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abstract

 

The hERG channel has a relatively slow activation process but an extremely fast and voltage-sensitive
inactivation process. Direct measurement of hERG’s gating current (Piper, D.R., A. Varghese, M.C. Sanguinetti,
and M. Tristani-Firouzi. 2003. 

 

PNAS. 

 

100:10534–10539) reveals two kinetic components of gating charge transfer
that may originate from two channel domains. This study is designed to address three questions: (1) which of the
six positive charges in hERG’s major voltage sensor, S4, are responsible for gating charge transfer during activation,
(2) whether a negative charge in the cytoplasmic half of S2 (D466) also contributes to gating charge transfer, and
(3) whether S4 serves as the sole voltage sensor for hERG inactivation. We individually mutate S4’s positive
charges and D466 to cysteine, and examine (a) effects of mutations on the number of equivalent gating charges
transferred during activation (z

 

a

 

) and inactivation (z

 

i

 

), and (b) sidedness and state dependence of accessibility of
introduced cysteine side chains to a membrane-impermeable thiol-modifying reagent (MTSET). Neutralizing the
outer three positive charges in S4 and D466 in S2 reduces z

 

a

 

, and cysteine side chains introduced into these
positions experience state-dependent changes in MTSET accessibility. On the other hand, neutralizing the inner
three positive charges in S4 does not affect z

 

a

 

. None of the charge mutations affect z

 

i

 

. We propose that the scheme
of gating charge transfer during hERG’s activation process is similar to that described for the Shaker channel,
although hERG has less gating charge in its S4 than in Shaker. Furthermore, channel domain other than S4
contributes to gating charge involved in hERG’s inactivation process.
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�
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I N T R O D U C T I O N

 

Human ether-a-go-go related gene

 

 encodes the pore-forming
subunits (hERG) of rapid delayed rectifier (I

 

Kr

 

) channels
expressed in the heart and several other cell types
(Sanguinetti et al., 1995; Zhou et al., 1998; Emmi et al.,
2000; Rosati et al., 2000; Shoeb et al., 2003). The hERG/
I

 

Kr

 

 channel plays an important role in maintaining the
electrical stability of the heart, as is suggested by the
linkage between inherited or acquired long QT syndrome
and mutations in the hERG gene or drug suppression
of I

 

Kr

 

. Relative to other voltage-gated K (Kv) channels,
hERG manifests two unique gating properties. First, its
activation process is relatively slow. At 

 

�

 

50 mV, the time
constant (

 

�

 

) of activation is 

 

�

 

50 ms for hERG, but 

 

�

 

2 ms
for the Shaker channel (Zagotta et al., 1994). Second,
the inactivation and recovery from inactivation processes
of hERG are extremely fast and voltage sensitive. Inac-
tivation of hERG is due to conformational changes
around the outer mouth region (Smith et al., 1996),
similar to the “C-type” inactivation process first described
for the Shaker channel (Hoshi et al., 1991). The 

 

�

 

 of

inactivation in the hERG channel ranges from 6.5 to
2.2 ms in the voltage range of 

 

�

 

10 to 

 

�

 

30 mV (corre-
sponding to a gating charge of 

 

�

 

0.7 

 

e

 

o

 

 per channel),
while 

 

�

 

 of C-type inactivation in the Shaker channel in
this voltage range is 

 

�

 

2,000 ms and voltage insensitive
(Hoshi et al., 1991). An important task in understanding
the function of the hERG channel is to identify the
structural basis for its unique gating properties.

hERG shares the basic structure design with other Kv
channels (Fig. 1 A). It has four subunits arranged
symmetrically around a central pore, with each subunit
containing a voltage-sensing domain (S1–S4) and a pore
domain (S5-P-loop-S6). Fig. 1 B aligns the amino acid
sequences of transmembrane segments in the voltage-
sensing domains of hERG, Shaker, bEAG (a close relative
of hERG), and KvAP (a prokaryotic Kv channel whose
crystal structure was solved) (Jiang et al., 2003a). Note
that there is no consensus as to how the S4’s positive
charges in hERG or bEAG should be aligned with those
in the Shaker (Schonherr et al., 2002; Smith and Yellen,
2002; Silverman et al., 2003), because a direct compari-
son of functional roles of these positive charges among
the channels has not been available.

In terms of charge distribution in the voltage-sensing
domain, hERG (as well as bEAG) differs from Shaker in
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two aspects. First, the S4 domain in hERG has one less
positive charge than that of Shaker. Second, in addition
to the three negative charges in S2 and S3 that are well
conserved in all Kv channels including Shaker (labeled
as 

 

�

 

2, 

 

�

 

4, and 

 

�

 

5; Fig. 1), hERG has three extra nega-
tive charges in its voltage-sensing domain (

 

�

 

1, 

 

�

 

3, and

 

�

 

6; Fig. 1). The functional role of the positive charges
in Shaker’s S4 segment have been extensively studied
(Aggarwal and MacKinnon, 1996; Seoh et al., 1996;
Baker et al., 1998; Bezanilla, 2000; Cohen et al., 2003;
Starace and Bezanilla, 2004; Horn, 2004). The gener-
ally accepted scheme is that the first four positive
charges sense the transmembrane voltage and change
their positions relative to the membrane barrier during
channel activation (Aggarwal and MacKinnon, 1996;
Seoh et al., 1996; Starace and Bezanilla, 2004). There-
fore, these four residues are the “gating charges” in the
Shaker channel. It is not known which of the positive
charges in hERG’s S4 segment carry gating charges
during channel activation. Presumably the number of
gating charges in hERG’s S4 segment can influence its
voltage sensitivity and thus the rate of activation (Logo-
thetis et al., 1992, Islas and Sigworth, 1999, Starace
and Bezanilla, 2004). The functional role of negative
charges in the transmembrane segments of voltage-
sensing domain has been well described for the Shaker
and EAG channels (Tiwari-Woodruff et al., 2000; Papa-
zian et al., 2002). These negative charges stabilize S4’s
positive charges by forming salt bridges. As S4 moves
relative to the other transmembrane segments during
gating, different charge pairings can occur that serve to

stabilize the channel in the closed or open state (Ti-
wari-Woodruff et al., 2000; Papazian et al., 2002). Fur-
thermore, in EAG channels, the extra negative charges
in S2 and S3 can form a divalent cation (M

 

2

 

�

 

) binding
site in the extracellular crevice around S4 (Silverman et
al., 2000; Schonherr et al., 2002). It has been proposed
that M

 

2

 

�

 

o

 

 (Ca

 

2

 

�

 

o

 

 or Mg

 

2

 

�

 

o

 

) binding here can restrict
the crevice size and retard outward S4 movement dur-
ing membrane depolarization, slowing down the chan-
nel’s activation process (Silverman et al., 2000; Schon-
herr et al., 2002). Therefore, both positive and negative
charges in the voltage-sensing domain contribute to de-
termining the rate of channel activation.

Fig. 1 C aligns the amino acid sequences lining the
outer mouth of hERG and other Kv channels. There are
two unique features in hERG (and bEAG). First, hERG
lacks some H bonds between residues around the outer
mouth. Such H bonds have been proposed to exist in
Shaker and other Kv channels (Doyle et al., 1998, Lars-
son and Elinder, 2000). Specifically, H bonds can be
formed between the carboxylate side chain outside S5
(E418 in Shaker) and an amido nitrogen of the peptide
backbone in the P-S6 linker (V450/G451 in Shaker)
(Larsson and Elinder, 2000), and between nitrogens of
two tryptophans and the hydroxyl group of a tyrosine at
the two ends of the P-loop (W434/W435 and Y445 in
Shaker) (asterisks connected by horizontal lines in Fig. 1
C) (Doyle et al., 1998). These H bonds serve to stabilize
the outer mouth in the open state, slowing down the
rate of C-type inactivation (Yang et al., 1997; Larsson and
Elinder, 2000). In hERG, the corresponding residues

Figure 1. Basic structure
design of voltage-gated K
(Kv) channels and unique
features in the hERG channel.
(A) Two-dimensional trans-
membrane topology of a Kv
channel pore-forming sub-
unit, highlighting negative
charges in S1, S2, S3a, and
S3b (�2, �4, and �5 are
conserved in all Kv channels,
while �1, �3, and �6 are
unique to EAG family mem-
bers including hERG), and
positive charges in S4 (�1 to
�6 for Shaker/0 or � for
EAG and hERG). The gray
cylinder in the extracellular
S5-P linker denote a putative

