given analysis; largest cluster p: p-value for the largest cluster, NA means that no cluster was found in

given analysis).

No. Contrast Study N

Source level analysis

Min t Max t n significant points n clusters Largest cluster size Largest cluster p

1 DvsHC I 29 vs 22 �1.906 2.404 2 1 2 0.489

2 DvsHC III 27 vs 21 �2.557 1.158 29 4 14 0.267

3 DvsHC IV 22 vs 72 �3.921 1.151 320 2 316 0.010

4 DvsHC V 24 vs 29 �2.612 0.943 24 1 24 0.207

5 SvsHC II 23 vs 28 �0.909 1.321 0 0 NA NA

6 SvsHC III 34 vs 21 �1.809 1.341 0 0 NA NA

7 SvsHC IV 21 vs 72 �2.339 0.679 11 1 11 0.340

8 allReg I 54 �2.319 1.549 20 1 20 0.367

9 allReg III 92 �2.232 0.290 21 2 20 0.343

10 allReg IV 117 �2.220 1.211 10 1 10 0.466

11 allReg V 53 �2.644 1.201 15 3 6 0.574

12 DReg I 29 �2.292 1.150 41 2 22 0.328

13 DReg III 27 �2.624 �0.375 26 3 18 0.335

14 DReg IV 22 �1.216 2.064 0 0 NA NA

15 DReg V 24 �2.068 1.758 0 0 NA NA

DvsHC – diagnosed and healthy controls; SvsHC – sub-clinical and healthy controls; allReg – linear regression for all subjects together; DReg – linear

regression for only diagnosed subjects.

Kołodziej et al. eLife 2021;10:e60595. DOI: https://doi.org/10.7554/eLife.60595 15 of 34

Research article Neuroscience

https://doi.org/10.7554/eLife.60595


The significant effect was found for DvsHC contrast in Study IV (p=0.010, see Figure 7) and

remains significant when controlling for confounds (cluster p=0.011; see Table 8). It represents more

negative FAA values for depressed compared to healthy individuals, which is congruent with the tra-

ditional FAA effect.

In most of the analyses the pattern and sign of the t values points towards a more left-sided

effect. For example in the allReg contrast: the negative t values suggest lower R–L differences in

high than in low BDI participants, which means more left-sided alpha power with higher BDI.

Although this pattern seems to be in line with FAA–DD literature, almost all of the source space

effects are weak and do not survive the correction for multiple comparisons. However, it is important

to remember that individual MRI scans and channel locations were not available in the present study:

their availability would lead to lower error in source reconstruction.

Analyses on aggregated data
Finally, to overcome the relatively low statistical power of analyses on separate data sets we aggre-

gate data from all studies that include identical contrasts and perform analyses on the aggregated

data. Before aggregation we tested whether the FAA values from both selected channel pairs have

similar scale across the five studies with a Levene test. Because the scale was significantly different

across studies (F3–F4: W = 8.68, p<0.0001; F7–F8: W = 5.21, p=0.002) and because such scale dif-

ferences can arise from lab-specific equipment or adopted impedance threshold, we z-scored the

FAA values within each study before aggregation. All aggregated channel pair analyses can be seen

in Figure 8, Figure 8—figure supplement 1, and Table 9. For brevity we discuss only the results for

DvsC and allReg contrasts for average referenced channel pairs.

Aggregated DvsHC contrast analysis encompasses 246 participants (102 diagnosed and 144

healthy controls) and 245 when controlling for confounds (one participant from the control group

was removed due to missing information on confounding variables). For the F3–F4 channel pair the

Table 8. Results for all source level analyses corrected for confounds.

Each row represents source level results for given contrast, study, and space (N: number of participants included in given contrast)

Results for cluster-based permutation test on frontal asymmetry source space (min t, max t: lowest and highest t value in the search

space, respectively; n significant points: total number of significant points in the search space before cluster-based correction; n clus-

ters: number of clusters found in given analysis; largest cluster p: p-value for the largest cluster, NA means that no cluster was found in

given analysis).

No. Contrast Study N

Source level analysis corrected for confounds

Min t Max t n significant points n clusters Largest cluster size Largest cluster p

1 DvsHC I 29 vs 22 �1.416 2.057 1 1 1 0.708

2 DvsHC III 27 vs 21 �2.161 1.704 3 2 2 0.555

3 DvsHC IV 22 vs 71 �3.685 1.066 365 2 346 0.011

4 DvsHC V 24 vs 29 �2.630 0.287 64 3 46 0.231

5 SvsHC II 23 vs 28 �0.814 1.911 0 0 NA NA

6 SvsHC III 34 vs 21 �1.770 1.526 0 0 NA NA

7 SvsHC IV 21 vs 71 �2.732 �0.083 58 1 58 0.192

8 allReg I 54 �1.846 1.143 0 0 NA NA

9 allReg III 92 �2.195 0.698 15 1 15 0.391

10 allReg IV 116 �2.313 0.910 44 4 19 0.375

11 allReg V 53 �2.901 0.317 79 4 36 0.264

12 DReg I 29 �2.164 1.010 15 2 11 0.428

13 DReg III 27 �2.991 0.175 66 3 63 0.186

14 DReg IV 22 �1.397 1.818 0 0 NA NA

15 DReg V 24 �2.893 1.784 22 1 22 0.352

DvsHC – diagnosed and healthy controls; SvsHC – sub-clinical and healthy controls; allReg – linear regression for all subjects together; DReg – linear

regression for only diagnosed subjects; nonDReg – linear regression for only the non-diagnosed subjects.
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Cohen’s d is 0.147 (CI = [�0.111, 0.396]) and �0.011 when controlling for confounds (CI = [�0.264,

0.244]). Both confidence intervals exclude all but small effect sizes (classical FAA effect for right–left,

diagnosed – controls should be negative). The effect sizes for F7–F8 channel pair are similar:

d = 0.098, CI = [�0.161, 0.338] without control for confounds and d = �0.006, CI = [�0.266, 0.240]

when controlling for confounding variables.

