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Abstract

Analyses of urban scaling laws assume that observations in different cities are independent

of the existence of nearby cities. Here we introduce generative models and data-analysis

methods that overcome this limitation by modelling explicitly the effect of interactions

between individuals at different locations. Parameters that describe the scaling law and the

spatial interactions are inferred from data simultaneously, allowing for rigorous (Bayesian)

model comparison and overcoming the problem of defining the boundaries of urban regions.

Results in five different datasets show that including spatial interactions typically leads to

better models and a change in the exponent of the scaling law.

1 Introduction

One of the pillars of the study of cities as complex systems is the existence of statistical laws

that apply “universally” to urban regions in different locations [1–4]. Examples include the

Zipf’s law of city sizes, the gravitational law of population movement, and—the focus of this

paper—scaling laws

y � xb; ð1Þ

between observables y and the population x of cities. All these laws have their origin in the first

half of the XX century and continue to be investigated in increasingly rich datasets [5–7]. In

particular, the scaling law (1) was discussed for the area of cities since the 1940s [8], can be

viewed as a form of increasing return to scale [1, 9], and has been the subject of many recent

studies [4, 10–15].

Originally, urban laws were seen as akin to the empirical laws of classical mechanics, the

basis of a sociophysics theory [7, 8]. A modern trace of this simplistic view is the fact that mod-

els and explanations of the origin of these laws are typically presented independently from the

statistical analysis in support of their validity, e.g., the data analysis supporting (1) is based on

straight-line fits of log y vs. log x regardless of the explanation for its appearance. This under-

mines the statistical nature of the laws (evident from the large fluctuations) and is unable to

select between the many alternative models that “explain” their origin (which often predict dif-

ferent fluctuations and can thus be tested).

The need for careful data-analysis methods to investigate statistical laws in complex systems

has been extensively discussed for power-law distributions such as Zipf’s law [16–18]. Similar

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0243390 December 7, 2020 1 / 12

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Altmann EG (2020) Spatial interactions in

urban scaling laws. PLoS ONE 15(12): e0243390.

https://doi.org/10.1371/journal.pone.0243390

Editor: Hyejin Youn, Northwest University, UNITED

STATES

Received: June 24, 2020

Accepted: November 16, 2020

Published: December 7, 2020

Copyright: © 2020 Eduardo G. Altmann. This is an

open access article distributed under the terms of

the Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All data and codes

are available in the public repository: https://

zenodo.org/record/4143043.

Funding: The authors received no specific funding

for this work.

Competing interests: The authors have declared

that no competing interests exist.

https://orcid.org/0000-0002-1932-3710
https://doi.org/10.1371/journal.pone.0243390
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0243390&domain=pdf&date_stamp=2020-12-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0243390&domain=pdf&date_stamp=2020-12-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0243390&domain=pdf&date_stamp=2020-12-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0243390&domain=pdf&date_stamp=2020-12-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0243390&domain=pdf&date_stamp=2020-12-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0243390&domain=pdf&date_stamp=2020-12-07
https://doi.org/10.1371/journal.pone.0243390
http://creativecommons.org/licenses/by/4.0/
https://zenodo.org/record/4143043
https://zenodo.org/record/4143043


scrutiny is being applied to the methods used in scaling laws in urban systems [13, 14, 19–21]

and reveal the limitations of the traditional linear-fitting approach: it relies on several simplify-

ing assumptions, it is unable to deal with y = 0 in the data, it makes it difficult to compare to

alternative models and to assess whether the scaling is indeed non-linear (β 6¼ 1), and it treats

each city equally so that results are sensitive to cut-offs and fluctuations in the data of the

many small cities. These limitations motivated us to introduce in Ref. [19] a model of urban

scaling that focuses on individuals instead of cities, effectively giving more weight to the largest

cities. Fig 1 compares this and alternative fitting models for the dependence of the Gross

Domestic Product (GDP, y) on the population of cities (x) in two countries.

A limitation of data-analyses methods of scaling laws (1) that persists is that they ignore the

crucial element of any urban data: their spatial component [1]. The importance of location for

scaling laws has been recognized [11] and modelled [15], but not incorporated into the data

analysis. Linear fitting and all methods proposed in Ref. [19] assume that observations in dif-

ferent cities are independent from each other and thus independent of their location. Not sur-

prisingly, the scalings show spatially-correlated fluctuations [11] and are sensitive to the

definition of city boundaries [13, 14]. For instance, in the results in Fig 1 (left panel) we high-

light one of Brazil’s municipalities (“São Caetano do Sul”-SP) that lies within Brazil’s largest

metropolitan area (around “São Paulo”-SP). We see that the GDP of this municipality is much

larger than expected by any of the models and it is natural to suspect that this is at least par-

tially due to its proximity to other urban areas. This effect is enhanced by the fact that Brazil’s

data is aggregated according to administrative areas (municipalities), which often do not

reflect connected urban regions. Still, the problem of defining appropriate urban areas is not

trivial [5, 14] and spatial proximity should play a role regardless of the chosen urban unit. In

fact, Fig 1 (right panel) shows that in USA, where data is given for metropolitan areas, a similar

effect appears (e.g., “San-José-Santa Clara”-CA close to “San Francisco”-CA, or “Trenton”-NJ

between “New York City”-NY and “Philadelphia”-PA).