�-helix formed by residues 583–594 in the hERG channel. (B) Alignment of amino acid sequences of S1, S2, S3a, S3b, and S4 of KvAP,
Shaker, hERG, and b(ovine)EAG. Channel domains are denoted on top. Charged residues are boxed, and their generic numbers are
marked below (�1 to �6, �1 to �6). (C) Alignment of amino acid sequences from the end of S5 to the beginning of S6 of KvAP, Shaker,
hERG, and bEAG. Channel domains are denoted below. Asterisks connected by horizontal lines on top denote putative H bond donor/
acceptor pairs around the outer mouth in Shaker and KvAP (Doyle et al., 1998; Larsson and Elinder, 2000), which are missing in the hERG
and bEAG. Gray shade highlights hERG residues 583–594 that form a putative �-helix. The hERG residues that are critical for the
channel’s fast inactivation process are highlighted in bold (Liu et al., 2002). Boxes indicate bEAG residues that are different from hERG at
these critical positions. (D) hERG residues examined in this study and the corresponding residues in the Shaker channel.
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cannot form H bonds (Fig. 1 C). A reduced H-bonding
capability in hERG can make its outer mouth more flexi-
ble than in the Shaker channel. Second, the S5-P linker
is much longer in hERG (and bEAG) than in other Kv
channels. Previously, we have shown that the central seg-
ment of the S5-P linker in the hERG channel (positions
583–597) plays a critical role in determining the degree
of inactivation and K

 

�

 

 selectivity (Liu et al., 2002). NMR
spectroscopy showed that this segment may form an

 

�

 

-helix (termed “S5-P helix” in the following text) (Torres
et al., 2003). We proposed that this S5-P helix can as-
sume dynamic conformational changes during mem-
brane depolarization, coming close to the pore entrance
and participating in the outer mouth function (unpub-
lished data). These features can contribute to the fast
rate of inactivation in the hERG channel. However, one
central question remains: what controls the voltage sen-
sitivity of hERG’s inactivation process? Arguments both
for (Tristani-Firouzi, 2004) and against (Johnson et al.,
1999) S4 as the voltage sensor for hERG’s inactivation
process have been made. In the latter case, no specific
structural correlate has been proposed.

This study was designed to address the following ques-
tions: (1) which of the positive charges in hERG’s S4
segment carry gating charges during channel activation,
and (2) do they also serve the voltage sensor function
for the inactivation process? In the Shaker channel, a
negative charge at the cytoplasmic end of S2 (E293)
may contribute to gating charge transfer (Seoh et al.,
1996). Therefore, we also include the equivalent charge
(D466) in our study. Fig. 1 D lists the hERG residues ex-
amined in this study and the corresponding residues in
the Shaker channel. We apply two strategies in our ex-
periments: (1) mutating charged residues and monitor-
ing the effect on equivalent gating charges involved in
activation and inactivation processes, and (2) testing
the sidedness and state dependence of accessibility of
cysteine side chains introduced into these charged-resi-
due positions to a membrane-impermeable thiol-modi-
fying reagent (MTSET). We discuss our results based on
the “conventional gating model” (Ahern and Horn,
2004), instead of the recently proposed “paddle gating
model” (Jiang et al., 2003b), because the latter model
has been seriously challenged by experimental findings
from Shaker and other Kv channels (Broomand et al.,
2003; Cohen et al., 2003; Gandhi et al., 2003; Laine et
al., 2003; Lee et al., 2003; Ahern and Horn, 2004; Horn,
2004; Starace and Bezanilla, 2004).

 

M A T E R I A L S  A N D  M E T H O D S

 

Mutagenesis

 

hERG in a vector, pGH19 (a gift from G.A. Robertson, University
of Wisconsin, Madison, WI), was subcloned into the Kpn I/Xba I
site of pAlterMax. Mutagenesis was performed using the oligonu-
cleotide-directed method and a commercial kit (Alter site II in

vitro Mutagenesis System; Promega). Mutations were confirmed
by direct DNA sequencing around the mutation sites. For tran-
scription, plasmids were linearized by Not I and transcribed us-
ing T7 RNA polymerase using a commercial kit (mMessage mMa-
chine; Ambion). The cRNA products were run on denaturing
RNA gel along with RNA size markers, and their quality and
quantity were evaluated using densitometry (ChemiImager model
4400; 

 

�

 

-Innotech Corp). The mutant is designated by wild-type
(WT) amino acid, followed by position number and the substitut-
ing amino acid using one-letter code.

 

Oocyte Preparation

 

Oocytes were isolated as described before (Tseng-Crank et al.,
1990) and incubated in an ND96-based medium (composition
given below), supplemented with 10% horse serum and penicil-
lin/streptomycin at 16

 

�

 

C. 2–4 h after isolation, each oocyte was
injected with 40 nl of cRNA solution (containing cRNA of 4–18
ng) using a Drummond digital microdispenser. Oocytes were in-
cubated in the above medium at 16

 

�

 

C and studied 2–4 d after
cRNA injection.

 

Voltage Clamp Experiments

 

Oocytes expressing cysteine-substituted mutants were pretreated
with DTT (5 mM) before recording. Membrane currents were re-
corded from whole oocytes using the “2-cushion pipette” voltage
clamp method (Schreibmayer et al., 1994). Both current-passing
and voltage-recording pipettes had tip resistance 0.1–0.3 M

 

�

 

.
During recordings, the oocyte was continuously superfused with
a low-Cl ND96 solution to reduce interference from endogenous
Cl channels. Voltage clamp was done at room temperature (24–
26

 

�

 

C) with OC-725B or OC-725C amplifier (Warner Instru-
ments). Voltage clamp protocol generation and data acquisition
were controlled by pClamp5.5 via a 12-bit D/A and A/D con-
verter (DMA; Axon Instruments). Current data were low-pass fil-
tered at 1 kHz (Frequency Devices) and stored on disks for off-
line analysis.

 

Data Analysis

 

The voltage clamp protocols and methods of data analysis are de-
scribed in figure legends and text. The following software was
used for data analysis: pClamp6 or 8, EXCEL (Microsoft), Sigma-
Plot, SigmaStat, and PeakFit (SPSS).

 

Cysteine Side Chain Modification

 

MTSET (Toronto Research Chemicals, Inc.) powder was dis-
solved in deionized water at 0.1 M shortly before experiments.
The stock solution was stored on ice and used within 2 h. For ex-
tracellular application, after control data were obtained, the MT-
SET stock solution was diluted with bath solution to 1 mM and
applied to the oocyte immediately. For intracellular application,
a third fine-tipped pipette filled with MTSET stock solution was
used to impale the oocyte. After confirming the stability of mem-
brane currents, MTSET was injected into the oocyte. Assuming
an oocyte volume of 0.5 

 

	

 

l (corresponding to a sphere of 1 mm
diameter), injecting 10 nl of the stock solution would produce a
cytoplasmic concentration of 2 mM immediately after the injec-
tion. The injection was controlled by the Drummond digital mi-
crodispenser as was used for cRNA injection.

 

Solutions

 

The ND96 solution had the following composition (in mM):
NaCl 96, KCl 2, CaCl

 

2

 

 1.8, MgCl

 

2

 

 1, HEPES 5, Na-pyruvate 2.5,
pH 7.5. The low-Cl ND96 used during voltage clamp experiments
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was made with Cl

 

�

 

 ions in ND96 replaced by methanesulfonate.
In some experiments, [K] in low-Cl

 

�

 

 ND96 was raised to 20 mM.
Equimolar [Na] was reduced to maintain the osmolality.

 

R E S U L T S

 

Effects of Charge Mutations on the Voltage Dependence of 
hERG Activation and Pore Domain Function

 

We first characterize the effects of charge mutations on
the hERG channel function. The purpose is to evaluate
how serious these single charge mutations can affect
the structure–function relationship of the hERG chan-
nel. This information is important for the following ex-
periments where we examine the effects of charge mu-
tations on the channel’s gating charges and use substi-
tuted cysteine side chains to deduce the accessibility of
native side chains in the WT channel. Fig. 2 A shows
test pulse currents of WT hERG and mutant channels
during depolarization to various levels of V

 

t

 

, and tail
currents upon repolarization to V

 

r

 

 (V

 

t

 

 range and V

 

r

 

marked adjacent to current traces). For each cell, the
peak amplitudes of tail currents are normalized by the
maximum tail current induced by a strong positive V

 

t

 

 to
the plateau level of channel activation. This gives an es-
timate of the macroscopic channel open probability
(P

 

o

 

) at the end of the preceding test pulses. The rela-
tionship between V

 

t

 

 and P

 

o

 

 is used to construct the acti-
vation curves as shown in Fig. 2 B. For WT-hERG and
all the mutant channels, the activation curves can be
well described by a simple Boltzmann function:

(1)

where V

 

0.5

 

 and k are the half-maximum activation volt-
age and slope factor. The numerical values of V

 

0.5

 

 and k
for the WT and mutant channels are listed in Table I.