To quantify the support for the null hypothesis we calculate Bayes factors for the null (BF01). For

F3–F4 channel pair the BF01 equals 3.831, which means that the data are almost four times more

likely under the null than alternative hypothesis. When controlling for confounding variables the

BF01 increases to 7.042. For F7–F8 channel pair the BF01 are: 5.405 and 7.042 when controlling for

confounds. Bayes factors between 3 and 10 are considered moderate evidence, so the results pro-

vide moderate evidence for no FAA difference between diagnosed and healthy individuals.

Aggregated allReg contrast analysis includes 315 participants (314 when controlling for con-

founds). For F3–F4 channel pair the Pearson’s r is 0.085 (CI = [�0.017, 0.184]) and decreases to

0.041 when controlling for confounds (CI = [�0.063, 0.143]). Corresponding Bayes factors for the

null are: 4.651 and 10.87 which suggests moderate to strong evidence for no relationship between

FAA and depression score.

Figure 7. Selected results of source level analyses showing spatial t value maps for respective contrasts. Cluster limits are marked with white outlines,

and corresponding cluster p-values are shown below each panel. Color bar at the bottom presents color coding for the t values.

The online version of this article includes the following figure supplement(s) for figure 7:

Figure supplement 1. Results of source level analyses for allReg contrast (linear regression between FAA and BDI on all subjects) showing spatial
t value maps for regression analyses.

Figure supplement 2. Results of source level analyses for DReg contrast (linear regression between FAA and BDI restricted to diagnosed subjects)
showing spatial t value maps for regression analyses.

Figure supplement 3. Results of source level analyses for DvsHC contrast (comparison between diagnosed and healthy controls) showing spatial
t value maps for regression analyses.

Figure supplement 4. Results of source level analyses for SvsHC contrast (comparison between subclinical and healthy controls) showing spatial t value
maps for regression analyses.
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We also aggregate the data from relevant studies in the source space and then perform cluster-

based permutation tests for all defined contrasts. Just like in the aggregated channel pair analyses,

before aggregation the data are z-scored within each study (each source vertex is z-scored across

participants separately) to avoid creating non-normal distributions by joining data of different scale.

The results of the aggregated source space analyses can be found in Table 10.

Although no analysis yields nominally significant results it is interesting to note that contrasts

DvsHC and allReg are at the conventional ‘trend’ level (DvsHC: 0.077 and 0.066 when controlling for

confounds; allReg: 0.067 and 0.054 when controlling for confounds) and their direction agrees with

the traditional FAA effect.

Discussion
We conducted a multiverse analysis of EEG data sets from five independent studies, with 388 partici-

pants and 270 analyses in total, to test the robustness and credibility of the relationship between

Figure 8. Results for channel pair analyses where studies including identical group contrasts (A) and linear contrasts (B) are combined. Each row

corresponds to one analysis on a single channel pair. The contrasts, studies, and channel pairs are labeled on the y axis. The black dots correspond to

observed effect sizes in Cohen’s d/Pearson’s r, while the black lines indicate 95% confidence intervals for the effect size estimated using bias-corrected

accelerated bootstrapping. The magenta/purple shapes represent bootstrap distributions and the white numbers printed on the distributions are Bayes

factors for the null hypothesis (BF01). BF01 of 4 indicates that the data are four times more likely under the null than the alternative hypothesis. BF01

between 3 and 10 are considered moderate evidence for the null hypothesis.

The online version of this article includes the following figure supplement(s) for figure 8:

Figure supplement 1. Results for channel pair analyses with control for confounds where studies including identical group contrasts (A) and linear
contrasts (B) are combined.

Figure supplement 2. Results for channel pair gender � contrast interaction analyses on aggregated data with control for confounds.
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FAA and depressive mood. We performed 120 replicatory single channel pairs analyses and 60 cor-

responding cluster-based analyses. We have also conducted 90 additional analyses addressing some

of the limitations of current FAA studies. Out of 270 performed analyses only 13 produced statisti-

cally significant results – a result expected by chance when using 0.05 alpha level (binomial test,

p=0.595). Moreover, more than half of the significant results (8/13) are incongruent with the tradi-

tional FAA effect: by either showing the opposite direction of the effect (6) or not showing asymme-

try (two significant effects on standardized data). Overall, the conducted analyses do not provide a

basis to reject the null hypothesis of no relationship between resting state FAA and DD.

Our conclusion is similar to this formulated by other research groups (Kaiser et al., 2018b;

van der Vinne et al., 2017), stating that treating FAA as a biomarker of DD is not sufficiently empiri-

cally grounded. As our data shows, this skepticism is not limited to single channel pair analyses –

improving on the limitations of methods commonly used in FAA literature does not change the pat-

tern of results.

Despite this, FAA is one of the most common indicators of DD with a long history of successful

studies – it might be difficult to believe that all previous FAA research represents Type I errors.