Neutralizing the positive charges at the two ends of
S4, K525C, and K538C causes a prominent hyperpolar-
izing shift in the activation curve and induces channel
opening at the negative holding voltage (Fig. 2 A, white
arrows). R534C also causes a modest but statistically sig-
nificant hyperpolarizing shift in the activation curve.
Thus, these three mutations stabilize the open state,
relative to the closed state, of the hERG channel. Neu-
tralizing the other three positive charges in S4 (R528C,
R531C, and R537C) and D466 in S2 causes differing de-
grees of depolarizing shift in the activation curve, indi-
cating a stabilizing effect on the closed states relative to
the open state of the hERG channel.

Normalized Itail Po 1 1 exp V0.5 Vt–( ) k⁄( )+[ ],⁄= =

 

V

 

t

 

 was fit with a simple Boltzmann function to estimate the
half-maximum activation voltage (V

 

0.5

 

) and slope factor (k): I

 

tail

 

/
I

 

max

 

 

 




 

 1/[1 

 

� 

 

exp((V

 

0.5

 

 

 

�

 

 V

 

t

 

)/k)]. To facilitate comparison, WT
data are shown as gray symbols in all the panels for mutant
channels (

 

n

 

 

 


 

 

6–14 each).

F

 

igure

 

 2. Effects of substituting S4’s lysine (K) or arginine (R)
with cysteine (C) on the channel function. (A) Original current
traces from WT and mutants (specified on the left). The currents
were elicited using the voltage clamp protocol diagrammed on
top. From a negative holding voltage (V

 

h

 

, 

 

�

 

80 to 

 

�

 

120 mV) 1-s
test pulses to different test voltages (V

 

t

 

) in 10-mV increments were
applied once every 15 s. These were followed by repolarization to
V

 

r

 

. For each channel, the range of V

 

t

 

 (selected to cover the voltage
range of channel activation) and the V

 

r

 

 level are marked adjacent
to the current traces. The test pulses were preceded by a brief
(10-ms) hyperpolarizing prepulse (

 

�

 

20 mV from V

 

h

 

) whose
purpose was to estimate the background channel conductance at
V

 

h

 

. Open arrows point to significant prepulse currents in K525C
and K538C, reflecting channel opening at V

 

h

 

. (B) Isochronal (1-s)
activation curves of WT and mutant channels. For each cell, peak
amplitudes of tail currents during V

 

r

 

 (I

 

tail

 

, as shown in A) were
normalized by the maximum tail current (I

 

max

 

) obtained from the
same cell after a strong V

 

t

 

 that maximally activated the channels.
The relationship between normalized tail currents (I

 

tail

 

/I

 

max

 

) and
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Fig. 3 A depicts current traces of WT-hERG and mu-
tant channels recorded at different levels of V

 

r

 

 after
channel activation and inactivation by a strong depolar-
ization pulse to 

 

�60 mV. For each cell the peak or pla-
teau levels of tail currents are normalized by the maxi-
mum outward tail current recorded at �50 to �30 mV,
and the data are averaged over cells (current–voltage
relationships shown in Fig. 3 B). In all cases, there is a
prominent negative slope in the Vr range of �50 to �30
mV, i.e., smaller outward currents at more depolariza-
tion voltages. This “inward rectification” property re-
flects the fast and voltage-sensitive inactivation process
of the hERG channel. Furthermore, except for K525C,
the reversal potentials (Erev) for WT and all the other
mutant channels are at about �100 mV. This is close to
the calculated K� equilibrium potential (EK) under our
recording conditions (�105 mV, assuming [K]i of 125
mM) (Dascal, 1987). Since K525C has a sizable open
probability at the oocytes’ resting membrane potential
(Fig. 2 A), the [K]i may be lower than 125 mM, causing
a positive shift of EK to ��80 mV. This is supported by
the observation that a total replacement of external
Na� ions with NMDG shifts Erev of K525C from �81.8 �
1.1 to �86.1 � 0.1 mV (n 
 3 each), corresponding to
a permeability ratio of Na� to K� of only 0.003 (calcu-
lated based on the constant field equation).

How serious is the perturbation of hERG’s structure–
function relationship by these single charge mutations?
Mutation-induced changes in the free energy of chan-

nel activation (��Go) are listed Table I. The highest de-
gree of perturbation is seen in K538C (��Go 
 �8.7 �
1.0 kcal/mol). This change amounts to the energy of

T A B L E  I

Effects of Cysteine Substitution of Charged Residues in S4 and S2 on 
hERG Channel Function

Channel V0.5
a ka n zg

b ��Go
c

mV mV eo kcal/mol

WT �13.3 � 1.0 9.6 � 0.3 9 2.6 �

K525C �41.4 � 1.6 12.6 � 1.0 6 2.0 �1.2 � 0.2

R528C �1.0 � 1.7d 10.4 � 0.5 6 2.4 �0.9 � 0.1

R531C �29.1 � 1.7d 9.7 � 0.3 9 2.6 �2.7 � 0.1

R534C �25.4 � 1.0d 8.9 � 0.4 14 2.8 �0.9 � 0.1

R537C �5.5 � 2.4d 11.4 � 1.5 6 2.2 �0.5 � 0.2

R538C �60.0 � 1.4d 4.0 � 0.5 6 6.3 �8.7 � 1.0

D466C �28.2 � 1.4d 16.9 � 0.5d 11 1.4 �1.6 � 0.1

aV0.5 and k are half-maximum activation voltage and slope factor of the
simple Boltzmann fit to activation curves (Fig. 2 B); normalized tail
current 
 1/[1 � exp((V0.5 � Vt)/k)].
bzg is gating charge estimated from the mean value of slope factor from
the Boltzmann fit (k), as zg 
 k(RT/F), where RT/F 
 25 mV.
c��Go is mutation-induced perturbation of free energy (�Go) involved in
channel activation as ��Go 
 �Go

MUT � �Go
WT, where �Go

MUT and �Go
WT

are �Go values of mutant and WT channels, respectively. �Go is calculated as
RT(V0.5/k), where RT 
 0.592 kcal/mol, V0.5 and k are from Boltzmann fit.
Standard error was calculated as (SEMMUT

2 � SEMWT
2)1/2, where SEMMUT

and SEMWT are standard error of �Go
MUT and �Go

WT, respectively.
dOne-way ANOVA, P � 0.001, followed by Tukey’s test of multiple com-
parisons with WT, P � 0.05.

Figure 3. Cysteine substitutions of S4’s positive charges had little
effect on the inward rectification property and reversal potential
of hERG. (A) Original current traces were elicited by the voltage
clamp protocol diagrammed on top. From Vh �80 or �90 mV, a
strong depolarization pulse to �60 mV for 0.2 s was used to activate
and inactivate the channels. This was followed by repolarization
pulses from �30 to �120 mV in 10-mV increments (current traces
shown were from �20 to �120 mV in 20-mV steps) during which
channels rapidly recovered from inactivation and then deactivated.
Recordings were made in 2 mM [K]o (estimated EK �105 mV,
assuming [K]i 125 mM). (B) Current–voltage relationships from
experiments as shown in A. The peak or plateau amplitudes of tail
currents were normalized by the maximum outward tail current in
each cell (occurring at Vr �50 to �30 mV) and averaged. Gray
open circles and black circles are for WT and mutant, respectively
(n 
 6–14 each).
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less than two H bonds in aqueous solution (4–5 kcal/
mol per H bond), suggesting that the degrees of volt-
age shift shown in Fig. 2 B can be due to subtle changes
in the channel’s conformation. Fig. 3 shows that these
charge mutations do not disrupt the function of the
pore domain (fast inactivation process and high K� se-
lectivity). Therefore, these charge mutations do not
drastically alter the structure–function relationship of
the hERG channel, justifying their use in the following
experiments.