Therefore it is worth considering that we just fail to detect this effect here. First, the FAA effect size

may be too small to be reliably observed with a small to moderate sample size. The average number

of participants per study is 78 in our case, but most analyses contain around 25 participants per

group, which grants sufficient power to detect mostly large effects. Although single analyses

reported here can be deemed inconclusive, the whole multiverse set of analyses is incompatible with

the presence of moderate to strong relationship between FAA and DD. To strengthen this point we

performed analyses on data aggregated across studies (see section Analyses on aggregated data)

showing estimated effect sizes, their confidence intervals, and Bayes factors for the null hypothesis

(see Figure 8 and Figure 8—figure supplement 1). All confidence intervals for diagnosed vs healthy

controls group contrast (DvsHC) and linear relationship between FAA and diagnosis score (allReg)

exclude strong and moderate effects in the direction compatible with traditional FAA effect. More-

over, Bayes factors indicate that there is moderate evidence for the null hypothesis (or moderate to

strong evidence for the null in allReg contrast). Although we cannot exclude a small FAA–DD rela-

tionship, if the effect was in this range then most published studies would have been underpowered

to detect it. This line of thought is also supported in the meta-analysis by van der Vinne et al.,

2017, which shows that studies with larger samples were less likely to report high effect sizes. For

example, the largest EEG FAA study on a sample of 1008 DD patients and 336 controls did not con-

firm the diagnostic value of FAA in DD (Arns et al., 2016). Such pattern of results suggests publica-

tion bias or that the FAA–DD effect, if it exists, is detectable only in highly selected samples and is

of small magnitude on the population level.

Although the collected studies contain data from sub-clinical, mild, as well as major depression

patients, we do not think our results can be explained by the level of depression severity. Clinical

participants in Studies I, III, IV, and V and sub-clinical participants in Studies II and III manifested a

wide range of DD symptoms indicated by BDI/PHQ-9 scores (see Figure 1 for BDI histograms), but

regression analysis (DReg) did not reveal any relationship between FAA and BDI score in the aggre-

gated analyses. This means that participants with stronger DD symptoms were not better character-

ized by a specific FAA pattern even when we controlled for confounding variables like age, gender,

and education. However, given that 56 out of 102 participants (54.9%) in the aggregated clinical

group were diagnosed with mild DD, it would be interesting to repeat the analyses presented here

on a data set with more major DD patients.

Smith et al., 2017 previously suggested that the relationship between FAA and DD is stronger

when the participant is given some emotion-related task, as opposed to resting condition, where

the task is unspecified. Although this is possible, we wanted to stay true to the design of most FAA–

DD studies, which measure EEG during rest. An interesting approach for future studies would be to

compare rest blocks separated by an emotional task (see, for example, Beeney et al., 2014).

CSD has been previously recommended in the literature (Kayser and Tenke, 2015;

Stewart et al., 2014) for studies on FAA because it reduces volume conduction and makes topogra-

phies more focal. We do not see support for the claim that CSD is more sensitive to FAA in our

results. We even think it may be the contrary – almost all significant or trend-level effects disappear

with CSD reference. The fact that CSD produces more focal topographies coupled with potential

high variability of topographies across subjects may result in lower probability of detecting an effect.
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Given that the orientation of the sources responsible for the effect of interest may be variable across

subjects, increasing the focality of their projections may only exacerbate the issue.

In contrast to CSD, we see some indication of the traditional FAA effect in the source space analy-

ses. Although only 2/30 source space analyses are significant, partitioning the effects into contrasts

(see Table 11) reveals 2/8 significant DvsHC results, which is only barely consistent with 5% error

rate (p=0.057, binomial test). Also the direction of the effect in almost all source results is consistent

with the traditional FAA effect (negative t values). Finally, the same consistency of the effect direc-

tion can be observed in the source space analyses on aggregated data (see Table 10, Figure 9, and

Figure 9—figure supplement 1) – all source space vertices with an uncorrected significant effect

show negative effect direction. The DvsHC and allReg contrasts on the aggregated data are at the

trend level (p=0.077 and p=0.067, respectively) and it might seem that using more rigorous source

localization (individual MRI scans and channel positions) could lead to a significant effect. Neverthe-

less it is difficult to speculate based on statistical tendency – with more subjects or more precise

source localization the results might equally likely land further away from the alpha threshold.

Previous studies have suggested that FAA effect may manifest differently depending on gender

(Jaworska et al., 2012; Stewart et al., 2010; van der Vinne et al., 2017). Because all the analyses

with control for confounding variables that we have conducted control only for the main effect of

gender, we additionally tested the presence of an interaction between gender and diagnosis (or

depression score) in predicting FAA. This set of analyses were restricted only to the aggregated

data with control for confounds. None of these analyses demonstrated a significant interaction effect

(see Figure 8—figure supplement 2 and Figure 9—figure supplement 2).

Figure 9. Selected results for aggregated source space analyses showing spatial t value maps for respective contrasts. Cluster limits are marked with

white outlines, and corresponding cluster p-values are shown below each panel. Color bar at the bottom presents color coding for the t values.

The online version of this article includes the following figure supplement(s) for figure 9:

Figure supplement 1. Selected results for aggregated source space analyses showing spatial t value maps for respective contrasts.

Figure supplement 2. Results for interaction analyses (gender � contrast) for aggregated studies in source space.
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A challenge for future FAA studies would be to move beyond a ‘marker-only’ approach, describe

the theoretical assumptions behind FAA in more detail, and let these assumptions dictate an ade-

quate analytical approach. For example, the assumption that FAA is a phenomenon with a source in

the frontal cortex is impossible to address using only a few frontal channel pairs. Using source locali-

zation (like DICS Beamforming used here) or source separation (for example, spatial filtering with

generalized eigendecomposition/common spatial pattern [Koles et al., 1990; Parra and Sajda,

2003; Tomé, 2006]; or SPACE decomposition [van der Meij et al., 2015]; Roemer [van der Meij

et al., 2016]) should be preferred when looking for the answer to this question. This point is impor-

tant because frontal alpha sources are rarely measured reliably with EEG at the channel level: strong

occipital and parietal alpha sources dominate alpha power recorded at frontal channels. As a result

measuring FAA at the channel level could lead to poor signal to noise ratio and consequently to

small effect size and low probability to observe a true FAA–DD relationship. On the other hand, if

FAA does not originate in the frontal regions, it should be measured and interpreted differently.

Such scenario is not unlikely because frontal alpha sources are generally difficult to detect with EEG/

MEG. For example, Roemer van der Meij et al., 2016, using an advanced source separation

method, found that 86.6% of the alpha components detected across subjects were occipito-parietal

and only 1% (4/380) were frontal. If frontal alpha sources are difficult to detect using a source sepa-

ration method designed to capture oscillatory sources, then it is likely that these sources are rarely

observed at the channel level at all.

If FAA is not of frontal origin, then where could it come from? This is an open empirical question

and we can only offer speculation here. Jiang et al., 2016 have shown that the power of posterior

alpha oscillations is reduced in depressed individuals and that this reduction strongly correlates with

depression severity. Assuming that frontal projections from occipital or parietal sources will not be

Table 9. Results for analyses on data aggregated across studies: tests on frontal asymmetry on selected channel pairs.

Each row represents a given contrast � reference � control for confounds combination. N: number of participants included in given

contrast, control for confounds: whether the FAA data was residualized with respect to confounding variables (age, gender and educa-

tion); ES: effect size, measured as Cohen’s d for DvsHC and SvsHC contrasts and Spearman’s r for Dreg and allReg contrasts; CI: boot-

strap confidence interval for the effect size; BF01: Bayes Factor for the null hypothesis.

No. Contrast Space N Control for confounds

Aggregated channel pair analyses

Pair 1 (F3–F4) Pair 2 (F7–F8)

ES CI BF01 ES CI BF01

1 DvsHC avg 102 vs 144 � 0.147 [�0.111, 0.396] 3.831 0.098 [�0.161, 0.338] 5.405

2 DvsHC avg 102 vs 143 + �0.011 [�0.264, 0.244] 7.042 �0.006 [�0.266, 0.240] 7.042

3 DvsHC csd 102 vs 144 � 0.188 [�0.069, 0.449] 2.597 �0.100 [�0.354, 0.164] 5.319

4 DvsHC csd 102 vs 143 + 0.103 [�0.159, 0.362] 5.236 �0.164 [�0.417, 0.108] 3.300

5 SvsHC avg 77 vs 121 � 0.065 [�0.236, 0.359] 5.780 �0.025 [�0.320, 0.240] 6.250

6 SvsHC avg 77 vs 120 + 0.024 [�0.269, 0.315] 6.211 �0.144 [�0.447, 0.140] 4.016

7 SvsHC csd 77 vs 121 � 0.053 [�0.223, 0.355] 5.952 �0.108 [�0.372, 0.179] 4.878

8 SvsHC csd 77 vs 120 + 0.053 [�0.222, 0.350] 5.952 �0.110 [�0.389, 0.179] 4.831

9 DReg avg 102 � 0.188 [0.006, 0.354] 1.387 0.007 [�0.186, 0.188] 8.065

10 DReg avg 102 + 0.175 [�0.018, 0.348] 1.742 �0.029 [�0.211, 0.155] 7.752

11 DReg csd 102 � 0.099 [�0.072, 0.260] 4.975 0.065 [�0.136, 0.252] 6.579

12 DReg csd 102 + 0.051 [�0.131, 0.216] 7.092 0.048 [�0.157, 0.255] 7.194

13 allReg avg 315 � 0.085 [�0.017, 0.184] 4.651 0.029 [�0.080, 0.126] 12.5

14 allReg avg 314 + 0.041 [�0.063, 0.143] 10.87 0.001 [�0.120, 0.104] 14.085

15 allReg csd 315 � 0.059 [�0.054, 0.166] 8.333 �0.026 [�0.141, 0.082] 12.821

16 allReg csd 314 + 0.055 [�0.056, 0.168] 8.772 �0.048 [�0.158, 0.059] 9.901

DvsHC – diagnosed and healthy controls; SvsHC – sub-clinical and healthy controls; allReg – linear regression for all subjects together; DReg – linear

regression for only diagnosed subjects; avg – average reference; csd – current source density.
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perfectly symmetrical, a difference metric like FAA may be sensitive to posterior alpha power.

Another possibility is that FAA originates from asymmetry at the source level; Smith et al., 2018

demonstrated that channel-level FAA is related to source level asymmetry in frontal motor regions.

However, the authors did not look for correlations with FAA in the full source space, but restricted

their analyses to the R–L source level asymmetry and in consequence their analysis is insensitive to

symmetrical sources of FAA. Our data and analyses cannot be conclusive in this regard because

without a strong and reliable channel-level FAA–DD effect it is difficult to look for its source level

correlate.

Tackling all the mentioned issues would require to systemize and unify the FAA methodology for

the benefit of future studies. So far, Kaiser et al., 2018a proposed guidelines for methodology

regarding subjects selection and controlling for confounding variables. Smith et al., 2017 also sug-

gested possible improvements in experimental procedures and EEG signal preprocessing. We

believe there is still room for improvement in the signal analysis standards of FAA studies. Below we

summarize our arguments and propose additional guidelines for EEG data analysis in FAA research:

. Always show the topography of the effects. Lack of topographical plots hinders interpretation
in terms of both potential neural origin of the effect and its physiological reliability. It is a
good idea to also add topographical plots of group averages: both for alpha power and alpha
asymmetry (see Figure 4—figure supplement 4). Such visualizations can clarify the studied
effect: when FAA is calculated as a R–L difference and is compared between groups, reasoning
about difference between differences ((R–L) � (R–L)) can be unnecessarily complex.

. Conduct analysis on all frontal electrodes (or even all available electrodes) with correction for
multiple comparisons. We recommend using the cluster-based permutation test (Maris and
Oostenveld, 2007), as it is versatile and implemented in multiple software packages: mne-
python (Gramfort et al., 2013; Gramfort et al., 2014) and fieldtrip (Oostenveld et al., 2011)
for example, but the fieldtrip implementation is available also through EEGLAB (Delorme and
Makeig, 2004) and brainstorm (Tadel et al., 2011).