Effects of Charge Mutations on the Number of Equivalent 
Gating Charges Involved in hERG Activation

The slope factors of Boltzmann fit to activation curves
can be used to calculate the number of gating charges
of channel activation (zg, Table I). Except for D466C,
the zg values of the mutant channels are similar to, or
even larger than (K538C), the zg value of WT-hERG.
Since zg values are calculated based on a simple two-
state channel gating model and can be influenced by
cooperative interactions between subunits, they are not
sensitive or accurate enough to deduce the number
of gating charges involved in the activation process.
Therefore, we use a less model-dependent “limiting
slope” method to estimate the number of equivalent
gating charges for hERG activation (Zagotta and Al-
drich, 1990, Bezanilla, 2000):

(2)

where za is equivalent gating charges (in eo) transferred
during channel activation, dLn(Po)/dV is the slope of
relationship between Ln(Po) and depolarization volt-
age V, and k and T are the Boltzmann constant and ab-
solute temperature. This method is valid for a sequen-
tial model with one open state, where the transition
rates are exponentially dependent on the voltage.

A prerequisite in using the limiting slope method to
deduce the za value is the ability to measure very low Po

values (estimated by normalized peak tail current am-
plitudes, as described for Fig. 2 B). To facilitate the
measurement of extremely small tail currents at nega-
tive voltages, we record tail currents in 20 mM [K]o

(raising [K]o to increase single channel conductance)
(Kiehn et al., 1996) and use a negative Vr of �120 mV
(to increase the driving force for inward tail currents).
Furthermore, two voltage clamp protocols are used.
The first protocol applies 1-s pulses in 10-mV incre-
ments to sample the full range of channel activation,
and thus to measure the maximum amplitude of tail
current in the plateau range of channel activation. The
second protocol applies long (10 s) depolarizing pulses
in 2-mV increments, starting at Vt � 20 mV below the
apparent activation threshold to Vt 10–20 mV above the
activation threshold (based on Fig. 2). The long (10 s)

za k
Po 0→
lim T dLn Po( ) dV⁄ ,=

depolarization duration allows Po to fully develop at
negative Vt, when channel activation is slow. The small
(2 mV) steps increase the resolution of changes in Po

around the activation threshold. Fig. 4 A depicts WT
current traces elicited by these two voltage clamp proto-
cols. Under these conditions, we can detect Po values at
10�3 or even lower for WT-hERG and mutant channels.

In Fig. 4 B, the Po values are plotted on a logarithmic
scale against Vt for WT (gray open circles) and mutant
channels (black open circles). Data are averaged from
three to six measurements each. For each measure-
ment, the relationship between Ln(Po) and Vt is sub-
jected to linear regression analysis to estimate the slope
at the lower limit of Po. This slope is then used to calcu-
late za according to Eq. 2. The results for WT-hERG and
mutant channels are plotted in Fig. 4 C. Neutralizing
the first three positive charges in S4 (K525C, R528C,
and R531C) and the negative charge in S2 (D466C) re-
duces za, supporting their role as “gating charges” for
hERG activation. On the other hand, neutralizing the
inner three positive charges in S4 (R534C, R537C, and
K538C) has no effect on za.

MTSET Accessibility Test of Cysteine Side Chains Introduced 
Into Charged-residue Positions in S4 and S2

If a charge is within the membrane electrical field and
thus capable of sensing changes in the membrane volt-
age, its position relative to the membrane barrier will
change during channel gating. Cysteine introduced
into its position is expected to change the thiol side
chain accessibility to the surrounding aqueous crevice
in a state-dependent manner (assuming that the cys-
teine substitution does not alter the native side chain
orientation) (Wang et al., 1999). On the other hand,
charged residues not involved in gating charge transfer
do not change their positions relative to the membrane
barrier. Their side chain accessibility to the aqueous
crevice should not be state dependent. Therefore, to
confirm the role of the first three positive charges in S4
and D466 in S2 as the “gating charges” in hERG’s activa-
tion process, we test the accessibility of introduced cys-
teine side chains to extracellular and intracellular MT-
SET (MTSETo and MTSETi). Ideally, accessibility to
MTSETi should be tested using the inside-out patch
recording configuration and applying MTSET directly
to the intracellular side of the membrane (Baker et al.,
1998, Bell et al., 2004). Unfortunately, due to the low
expression level of cysteine mutants in oocytes (in 2 mM
[K]o maximal whole cell outward currents �10 	A), it is
difficult to record large and stable currents from inside-
out patches. Thus, we take an alternative approach: ap-
plying MTSETi using intra-oocyte injection.

Neither MTSETo nor MTSETi Affects the WT hERG Chan-
nel. There are 24 native cysteines in WT hERG. Previ-
ously, we have shown that MTSETo (1 mM) has no ef-
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fects on WT hERG (Fan et al., 1999). Fig. 5 shows that
MTSETi (estimated initial cytoplasmic concentration 2
mM) does not affect WT hERG either. The efficacy of
intra-oocyte injection is confirmed by the observation
that injecting TEA (estimated cytoplasmic concentra-
tion 2 mM) causes a prominent decrease in the WT
hERG current amplitude (Smith et al., 1996). These
data indicate that either native cysteines in hERG are
not accessible to MTSETo and MTSETi or their modifi-
cation by MTSET has no impact on channel function.
Therefore, the effects of MTSETo and MTSETi on cys-
teine-substituted mutants can be attributed to modifica-
tion of the introduced cysteine side chains.

Cysteine Side Chain at 525 is Accessible to MTSETo in a
State-dependent Manner but Inaccessible to MTSETi. The
most prominent effect of K525C modification by MT-
SET is a slowing of channel deactivation. Therefore, we
use the half-time (T1/2) of decay of tail current at �120
mV to quantify the degree of K525C modification by

MTSET. Three protocols are used to evaluate the state
dependence of K525C modification by MTSETo. MT-
SETo is applied (1) while the oocyte membrane is held
at Vh �80 mV to keep most of the channels in the
closed states (Fig. 6 A), (2) while the membrane is held
at 0 mV to keep the channels in the open/inactivated
states (Fig. 6 B), or (3) while the membrane voltage is
pulsing from Vh �90 mV to �40 mV for 1 s once every
30 s to cycle the channels between closed and open/in-
activated states (Fig. 6 C). For the first two protocols,
MTSETo (1 mM) is applied for 5 min (flow rate 5–6
ml/min, bath solution totally exchanged in �30 s), and
the effect on T1/2 of channel deactivation is measured
after 5 min washout of MTSETo. Fig. 6 B shows that ap-
plying MTSETo while holding the channels in open/in-
activated states allows K525C modification by MTSET;
T1/2 is markedly prolonged to 4.2 � 0.7 of control (n 

8). Fig. 6 A shows that applying MTSETo while holding
the channels in the closed state prevents K525C modifi-

Figure 4. Estimating the number
of equivalent gating charges in-
volved in channel activation (za)
using the limiting slope method.
(A) Original current traces of WT-
hERG recorded in 20 mM [K]o. Tail
currents (measured at �120 mV)
were elicited by two protocols. (1) 1-s
pulses were applied in 10-mV incre-
ments to Vt covering the whole
voltage range of channel activation
(based on Fig. 2 B). These are illus-
trated by the top family of current
traces. (2) For a Vt range from below
the activation threshold to �20 mV
above the threshold, long (10-s)
pulses were applied in 2-mV incre-
ments to gain a high resolution
analysis of increase in channel open
probability (Po) at Vt around the
activation threshold. These are il-
lustrated by the middle family of
current traces, with the boxed area
enlarged in the bottom family of
current traces. The 10 	A calibration
applies to the top and middle fami-
lies of current traces, and the 1 	A
calibration applies to the bottom
family of current traces depicted in
the box. The peak amplitudes of tail
currents were normalized by the
maximum tail current following the
most depolarized Vt to estimate Po at
the end of preceding depolarizing
pulses. The same recording condi-
tions and similar voltage clamp

protocol were used for all the mutant channels, with Vt levels adjusted depending on the voltage range of activation. (B) Po values are
plotted on a logarithmic scale against Vt for WT (gray open circles) and mutants (black open circles, mutant type specified in each panel).
The relationships between Ln(Po) and Vt were subjected to linear regression analysis to estimate the limiting slope at low Po levels
(Po � 10�3). The value of za was calculated according to za 
 slope*(RT/F), where RT/F 
 25 mV. The lines superimposed on the data
points are calculations based on the mean limiting slopes. (C) Summary of za for WT and mutant channels (n 
 3–6 each, mean � SEM).
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cation by MTSET (n 
 4). Using the third protocol,
MTSETo exposure causes a gradual slowing of K525C
deactivation (T1/2 prolonged to 2.4 � 0.2 of control,
n 
 7). Since K525C modification by MTSETo occurs in
the open/inactivated state, the cumulative exposure
time to MTSETo in the open/inactivated state can be
calculated (additional abscissa below the data points
during MTSETo exposure in Fig. 6 C). The time course
of K525C modification by MTSETo can be well de-
scribed by a single exponential function. The � value is
4 mM
s, which translates into a modification rate of 250
M�1s�1. Note that T1/2 prolongation after exposure of
K525C to MTSETo at Vh 0 mV is not sustained, but grad-
ually declines (to 3.2 � 0.4 of control at steady state,
n 
 8). This degree of T1/2 prolongation is not statisti-
cally different from that reached when MTSETo is ap-
plied during constant pulsing (P 
 0.106). This sug-

gests that some of the 525C residues might have lost
their MTSET adduct when the channels cycle through
the closed–open states, perhaps because the gating pore
around S4 is too narrow for the MTSET-modified 525C
side chain to go through easily.