. Try not to restrict the analysis to left minus right subtraction on averaged frequencies. As we
show in the analyses on standardized data, avoiding subtraction and frequency averaging can
uncover interesting effects that could otherwise be missed. Extending the search space to fre-
quencies is straightforward when using the cluster-based permutation test.

. Perform analysis in the source-space if possible. Source localization allows to estimate the
source of the signal more reliably and obtain a better signal to noise ratio (see, for example,
van Es and Schoffelen, 2019). However, to minimize source localization error individual MRI

Table 10. Results for analyses on data aggregated across studies, cluster-based permutation tests on frontal asymmetry in the source

space.

Each row represents the result for given contrast � control for confounds combination. N: number of participants included in given

contrast, control for confounds: whether the FAA data was residualized with respect to confounding variables (age, gender and educa-

tion), min t, max t: lowest and highest t value in the search space, respectively; n significant points: total number of significant points in

the search space before cluster-based correction; n clusters: number of clusters found in given analysis; largest cluster p: p-value for

the largest cluster, NA means that no cluster was found in given analysis.

No. Contrast N Control for confounds

Aggregated source level analyses

Min t Max t n significant points n clusters Largest cluster size Largest cluster p

1 DvsHC 102 vs 144 � �2.719 0.956 178 5 100 0.077

2 DvsHC 102 vs 143 + �2.846 0.908 211 5 116 0.066

3 SvsHC 77 vs 121 � �1.831 �0.11 0 0 NA NA

4 SvsHC 77 vs 120 + �1.871 0.182 0 0 NA NA

5 DReg 102 � �2.387 1.376 31 3 25 0.328

6 DReg 102 + �3.095 1.354 112 3 68 0.155

7 allReg 315 � �3.044 0.411 174 6 160 0.067

8 allReg 314 + �3.107 0.282 235 6 195 0.054

DvsHC – diagnosed and healthy controls; SvsHC – sub-clinical and healthy controls; allReg – linear regression for all subjects together; DReg – linear

regression for only diagnosed subjects.
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scans are required. Other methods focusing on source-separation like ICA, GED, or SPACE
allow one to disentangle signal contributions from independent sources and increase signal to
noise ratio. CSD was also proposed in this context in FAA literature before, but although it can
mitigate some of the issues arising from volume conduction, it does not provide source locali-
zation or separation.

. Do not restrict the analysis to group contrasts if linear predictors are available. Using linear
regression allows to take covariates into account and test hypotheses in a more detailed
manner.

Materials and methods
We included five data sets in the analyses. These data sets were obtained in five independent stud-

ies: Studies I–III have been collected by the authors of the article; Studies IV and V are publicly avail-

able: the data from Study IV were obtained from the PREDiCT repository (Cavanagh et al., 2017),

while Study V data come from the MODMA database (Cai et al., 2020).

Participants
In total 408 medication-free participants took part in the collected five studies: all without neurologi-

cal disorders or head injuries. Thirteen subjects were excluded from further analyses due to exces-

sive artifacts in the EEG signal (Study II: 8; Study III: 4; Study IV: 1) or missing data (Study III: 1; Study

IV: 3). Additional three subjects were excluded from Study I because of not fulfilling the analysis cri-

teria. As a consequence a total of 388 participants were included in the reported analyses: Study I,

N = 51; Study II, N = 76; Study III, N = 91; Study IV: 117; Study V: 53. For descriptive statistics sum-

marizing each study, see Table 12 and Figure 1.

Participants in Studies II and III as well as healthy controls in Study I were recruited from the gen-

eral population via advertisements in the local media or internal announcements for students at the

University of Social Sciences and Humanities in Warsaw. In Study I diagnosed patients were recruited

at the Psychiatry Clinic of the Department of Psychiatry, Medical University of Warsaw.

In Studies I–III each participant completed the Beck Depression Inventory (BDI) to determine the

current level of mood disorder: we used BDI version I (Beck et al., 1961) in Studies I and II; and BDI

version II (Beck et al., 1996) in Study III. Patients in Studies I and III were diagnosed with mild DD

(F32.0) according to ICD-10 classification criteria after a structured clinical interview using the MINI –

mini-international neuropsychiatric interview (Sheehan et al., 1998).

Participants in Study IV were recruited from the student population at University of Arizona. Par-

ticipants with BDI score �13 were invited to participate in a Structured Clinical Interview for Depres-

sion. Participants meeting diagnostic criteria of current or past major DD were included in the group

of diagnosed participants. Also, all participants completed BDI-II. More recruitment details can be

found in the original papers (Cavanagh et al., 2011; Cavanagh et al., 2019).

In Study V participants with diagnosis of major DD were recruited from the Lanzhou University

Second Hospital and healthy controls from the general population. In both groups, each participant

completed the Patient Health Questionnaire (PHQ-9) (Kroenke et al., 2001) to evaluate depression

level. More recruitment details can be found in the original papers (Li et al., 2017; Sun et al., 2019).

Table 11. Number of significant results compatible with the traditional FAA effect partitioned into analyses and contrasts.

If one or more such results have been found for a given cell, then the p-value for the binomial test is also shown.