Fig. 6 D shows that MTSET applied to the cytoplas-
mic side of the cell membrane does not affect the
K525C tail kinetics even after a 20-min exposure. After
MTSET injection, extracellular application of MTSETo

induces a marked prolongation of tail current, support-
ing the modifiability of the K525C side chain. Similar
observation was obtained in five experiments.

Cysteine Side Chains Introduced into the Other Positive-
charge Positions in S4 Are Accessible to MTSETi but not to
MTSETo. Fig. 7 summarizes the MTSET accessibility
of cysteine side chains introduced into the other five
positive-charge positions in S4: R528C, R531C, R534C,
R537C, and K538C. The major effect of MTSET modifi-
cation on these mutant channels is a suppression of
current amplitude (Fig. 7 B, insets). Therefore, we use
the decrease in the peak tail current amplitude as a
measure of MTSET modification of introduced cys-
teine side chains at these positions.

The left panel of Fig. 7 A shows MTSETo application
to R528C for 5 min while the membrane voltage is held
at �20 mV (reaching an average of 80% channel acti-
vation, Fig. 2 B, or a total exposure time of 528C to
MTSETo in the open/inactivated state of 240 mM
s).
There is no sign of R528C modification by MTSETo un-
der this condition. The remaining four panels of Fig. 7
A depict time courses of changes in the peak tail cur-
rent amplitudes of R531C, R534C, R537C, and K538C
before, during, and after MTSETo (1 mM) exposure
(n 
 4–7 each). MTSETo does not affect these mutant
channels. These observations indicate that cysteine side
chains introduced into these five positions in S4 are not
accessible to MTSETo.

For all the five cysteine mutants, applying MTSET to
the cytoplasmic side of the cell membrane causes a
gradual decrease in the current amplitude, indicating
that cysteine side chains at all five positions are accessi-
ble to MTSETi (Fig. 7 B). The state dependence of MT-
SETi accessibility is tested by comparing the degree of
current reduction when MTSETi is applied under two
voltage clamp protocols. For the first protocol, MTSET
is injected into the oocyte while the membrane voltage
is held at �80 mV with only brief (0.5 s) depolarization
pulses applied once every 30 s to monitor the degree of
current reduction (“closed state–preferred” exposure,
represented by solid circles). For the second protocol,
MTSET is injected into the oocyte while the membrane
is held at a depolarized Vt for 20 s using a duty cycle of
30 s (“open/inactivated state–preferred” exposure, rep-
resented by open circles, details in Fig. 7 legend). For
each of the mutant channels, the average time courses

Figure 5. Efficacy of intracellular application of hydrophilic
reagents using the oocyte injection device during voltage clamp.
(A) Original current traces recorded from an experiment on WT
hERG at time points a, b, and c corresponding to those denoted
along the time course in B. (B) Average time course of changes in
WT-hERG peak tail current amplitude (n 
 4). Current was elicited
by 1-s depolarization pulses to �20 mV once every 30 s and tail
current was recorded at �80 mV. After control data were obtained,
the oocyte was impaled with a fine-tipped injecting pipette filled
with MTSET (100 mM) solution (impale, gray symbols). After
confirming current stability, MTSET was injected (10 nl, estimated
cytoplasmic concentration 
 2 mM, assuming oocyte volume 

0.5 	l, black symbols/light gray shade). 10 min after MTSET
injection, the injecting pipette was pulled out, refilled with TEA
(100 mM) solution, and reimpaled into the oocyte. TEA was
injected as described above (10 nl, cytoplasmic concentration 

2 mM, open triangles/dark gray shade). The curve superimposed
on the open triangle data points after the initial sigmoid phase
represents single exponential fit to the mean time course of
WT-hERG suppression by TEAi, with time constant (�) marked.
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Figure 6. Sidedness and voltage dependence of
MTSET accessibility to cysteine side chain introduced
into position 525. (A–C) Effects of MTSETo on K525C
depended on the voltage clamp protocol during MTSETo

application. Shown in each panel is a time course of
changes in the half-time (T1/2) of K525C deactivation
measured at �120 mV. In A and B, the membrane
voltage was held at a constant Vh (�80 or 0 mV, denoted
by the horizontal bars) for 10 min. MTSETo 1 mM was ap-
plied during the first 5 min (denoted by gray shades) and
washed out for 5 min. Afterwards, the Vh was returned to
�90 mV and the pulsing was resumed to monitor the
deactivation kinetics. Insets, K525C tail currents recorded
before (thin solid traces) and after (dashed trace or thick
solid trace) MTSETo treatment. In C, the membrane was
constantly pulsing from Vh �90 to �40 mV for 1 s once
every 30 s before, during (gray shade), and after MTSETo

exposure. The additional horizontal axis for data points
during MTSETo exposure denotes the cumulative open-
state exposure (1-s exposure to 1 mM MTSETo at �40
mV once every 30 s). The curve superimposed on the
data points represents single exponential fit with � 
 4
mM
s. (D) Time course of changes in T1/2 of K525C
deactivation when the oocyte was impaled and injected
with MTSET (MTSETi 2 mM, dark gray shade). 18 min
after MTSET injection, the membrane voltage was held
at 0 mV for 10 min (denoted by the black horizontal
bar), during which the oocyte was exposed to MTSETo

1 mM for the first 5 min (light gray shade) followed by
wash out for 5 min. The tail current deactivation rate after MTSETo treatment was monitored. In all panels, the coordinates are T1/2 values
normalized to the control values, and the abscissas are time after MTSET application to the bath (A–C) or into the oocyte (D).

Figure 7. Sidedness and state dependence of MTSET accessibility to cysteine side chains introduced into positions 528, 531, 534, 537,
and 538 (mutant types marked on top). For each channel, the top graph (A) is an average time course of changes in current amplitude
before, during (gray shades), and after exposure to extracellular MTSET (1 mM). For R528C, the membrane voltage was held at �20 mV
for 10 min and MTSETo was applied during the first 5 min and then washed out for 5 min. For the other mutants, the membrane was
pulsing from Vh (�80 mV for all, except K538C, Vh 
 �90 mV) to Vt (as specified in the insets of lower graphs) for 1 s every 30 s. The solid
circles during MTSETo exposure denote closed state–preferred exposure because the channels spent 29 s of the 30-s cycle in the closed
states. The bottom graphs (B) show the average time courses of current amplitude before (open triangles) and after intracellular injection
of MTSET (estimated initial cytoplasmic concentration 2 mM, gray shades). The closed circles denote closed state–preferred exposure;
channels stayed in the closed states at Vh �80 or �90 mV and only activated by 0.5-s test pulses to Vt (as denoted in the insets) once every
30 s. The open circles denote open/inactivated state –preferred exposure; channels stayed in open/inactivated states for 20 s at denoted
Vt and only spend 10 s back to Vh once every 30 s. The curves superimposed on the data points are single exponential fits. Insets, original
current traces before (thin traces) and 8–16 min after MTSETi injection using the closed state–preferred exposure protocol (thick traces).
Arrows indicate the changes in peak tail current amplitudes.
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of MTSETi modification using these two protocols are
plotted in the same graph to facilitate comparison (n 

3–8 each). When MTSETi is applied using the closed
state–preferred exposure protocol, the current ampli-
tude gradually declines following an apparent single ex-
ponential time course. The time constants are 5.6 min
(R528C), 4.5 min (R531C), 3.3 min (R534C), 6.6 min
(R537C), and 8.9 min (K538C). On the other hand,
when MTSETi is applied using the open/inactivated
state–preferred exposure, the degree of MTSETi modi-
fication is significantly reduced for R528C and R531C
(P � 0.05 for data points following the first 2 min after
MTSET injection). The observation that the apparent
degree, instead of the rate, of current suppression by
MTSETi is state dependent may be explained by (a)
MTSET hydrolysis by the reducing environment of oo-
cyte cytoplasm, and (b) slow rates of MTSETi modifica-
tion of 528C and 531C. There is no statistically sig-
nificant difference in R534C or R537C modification
by MTSETi between the closed and open/inacti-
vated state–preferred exposures. MTSETi modification
of K538C proceeds more rapidly when MTSETi is ap-
plied using the open/inactivated state–preferred expo-
sure than using the closed state–preferred exposure.