Number of significant results congruent with the FAA effect

Channel pairs N = 120 Cluster correction N = 60 Source space N = 30

DvsHC 2/32, p=0.48 1/16, p=0.56 2/8, p=0.057

SvsHC 0/24 0/12 0/6

DReg 0/32 0/16 0/8

allReg 0/32 0/16 0/8
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Table 12. Descriptive statistics for each study presented in the article (N – number of participants, M – mean score, SD – standard

deviation, BDI-I and BDI-II – Beck Depression Inventory I and II, PHQ-9 – Patient Health Questionnaire-9).
Study I (N=51)

Diagnosed Healthy Controls, BDI-I � 5 Subclinical Unclassified

N 29 22 - -

Age

M = 27.66,
SD = 7.13

M = 23.68, SD = 2.83 - -

19 - 47
range

20 - 33 range - -

Gender
9 male, 20
female

11 male, 11 female - -

BDI-I score
M = 20.93,
SD = 8.21

M = 2.00, SD = 1.48 - -

Study II (N=76)

Undiagnosed (N=76)

Diagnosed Healthy Controls, BDI-I � 5
Subclinical,
BDI-I � 10

Unclassified,
5 < BDI-I < 10

N - 28 25 23

Age
- M = 25.32, SD = 6.46 M = 24.44, SD = 5.08 M = 25.22, SD = 6.78

- 18 - 43 range 19 - 38 range 18 - 40 range

Gender - 8 males, 20 females 4 males, 21 females 9 males, 14 females

BDI-I score - M = 2.29, SD = 1.72 M = 17.56, SD = 8.13 M = 7.91, SD = 1.16

Study III (N=91)

Diagnosed

Undiagnosed (N=64)

Healthy Controls, BDI-II � 5
Subclinical,
BDI-II � 10

Unclassified,
5 < BDI-II < 10

N 27 21 34 9

Age

M = 27.19,
SD = 7.23

M = 24.29, SD = 4.99 M = 25.06, SD = 6.58 M = 26.78, SD = 8.74

19 - 42
range

19 - 41 range 18 - 44 range 22 - 49 range

Gender
6 males, 21
females

7 males, 14 females 10 males, 24 females 2 males, 7 females

BDI-II score
M = 34.26,
SD = 9.18

M = 2.24, SD = 1.70 M = 24.06, SD = 10.08 M = 6.78, SD = 0.97

Study IV (N=117)

Diagnosed

Undiagnosed (N=95)

Healthy Controls, BDI-II � 5
Subclinical,
BDI-II � 10

Unclassified,
5 < BDI-II < 10

N

22

72 21 2
(12 past
MDD, 10
present
MDD)

Age

M = 18.91,
SD = 1.34

M = 19.00, SD = 1.23 M = 18.43, SD = 0.81 M = 18.00

18 - 24
range

18 - 23 range 18 - 21 range ages 18, 18

Gender
8 males, 14
females

33 males, 39 females 3 males, 18 females 1 males, 1 females

Table 12 continued on next page
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In Studies I, III, and IV all undiagnosed participants (including the subclinical group) and diag-

nosed participants in Study I reported no past depression episodes. This information was not avail-

able for participants of Studies II and V.

Local ethics committees approved studies’ protocols (Study I – the Medical University of Warsaw;

Studies II and III – the University of Social Sciences and Humanities; Study IV – the University of Ari-

zona; Study V – the Lanzhou University Second Hospital) and all participants signed consent forms.

Electrophysiological data sets
The summary of all studies is presented in Figure 1. The equipment specifications and sessions

details are provided below:

Study I – EEG signal was recorded with 64 channels (Ag/AgCl electrodes) arranged in the 10–5

system in a WaveGuard EEG Cap (Advanced Neuro Technology, ANT) at a sampling rate of 512 Hz.

Impedance was kept below 10 kW. EEG signal was recorded during a 5-min session with eyes

closed.

Study II – EEG signal was recorded with 64-Channel EGI HydroCel Geodesic Sensor Net, NetSta-

tion software, and an EGI Electrical Geodesic EEG System 300 amplifier at a sampling rate of 200

Hz. Impedance was kept below 40 kW. EEG signal was recorded during a 5-min session with eyes

closed.

Study III – EEG signal was recorded with 64-Channel (Ag/AgCl active electrodes) Brain Products

ActiCap system and BrainVision software at a sampling rate of 1000 Hz and downsampled off-line to

250 Hz. Impedance was kept below 10 kW. EEG signal was recorded during an 8-min session with

alternating eyes open (O) and eyes closed (C) 1-min segments. The ordering of the segments was

either OCCOCO or COOCOC (chosen randomly for each participant).

Study IV – EEG signal was recorded with 64-Channel (Ag/AgCl electrodes) Neuroscan Synamps2

system at a sampling rate of 512 Hz. Impedance was kept below 10 kW. EEG signal contained six 1-

min segments with alternating eyes open (O) and eyes close (C). The ordering of the segments was

either OCCOCO or COOCOC.

Study V – EEG signal was recorded with 128-Channel EGI HydroCel Geodesic Sensor Net and

NetStation software at a sampling rate of 250 Hz. Impedance was kept below 70 kW. EEG signal was

recorded during a 5-min session with eyes closed.

Data preprocessing
The preprocessing was performed with a custom-made EEGLAB-based MATLAB toolbox (eegDb:

Magnuski, 2020b) and custom MATLAB scripts. Preprocessing steps were the same for all five stud-

ies. Continuous EEG signal was 1 Hz high pass filtered and divided into 1-s consecutive segments.

BDI-II score
M = 21.82,
SD = 5.70

M = 1.60, SD = 1.48 M = 22.95, SD = 4.25 M = 6.50, SD = 0.71

Study V (N=53)

Diagnosed Healthy Controls, PHQ-9 � 5 Subclinical Unclassified

N 24 29 - -

Age

M = 30.88,
SD = 10.37

M = 31.45, SD = 9.15 - -

16 - 52
range

19 - 52 range - -

Gender
13 males,
11 females

11 males, 13 females - -

PHQ-9 score
M = 18.33,
SD = 3.50

M = 2.66, SD = 1.80 - -
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EEG recordings were visually inspected and segments containing strong or non-stereotypic artifacts

were marked for rejection. These segments were ignored in all further preprocessing and analysis

steps. Independent component analysis (ICA) was applied to remove remaining stereotypical arti-

facts from the data. Independent components signal, topographies, and power spectra were visually

inspected and components related to eye blinks, eye movements, and muscular and cardiac artifacts