Cysteine Side Chain at Position 466 in S2 Is Accessible
to MTSETo in a State-dependent Manner. Previously we
showed that 466C is accessible to MTSETo, and the ac-
cessibility is higher when the channel is in the closed
state than in the open/inactivated states (Liu et al.,
2003). We now test whether 466C is accessible to MT-
SETi and whether this accessibility manifests a state de-
pendence opposite to that of MTSETo accessibility. Fig.
8 (A and B) shows two representative time courses of
change in D466C current amplitude (measured by the
peak tail currents at �60 mV, insets) before and after
impalement with a pipette containing 100 mM MTSET
solution, and after MTSETi injection (estimated initial
cytoplasmic concentration 2 mM). The membrane volt-
age is cycling through open/inactivated states (1 s to
�60 mV, once every 30 s) and the closed state (Vh �80
mV). There is a very gradual and modest reduction in
the D466C current amplitude (by �20% after 15 min
exposure). On the other hand, when the oocyte is sub-
sequently exposed to 1 mM MTSETo for 5 min while
the membrane is held at �80 mV (closed state–pre-
ferred exposure) and then washed out, the D466C cur-
rent is practically abolished (Fig. 8 A). In Fig. 8 B, the
oocyte is exposed to 1 mM MTSETo for 5 min while the
membrane is held at �20 mV (open/inactivated state–
preferred exposure) followed by washout, there is a
further but very modest modification of D466C by MT-
SETo. Similar observations are obtained in five experi-
ments. These data confirm that D466C is more accessi-
ble to MTSETo in the closed state than in the open/
inactivated states. However, D466C has only limited ac-

Figure 8. Accessibility of cysteine side chain introduced into
position 466 in S2 to MTSETi and MTSETo. (A and B) Time
courses of changes in D466C peak tail current amplitude (elicited
by 1-s pulse to �60 mV followed by repolarization to �60 mV)
normalized to the control amplitude (open circles). Gray circles
indicated data points after impalement with an injecting pipette.
Black circles denote data points after MTSET injection (estimated
initial cytoplasmic concentration 2 mM). Approximately 15 min
after injection and in the continuous presence of intracellular
MTSET (light gray shade), membrane voltage was held at �80 (A)
or �20 (B) mV for 10 min (black horizontal boxes), during which
the oocytes were exposed to 1 mM MTSETo for the first 5 min
(dark gray shade) followed by washout. Open triangles depict data
points after the washout of MTSETo. Insets, superimposed tail
currents recorded from the same experiments as shown in the
main graphs at time points a–c. (C) Time course of changes in
D466C tail current amplitude in response to MTSETi (estimated
initial concentration 2 mM). To test whether 466C modification by
MTSETi was state dependent, two voltage clamp protocols were
used: (1) closed state–preferred MTSETi exposure, short (0.5 s)
depolarization pulses to �40 mV applied once every 60 s, and (2)
open/inactivated state–preferred exposure, long (10 s) depolar-
ization pulses to �40 mV applied once every 15 s. Data were
averaged from five and six experiments, respectively.
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cessibility to MTSETi with no clear state dependence
(Fig. 8 C).

Effects of S4 Charge Mutations on the Voltage Sensitivity of 
hERG’s Inactivation Process

Fig. 3 shows that there are no major changes in the de-
gree of hERG inactivation when S4’s positive charges
are substituted by cysteine individually. We further
quantify the voltage sensitivity of inactivation in WT
hERG and the cysteine mutants. A triple-pulse protocol
is used to estimate the rate of channel inactivation at
different voltages (Fig. 9 A, top). A long and strong de-
polarizing pulse to �60 mV (�80 or �100 mV for
R531C) fully activates and inactivates the channels.
This is followed by a short repolarizing step to �80 mV
for 15 ms, during which the inactivated channels re-
cover from inactivation (� � 3 ms) without appreciable
deactivation (the fast and slow time constants of deacti-
vation range 20–100 and 200–1,000 ms, respectively, at
�80 mV; unpublished data). The membrane is then
stepped to test voltages ranging from �40 to �20 mV,
during which the channels reinactivate. For WT and
mutant channels, this process can be well described by
a single exponential function, as is shown by the curve
fitting to representative current traces in Fig. 9 A. The
values of �inactivation are plotted on a semilogarithmic
scale versus the test voltages (Vtest) in Fig. 9 B. A linear
regression analysis of the reciprocal of �inactivation vs. Vtest

gives an estimate of the gating charge involved in the
inactivation process according to Eq. 3.

(3)

or

where K(Vtest) and K(0) are the rate constants of inacti-
vation (reciprocal of �inactivation) at voltages Vtest and 0
mV, respectively, and F/RT 
 0.04 mV�1. The values
of zi are listed in Table II. These charge mutations do
not have statistically significant effects on the zi value
(ANOVA, P � 0.05). The rate of K525C inactivation is
significantly faster than that of WT (Fig. 9 B). Although
MTSETo modification of 525C greatly slows the rate of
deactivation (Fig. 6), this intervention has no effect on
K525C inactivation (unpublished data), further sup-
porting the notion that this S4 positive charge is not in-
volved in channel inactivation.

D I S C U S S I O N

The major findings in this study can be summarized as
the following. (a) The number of gating charges trans-
ferred during hERG activation (za) is estimated to be

K Vtest( ) K(0)exp ziVtest F RT⁄( )[ ]=

Ln K Vtest( )[ ] Ln K(0)[ ] ziVtest F RT⁄( ),+=

Figure 9. Effects of cysteine substitution of S4’s positive charges
on the kinetics and voltage dependence of fast inactivation in the
hERG channel. (A) Original current traces elicited by the voltage
clamp protocol diagrammed on top; 0.2-s depolarizing pulse to
�60 mV (except R531C for which depolarization was to �80 or
�100 mV) was used to activate and then inactivate the channels.
This was followed by a short repolarizing pulse (15 ms to �80 mV)
to allow channels to recover from inactivation without significant
deactivation. The membrane voltage was then depolarized to Vtest

ranging from �40 to �20 mV in 10-mV increments, during which
channels reinactivated. The time course of reinactivation could be
well described by a single exponential function. Shown are current
data (as gray circles), superimposed with the fitted single expo-
nential function (black traces). (B) Summary of time constants (�)
of inactivation. Values of �inactivation are plotted on a logarithmic
scale. The relationship between Ln(1/�inactivation) and Vtest was
subject to linear regression analysis to estimate the slope. The
slope is used to calculate zi, according to Eq. 3 in the text. *, P �
0.001 K525C vs. WT; #, P � 0.05 R537C vs. WT. Experiments were
done in 2 mM [K]o.
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6.4, based on the limiting slope method. (b) Neutraliz-
ing the first three positive charges in hERG’s S4 seg-
ment reduces za while neutralizing the following three
positive charges does not, suggesting that the first three
positive charges are involved in gating charge transfer.
(c) Consistent with the above observations, cysteine
side chains introduced into the first three, but not the
following three, positive-charge positions in S4 mani-
fest state-dependent changes in their MTSET accessibil-
ity, consistent with an outward S4 movement relative to
the membrane barrier during depolarization. (d) Neu-
tralizing D466 in S2 reduces za. Furthermore, cysteine
side chain at 466 manifests a state-dependent change
in MTSETo accessibility, consistent with an inward S2
movement relative to the membrane barrier during de-
polarization. (e) None of the charge mutations affect
the number of gating charges involved in hERG’s inac-
tivation process (zi).

Comparison Between hERG and Shaker of Scheme of Gating 
Charge Transfer During Channel Activation

Based on the “conventional gating model” that results
from extensive studies on the Shaker channel (Baker et
al., 1998; Bezanilla, 2000; Cohen et al., 2003; Horn,
2004; Starace and Bezanilla, 2004), the S4 is oriented
more or less perpendicular to the plane of the cell mem-
brane, contacting the periphery of the pore domain on
one side, and surrounded by S1, S2, and S3 on the other.

Most of the S4’s surface is exposed to water-filled crev-
ices connected to the extracellular or intracellular aque-
ous compartment, where the positive charges on S4 are
stabilized by negative charges on S1, S2, or S3, and by
counter ions in the crevices. Only a narrow portion of
the S4 is in a “gating pore,” which forms a barrier be-
tween the extracellular and intracellular compartments
where the membrane electrical field is focused. Mem-
brane depolarization exerts an electrostatic force on S4’s
positive charges that are within or near the membrane
electrical field and thus can sense changes in the mem-
brane voltage (gating charges). This causes S4 move-
ments, resulting in a transfer of gating charges through
the gating pore. The other positive charges on the S4
that cannot sense the membrane voltage are not in-
volved in gating charge transfer, but can serve other
functions (e.g., producing topogenic signals during fold-
ing of nascent channel proteins) (Papazian et al., 2002).
In the Shaker channel, the first four positive charges
carry gating charges: R362, R365, R368, and R371 (Sta-
race and Bezanilla, 2004). In addition, a negative charge
in the cytoplasmic half of S2 (E293, Fig. 1 D) may also
contribute to the gating charges (Seoh et al., 1996).

Table II lists the equivalent gating charges (za, in eo)
for WT hERG and cysteine-substituted mutants. It has
been shown that za values obtained by the limiting
slope method underestimate the total numbers of gat-
ing charges (ztotal) by �20% (Schoppa et al., 1992; Za-
gotta et al., 1994). Therefore, we further estimate the
ztotal values of WT-hERG and mutant channels using the
mean values of za: ztotal 
 za/0.8. The values of ztotal are
also listed in Table II.

Our data support the alignment of S4’s positive
charges between hERG and Shaker shown in Fig. 1 B
(also shown in Fig. 10, top). (a) The first three positive
charges in hERG’s S4 carry gating charges during chan-
nel activation. (b) The ztotal for WT hERG is �8 eo, less
than that of the Shaker channel (12–13 eo) by 4–5 eo

(Schoppa et al., 1992; Aggarwal and MacKinnon, 1996;
Seoh et al., 1996). This difference is consistent with the
notion that hERG has one less gating charge per sub-
unit that traverses most of the membrane electrical
field during activation. The first positive charge in
Shaker’s S4, R362, fulfills this criterion (Aggarwal and
MacKinnon, 1996). (c) The pattern of state depen-
dence of MTSET accessibility of cysteine side chains in-
troduced into the S4 segment of the hERG channel is
in general agreement with that described for the equiv-
alent positions in the Shaker channel (Fig. 10) (Lars-
son et al., 1996; Baker et al., 1998). Furthermore, our
data support a role of D466 in S2 in gating charge
transfer, again similar to the putative role of E293 in S2
of the Shaker channel (Seoh et al., 1996). Thus the
scheme of gating charge transfer during the activation
process is similar between hERG and Shaker.

T A B L E  I I

Equivalent Gating Charges Estimated for the Activation and Inactivation 
Gating Processes of WT hERG and Mutant Channels

Channel za
a n ztotal

b zi
c n

eo eo eo

WT 6.35 � 0.69 5 8 0.72 � 0.03 11

K525C 4.76 � 0.36 5 6 0.61 � 0.05 11

R528C 3.77 � 0.35d 6 4.7 0.71 � 0.03 7

R531C 2.56 � 0.14d 5 3.2 0.76 � 0.01 10

R534C 6.43 � 0.25 6 8 0.61 � 0.01 11

R537C 6.46 � 0.22 4 8.1 0.67 � 0.04 7

K538C 6.40 � 0.18 4 8 0.62 � 0.05 5

D466C 4.28 � 0.63 3 5.4 0.75 � 0.10 5

n, number of experiments.
aza is the number of equivalent gating charges involved in channel activation
estimated by the limiting slope method.
bztotal is the number of total gating charges estimated from the mean value
of za (za) as za/0.8, assuming that when measured at Po 
 10�3, the za value
underestimates ztotal by 20% (Schoppa et al., 1992; Zagotta et al., 1994). 
czi is the number of equivalent gating charges involved in channel inacti-
vation, determined based on data shown in Fig. 9 B. The relationship
between Ln(1/�inactivation) and Vtest, where �inactivation is time constant of
inactivation determined at Vtest (�40 to �20 mV), is subject to linear
regression to estimate the slope, and the zi value is calculated as
slope(RT/F), according to Eq. 3 in text.
dOne-way ANOVA, P � 0.001, followed by Dunn’s multiple comparison
with WT, P � 0.05.
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The state dependence of 528C and 531C accessibility
to MTSETi is qualitatively similar to that described for
the equivalent positions in the Shaker channel, 368C
and 370C (Larsson et al., 1996; Baker et al., 1998).
However, quantitatively the change in modification rate
in hERG (open to closed state transition increases the
MTSETi modification rate of 528C and 531C by 4- and
1.5-fold, respectively) is much less than that seen in
Shaker (open to closed state transition increases the
MTSETi modification rate of 368C and 370C by 100-
and 10-fold). This suggests structural differences be-
tween hERG and Shaker. Perhaps the inner crevice
around S4 is narrower in hERG than in Shaker, restrict-
ing MTSETi accessibility to cysteine side chains at these
positions even in the closed state.

Why Is the Activation Process in the hERG Channel So Slow?

Despite the similarity in the scheme of gating charge
transfer between the two channels, the rate of hERG ac-
tivation is �30-fold slower than that of Shaker. Slow ac-
tivation can be due to slow movement of the voltage
sensor, inefficient coupling between the voltage sensor
and the activation gate, slow opening of the activation
gate, or a combination of the above. Two studies sug-
gest that a slow movement of the voltage sensor is the
major cause for the slow rate of activation in the hERG
channel. First, Smith and Yellen (2002) used the tech-
nique of voltage clamp fluorometry to probe conforma-
tional changes at or around the outer end of hERG’s S4
in response to changes in membrane voltage. They ob-
served a fast and a slow component of changes in fluo-
rescence (�F) at positions 518 and 519, and a slow �F
at 520. The slow �F is correlated with the activation and

deactivation processes in terms of kinetics, voltage de-
pendence, and sensitivity to an NH2-terminal trunca-
tion mutation. Second, Piper et al. (2003) directly re-
corded gating currents (Ig) from the hERG channel.
They also observed a fast and a slow component of Ig,
and the slow Ig is associated with channel activation and
deactivation. An S4 segment with fewer gating charges
will be less sensitive to membrane depolarization, and
thus may move more slowly than an S4 with more gat-
ing charges (Logothetis et al., 1992; Islas and Sigworth,
1999; Ahern and Horn, 2004). Thus, relative to the
Shaker channel, the fewer gating charges in the S4 seg-
ments of hERG may contribute to reduced voltage sen-
sitivity and a slower rate of activation.

However, other factors may also contribute to slowing
the S4 movement in hERG. Negative charges in the
other transmembrane segments (S1, S2, and S3) of the
voltage-sensing domain may slow down S4 movement
by two mechanisms. First, they may form salt bridges
with S4’s positive charges preferentially in the closed
states (Papazian et al., 2002; Silverman et al., 2003).
Our unpublished data suggest that in the hERG
channel, negative charges in S1 and S2 may form salt
bridges with positive charges at the two ends of S4 in
the closed state (D411-K538 and D456-K525). These
salt bridges can stabilize the hERG channel in the
closed state and retard activation. This is consistent
with the observations shown in Fig. 2 that neutralizing
K525 or K538 leads to a hyperpolarizing shift in the
voltage dependence of activation, which can be ex-
plained by a destabilizing effect on the closed state rel-
ative to the open state. Second, the extra negative
charges in the voltage-sensing domain of hERG may

Figure 10. (Top) Alignment of S4
amino acid sequences of Shaker and
hERG. The positive charges are denoted
by generic numbers below. Boxes high-
light voltage-sensing (gating) charges in
each channel. Gray shade highlights
the Shaker arginine that is absent in
hERG. (Bottom) Diagrams illustrating
putative movements of Shaker’s S4 and
hERG’s S2 and S4, relative to the
membrane barrier, during channel
activation. The Shaker diagram is based
on (Starace and Bezanilla, 2004), with
the first four positive charges switched
from internally exposed positions in

closed states to externally exposed in the open states. Although E293 in the Shaker S2 may contribute to gating charge transfer, it is not
included in the diagram because there is no data on the accessibility of 293C to MTSETo or MTSETi. The hERG diagram is based on data
from the present study, with one exception. Although we cannot detect any MTSETo accessibility of 528C (�3 in the diagram) in the open
state, this side chain is accessible to external p-chloromercuibenzene sulfonate (pCMB, a smaller thiol-modifying reagent than MTSET) in
the open state (Mitcheson, J.S., personal communication). The crevice around S2 is deep in the hERG channel, so that cysteine side chain
at position �3 is readily accessible to extracellular MTSETo (Liu et al., 2003). Cysteine at position �4 (466C) is accessible to MTSETo in the
closed state but not in the open state. MTSETi also modifies 466C, although the effect is much less than that of MTSETo in the closed state,
and there is no clear state dependence in MTSETi modification of 466C. These observation are depicted by a narrow inwardly accessible
crevice around S2 at the �4 level in both closed and open states.