(Hipp and Siegel, 2013; McMenamin et al., 2010; Shackman et al., 2009) were marked for

removal. For extra safety the validity of component removal was also ensured by visually comparing

the signal before and after ICA cleaning. The average number of removed components in each study

were as follows: M = 7.20, SD = 3.80 in Study I; M = 8.29, SD = 3.50 in Study II; M = 9.41, SD = 5.49

in Study III, M = 3.36, SD = 2.62 in Study IV, M = 4.70, SD = 2.21 in Study V. Bad channels (Study I:

M = 0.11, SD = 0.32; Study II: M = 0.72, SD = 1.04; Study III: M = 1.14, SD = 1.23; Study IV:

M = 1.23, SD = 1.14; Study V: M = 0.81, SD = 0.92) were not included in the ICA and were interpo-

lated after cleaning the signal with ICA. The signal was then re-referenced to common average

(AVG) or CSD, depending on the type of analysis (see tables in Results section).

Signal analysis
Channel-pair and cluster-based analyses
All channel and source level analyses were performed using mne-python (Gramfort et al., 2014)

and custom code (Magnuski, 2020a; Magnuski, 2020c; Magnuski and Ruban, 2020; all available

on github). Half of the channel level analyses used CSD reference and the other half used average

reference (AVG; see Tables 3–6 for a summary). For each data set the continuous signal from eyes-

closed rest period was used, starting 2 s after rest onset to avoid potential artifacts related to eyes

closing. Power spectra were calculated using Welch method with 2 s long windows and a window

step of 0.5 s. Welch windows overlapping with bad signal segments were removed and all remaining

windows were averaged. This operation was performed for every channel and every subject giving

rise to subjects by channels by frequencies matrix. Alpha asymmetry was calculated by first averag-

ing spectral power in 8–13 Hz band, log-transforming and then for each left–right channel pair sub-

tracting values obtained for left sites from those for right sites. We calculated alpha asymmetry as

log(right)–log(left) because this is the most common approach.

Cluster-based analyses on standardized data
When the right-side alpha pattern is topographically different from the left-side alpha pattern we

cannot expect left vs right subtraction to reliably uncover alpha asymmetry. To alleviate this problem

we performed an additional analysis that does not rely on subtraction. In this approach all frontal

channels were used including those at the midline. Moreover, the alpha frequency range (8–13 Hz)

was not averaged, and all frequency bins in this range were analyzed. Instead of right–left subtrac-

tion we standardized (z-scored) power in the selected channels by frequency space for each subject.

Standardization should highlight asymmetry patterns that escape the traditional left vs right compar-

ison, while also being sensitive to effects that do not rely on asymmetry at all.

Source level analyses
Because channel-level projections can be highly variable depending on the source orientation we

additionally perform analyses in the source space. We first digitized channel positions for a represen-

tative subject from Study III using photogrammetry. This step was performed because the default

channel positions for many EEG caps assume a spherical head, which is not a realistic assumption for

source localization. A hand-held video camera was used to record EEG cap placement on the head

of the representative subject from multiple angles. The recorded video was processed with 3DF

Zephyr (3DFlow 3DF Zephyr, Aerial Education version: Toldo et al., 2015) in order to obtain a 3D

model of the subject’s head and EEG cap. Channels positions’ coordinates were extracted by manu-

ally placing control points on each channel in the 3d reconstruction. After coregistering the digitized

channel positions with the fsaverage FreeSurfer head model (Dale et al., 1999, see next paragraph)

we confirmed that the chosen subject’s head shape was very similar to the fsaverage head model.

These digitized channel positions (and thus the coregistration with the fsaverage) were used for all

subjects in Studies I, III, and IV. As a result in Studies I and IV data from a few channels were not

included in the source localization because these channels were not present in the created
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digitization template. For Studies II and V default EGI channel positions were coregistered with the

fsaverage model, because they assume a realistic head shape.

We employed Boundary Element Method (BEM) for the forward problem. We first created a

three-layer (inner skull, outer skull, and outer skin) BEM model based on the FreeSurfer fsaverage

template (Dale et al., 1999; Fischl et al., 1999). Next, the leadfield was constructed for a grid of

8196 equidistant source points covering the whole fsaverage cortical surface. Finally we used beam-

forming (Dynamic Imaging of Coherent Sources, DICS: Gross et al., 2001) to infer the source-level

activity in alpha band.

The cross-spectral density matrices, necessary for DICS beamforming, were computed using Mor-

let wavelets (of length equal to seven cycles) on the continuous signal from the eyes-closed rest

period starting from 2 s after rest onset. Bad signal segments were ignored, just like in the channel

level analyses. To make the inverse solution more stable and noise-resistant we used a regularization

parameter of 0.05 (van Vliet et al., 2018). Localized power maps were morphed to a symmetrical

version of fsaverage brain (fsaverage_sym; Greve et al., 2013; Van Veen et al., 1997) to allow for

left vs right comparisons. The asymmetry was computed in the same way as in the channel-pair and

cluster-based analyses.

Statistical analysis
We performed a multiverse analysis consisting of 270 analyses differing in: (a) the signal space used:

channel space (average reference: 120 analyses, 44%, CSD reference: 120, 44%) or source space

(DICS beamforming, 30, 11%); (b) subselection of the signal space: channel pairs (120, 44%), all fron-

tal pairs with cluster correction (60, 22%) or all frontal channels with cluster-based correction and

standardization instead of subtraction (60; 22%); (c) statistical contrast used: group comparisons or

testing for a linear relationship (more information in the paragraph below); and (d) statistical control

for confounding variables (135 without and 135 with control for confounds).

Variants of statistical analysis
We used four different statistical contrasts in the analyses: two group contrasts and two linear con-

trasts. Group contrasts included: comparison between diagnosed and healthy controls (DvsHC) or

sub-clinical and healthy controls (SvsHC). For group contrasts we used Welch t test, which does not

assume equal variance of the compared groups (Delacre et al., 2017). Linear contrasts were per-

formed either for all subjects together (allReg) or only for the diagnosed subjects (DReg).