716 Gating Charges in the hERG Channel

form a divalent cation (M2�) binding site in the exter-
nal crevice around S4, similar to that described for the
EAG channels (Silverman et al., 2000; Schonherr et al.,
2002). Ca2�

o or Mg2�
o bound here can restrict S4 out-

ward movement and slow activation (more discussion
below).

Where Is the Voltage Sensor for hERG’s Inactivation Process?

The fast �F signals in the voltage clamp fluorometry ex-
periments on hERG (Smith and Yellen, 2002) and the
fast Ig component in the hERG’s gating current (Piper
et al., 2003) are similar in their kinetics and voltage
dependence, suggesting that they originate from the
same gating charge movement. This fast gating charge
movement correlates well with the fast inactivation pro-
cess of the hERG channel in terms of kinetics and volt-
age dependence. However, perturbing the fast inactiva-
tion process of the hERG channel, by mutating resi-
dues at the external pore entrance (G628C/S631C
and S631A) or by applying external TEA (that inter-
feres with conformational changes around the outer
mouth), does not impact on the fast �F signals or the
fast Ig component (Smith and Yellen, 2002; Piper et al.,
2003). These suggest that the inactivation voltage sen-
sor is well insulated from the inactivation gate at the
outer mouth of the hERG channel (Smith et al., 1996;
Herzberg et al., 1998). Where is this inactivation volt-
age sensor? Based on data from alanine scanning mu-
tagenesis experiments on hERG’s S4 segment, Tristani-
Firouzi (2004) proposed that S4 is the voltage sensor
for the inactivation process. On the other hand, based
on the differential effects of changing [Ca2�]o on the
activation and inactivation processes, Johnson et al.
(1999) proposed that the inactivation process has a sep-
arate voltage sensor than S4, although no specific struc-
tural elements were identified.

Our data do not support a role of S4 as the voltage
sensor for hERG’s inactivation process. First, neutraliz-
ing positive charges in hERG’s S4 segment does not al-
ter the gating charge mediating inactivation (zi), al-
though mutating the first three positive charges in S4
reduces the gating charges mediating activation (za) as
expected. Note that our measurement of zi, based on
the voltage dependence of �inactivation, matches the gat-
ing charge estimated from the fast �F and fast Ig exper-
iments (zi � 0.7). Second, the �inactivation and thus the zi

value are measured when the S4 segment is maintained
at its outermost (activated) position (triple-pulse proto-
col in Fig. 9), and the voltage dependence of �inactivation

is observed in a voltage range when channels are fully
activated. Therefore, zi cannot arise from the S4 move-
ment that mediates channel activation.

What are the alternatives for hERG’s inactivation
voltage sensor? The structural element must fulfill two
criteria: it must move rapidly in response to changes

in membrane voltage, and it must carry only small
amount of gating charge (�0.7 eo per channel). This
small gating charge can originate from negative charges
in S1, S2, or S3, or from an �-helix dipole in the mem-
brane electrical field (Bezanilla, 2000). The first possi-
bility is not very likely, because although neutralizing
the negative charges in hERG’s S1, S2, and S3 can shift
the voltage dependence of activation and alter the rate
of activation/deactivation, there is no effect on the ki-
netics or the voltage dependence (zi) of hERG inactiva-
tion (Liu et al., 2003).

The P-helix of the hERG channel (positions 614–621
of the NH2-terminal half of the P-loop; Fig. 1 C) (Doyle
et al., 1998) can be a candidate for the inactivation volt-
age sensor for the following reasons. (a) An �-helix car-
ries a dipole moment due to inducible charge separa-
tion between amide nitrogens and carbonyl oxygens of
the peptide backbone. The effect can be approximated
by placing 0.5–0.7 positive eo near the NH2 terminus
and 0.5–0.7 negative eo near the COOH terminus of
such an �-helix (Hol, 1985). A calculation of the trans-
membrane potential profile along the axis of the KcsA
channel has shown that the major portion of the trans-
membrane field drops across the selectivity filter (Roux
et al., 2000). This is likely applicable to the hERG chan-
nel, given the well-conserved structure and function of
the pore domains of all K channels. Therefore, the
P-helix is within the membrane electrical field with its
COOH-terminal negative dipole pointing in the inward
direction. The helical dipole may sense membrane de-
polarization and change its position in the field. (b)
The hERG channel lacks the H bond that bridges the
two ends of the P-loop as in the Shaker channel (be-
tween W434/W435 and Y445, asterisks connected by a
horizontal line above the Shaker sequence in Fig. 1 C)
(Yang et al., 1997; Doyle et al., 1998). Therefore, the
P-helix in the hERG channel may slip or rotate in re-
sponse to membrane depolarization. (c) The inacti-
vated state of the hERG channel confers a high sensitiv-
ity to drug molecules that bind to the inner cavity of
the pore (Numaguchi et al., 2000). The movement of
P-helices provides a logical link between conforma-
tional changes around the outer mouth (inactivation)
and changes in the inner cavity (drug binding). This
proposal awaits tests by direct experimental examina-
tion or by indirect theoretical calculations.

Why Are hERG and EAG So Different in their 
Gating Properties?

EAG channels share all the features of amino acid
sequence that are proposed to be important for the
unique gating properties of the hERG channel. This is
exemplified by the bEAG sequence in Fig. 1. In the
voltage-sensing domain, bEAG has the same extra nega-
tive charges in S1, S2, and S3, and the same positive
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charges in S4 as in hERG. In the pore domain, bEAG
has an even longer S5-P linker than hERG. However,
EAG channels do not share the unique gating proper-
ties of the hERG channel. In low mM [M2�]o (M2� 

Ca2� and Mg2�), EAG channels exhibit a much faster
activation rate than hERG; at �60 mV, � of activation
�10 ms for dEAG (Silverman et al., 2000), but �50 ms
for hERG. EAG channels do not manifest a fast inacti-
vation as in hERG.

Raising [Mg2�]o from 1 to 10 mM causes a pro-
nounced slowing of EAG activation (Silverman et al.,
2000; Schonherr et al., 2002). It is possible that the
hERG channel operates in the M2�

o-bound, slow gating
mode even in normal range of [M2�]o (low mM). This
is suggested by the observation that lowering [Ca2�]o

from 1 to �0.1 mM induces a profound acceleration of
hERG activation (Johnson et al., 2001), although ele-
vating [Ca2�]o from 2 to 10 mM has very modest effect
(Liu et al., 2003). Therefore, the difference in the acti-
vation rate and in the sensitivity of activation rate to
changes in [M2�]o between hERG and EAG may be due
to a difference in the set points of M2�

o binding; hERG
has a high affinity M2�

o binding site (in �1 mM range)
while EAG channels have a lower affinity M2�

o binding
site (in 1–10 mM range).

In terms of inactivation, Fig. 1 C reveals that several
positions that are critical for hERG’s inactivation
process are not conserved in EAG. These are high-
lighted by boxes on the hERG and bEAG amino acid
sequences in Fig. 1 C. For example, the equivalent of
hERG’s S620 is T in EAG channels, and the equivalent
of hERG’s S631 is A in EAG channels. It has been
shown that both S620T and S631A mutations in hERG
greatly disrupt the inactivation process (Herzberg et
al., 1998; Piper et al., 2003). Other differences between
hERG and EAG may also contribute to the absence of
fast inactivation in the EAG channels.
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