These statistical contrasts are only used in the studies where they apply: for example, contrasting

healthy and diagnosed subjects (DvsHC) cannot be done for Study II, where only healthy and sub-

clinical participants are available. In the same way, comparing sub-clinical and healthy controls

Table 13. Summary of the contrasts (DvsHC – diagnosed vs healthy controls; SvsHC – sub-clinical vs

healthy controls; allReg – linear regression between FAA and depression questionnaire score for all

subjects together; DReg – linear regression only for the diagnosed subjects) and confounds (age,

gender, and education) used in each study.

STUDY

I II III IV V

Contrast type

DvsHC + + + +

SvsHC + + +

allReg + + + +

DReg + + + +

Control for confounds

gender + + + + +

age + + + + +

education + + +
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(SvsHC) is not possible in Studies I and V, where only healthy and diagnosed participants are avail-

able. The availability of statistical contrasts in individual studies is summarized in Table 13. When-

ever a contrast is available for a given study it is performed for all analysis spaces: average reference

(AVG), CSD, and source level data.

For each statistical contrast and study we perform two data analysis approaches: (a) classical com-

parison of selected channel pairs and (b) cluster-based permutation test on the whole frontal asym-

metry space. The channel pair analyses use two channel pairs, F3–F4 and F7–F8, or the

corresponding channel pairs in the EGI cap (Studies II and V). The source space and standardized

data analyses employ only the cluster-based approach.

Finally, all the analysis variants are performed twice: once in their standard form and the second

time statistically controlling for potential confounding variables: gender, age, and education. These

variables are added to the regression model explaining FAA, where the predictor of interest is either

the depression status (DvsHC and SvsHC contrasts) or depression score in BDI/PHQ-9 questionnaire

(allReg and DReg contrasts). The availability of these confounding variables in individual studies is

shown in Table 13.

Cluster-based permutation test
All the analyses that involve more than two selected channel pairs use cluster-based permutation

tests (Maris and Oostenveld, 2007) to correct for multiple comparisons. Cluster-based permutation

test is a nonparametric multiple comparison correction where the hypothesis of difference between

conditions is evaluated at the level of multidimensional clusters. Clusters are formed by performing a

chosen statistical test in the n-dimensional search space (channels or channels by frequencies in

most of the analyses reported here) and grouping adjacent points where the test statistic passed

some predefined threshold (typically an alpha level of 0.05). Each obtained cluster is then summa-

rized by summing the statistics of all its members – that is, all adjacent points forming the cluster.

These cluster summaries (cluster statistics) are then compared to a permutation null distribution of

the maximum cluster statistic to obtain a p-value. The null distribution is approximated by a Monte-

Carlo method where in each draw the condition labels are permuted between subjects (in this study:

diagnosis status or BDI scores) and the statistical tests and clusters are computed in the same man-

ner as for non-permuted data. As a result each Monte-Carlo draw produces cluster statistics from

which the highest positive and the lowest negative value is saved. These values, when aggregated

from all Monte-Carlo draws, constitute the null distribution for positive and negative effects to which

cluster statistics from the actual analysis are compared.

For cluster-based analyses on standardized data, because they are sensitive to effects that do not

have to be asymmetrical, significant test results were followed up with tests for asymmetry of the

effects. For each cluster with p-value below 0.05 a chi-square test for two proportions was con-

ducted comparing the proportion of cluster points on the left and right side of the head. Significant

outcome of the test suggests that the cluster is asymmetrical.

Throughout all the analyses, including cluster-based permutation tests, we use an alpha level of

0.05. The same alpha level is used for cluster entry threshold in cluster-based tests. Results for single

channel pairs, reported in Table 1, include also effect size (Cohen’s d for group comparisons, Pear-

son’s r for regression) and its 95% confidence interval calculated using bias-corrected accelerated

bootstrap (Tibshirani and Efron, 1993; Ho et al., 2019).

Analyses on aggregated data
To increase statistical power we perform additional analyses where we aggregate data across all

studies that include identical contrasts. Because individual studies have different channel layouts

these aggregated analyses are only performed when the studies can be mapped into a common

space: (a) the selected channel pairs or (b) the source space. Before aggregation we tested the FAA

values for selected channel pairs for equal variance across studies. Because the scale of the data can

vary depending on lab-specific equipment or adopted impedance threshold, in case of unequal vari-

ance the FAA values were z-scored (centered and scaled) across participants within each study. The

z-scoring was performed for channel pairs and source space analyses.

For aggregated channel pair data, we calculate the effect size (Cohen’s d for group comparisons

and Pearson’s r for linear relationships) for each combination of contrast � channel pair � channel
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space (AVG vs CSD) and estimate confidence intervals for the effect size using bias-corrected accel-

erated bootstrapping (Tibshirani and Efron, 1993; Ho et al., 2019). To estimate support for the

claim of ‘no effect’ we calculate Bayes factor for the null hypothesis (BF01; Rouder et al., 2009)

using the Pingoin python package (Vallat, 2018).

For aggregated source space data, we use cluster-based permutation tests. We do not estimate

effect size and its confidence interval in source space because this would require a priori specifica-

tion of a relatively narrow region of interest, which is not known. For all analyses using allReg or

DReg contrasts the depression questionnaire scores are z-scored within each study. This is done

because the aggregated studies use different questionnaires: BDI-I (Studies I and II), BDI-II (Studies

III and IV), or PHQ-9 (Study V).

The aggregated analyses, like all other analyses, are performed twice: with and without statistical

control for confounding variables. However, because not all confounding variables are available

across studies, for each study we first explain the FAA data with the confounding variables using a

regression model and then standardize and aggregate the model residuals.
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