Here we propose the first framework to investigate scaling laws (1) that accounts simulta-

neously for the following three crucial points: (i) it is based on generative models (Sec. 2); (ii)

Fig 1. Urban scaling laws (1) based on different models. The GDP y of different municipalities in Brazil (left) and metropolitan areas in USA (right)

are shown as a function of their population x. The straight lines correspond to different models: linear fit of the data, the Per capita model (P) and the

City model (C), see Eq (11). The estimated scaling exponent β of the different models are shown in the caption. Cities close to large urban areas are

highlighted. The City model gives more weight to larger cities and therefore leads to a value of β that is different from the linear fit [19].

https://doi.org/10.1371/journal.pone.0243390.g001
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it accounts for spatial interactions between different urban areas; and (iii) it allows for rigorous

statistical analyses (Sec. 3), including model comparison and the inference of parameters.

Results in 5 datasets from Brazil and USA show (Sec. 4) that, in most cases, models that

account for spatial interactions provide a better description of the data and that the scaling

exponent β depends on the spatial scaling, in agreement with previous observations [13, 14] of

the dependence of β on the urban unit.

2 Model

2.1 Generative process

We are interested in modelling the process that generates data compatible with the scaling law

(1). The starting point of our model is the widespread interpretation that Eq (1) reflects a

change in people’s efficiency (or consumption) depending on the amount of interactions avail-

able to them [12]. Accordingly, we consider a generative process in which tokens (e.g. a patent,

a dollar of GDP, a piece of infrastructure) are assigned to (produced or consumed by) an indi-

vidual person j with probability pp(j).
Consider j = 1, . . ., M persons living in i = 1, . . ., N cities, on which the population of the

city i is given by xi and X ¼
PN

i xi. A total of Y� ∑i yi tokens are (randomly) assigned to the X
persons. In the absence of any other information, this defines our first (null) model:

(P) Per-capita model: All tokens Y are distributed with equal probability to all persons j as in a

constant per-capita attribution, p(j) = 1/X. In this case, the probability pc that a token is

attributed to city i is given by

pcðiÞ ¼
X

j

ppðjÞdðcðjÞ � iÞ ¼
xi
X
; ð2Þ

where c(j) is the city in which j lives and δ(x) = 1 for x = 0 (otherwise δ(x) = 0).

This model corresponds to a linear (trivial) scaling law, β = 1 in Eq (1). A super-linear β> 1

(sub-linear β< 1) scaling is obtained if a token is more likely to be assigned to someone living

in a more (less) populous city. In this spirit, in Ref. [19] we assumed that the probability that a

token is assigned to person j depends on the population around j as

ppðjÞ � xb� 1

cðjÞ : ð3Þ

Here we generalize this idea to account for spatial interactions between j and other individ-

uals j0 that live in other cities (i.e., c(j)6¼c(j0)). We introduce a quantity Aj, defined as the total

attractiveness of individual j due to all its interactions, and use it as a weight on the probability

of assignment of a token as

ppðjÞ ¼
Ab� 1
j

ZðbÞ
; ð4Þ

where Z(β) is the normalization constant (i.e.,
PX

j ppðjÞ ¼ 1). If β = 1, the probability pp(j) is

the same for all j as in the per-capita model and we recover Eq (2). For β> 1, pp(j) grows with

the interactions Aj in line with a super-linear scaling. For β< 1, pp(j) decays with Aj in line

with a sub-linear scaling.

The attractiveness of an individual Aj certainly depends on a multitude of factors that could

be included in the model, depending on data availability and research interest. Here, we focus
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on pairwise interactions aj,j0 between individuals j and j0 separated by a distance d = dj,j0. We

obtain Aj as the total interaction of j and all other individuals j0 by summing over all j0

Aj ¼
X

j0 6¼j

aj;j0 ðdj;j0 Þ: ð5Þ

The distance dj,j0 � 0 does not need to be a distance in a mathematical sense and, in prac-

tice, depends on the availability of data. Below we use the geographic (geodesic) distance

between cities (another natural choice would be the commuting time). The pairwise (spatial)

interactions aj,j0 is discussed below and will lead to three different specific models.

2.2 Spatial interactions

In order to explore the formalism above we now consider simple dependencies of the pairwise

interaction a(d) on the distance d� dj,j0 between two persons j, j0. In general, we are interested

in functions a(d) that monotonically decay with d from a(0) = 1 to limd!1 a(d) = 0. Choos-

ing another value at a(0) leads to the same results because of the normalization of pp(j) in Eq

(4). Our framework can be applied to any function a(d) suitable to model spatial relationships,

data will reveal us which one is more suitable.

The simplest choice of a(d) is

(C) City model:

aCðdÞ ¼ dðdÞ ¼
1 if d ¼ 0 ðor cðjÞ ¼ cðj0ÞÞ

0 if d > 0 ðor cðjÞ 6¼ cðj0ÞÞ
;

(

ð6Þ

in which interactions occur only within the same city (d = 0). From Eq (5) we get Aj = xc(j),
i.e., we recover the scaling law (1) and Eq (3) (the model of Ref. [19], Sec. 4.2).

Spatial interactions beyond city limits can be incorporated using more general functions a
(d). Here we start this investigation with functions a(d;α) that depend on a single parameter α
that is measured in the same units of d (e.g., km) and sets a scale for spatial interactions such

that a(α;α) = 1/2 (i.e., at a distance d = α the interactions decay to a factor 0.5 of the interaction

at the same city d = 0). Furthermore, we wish to recover the choice (6) in the limit of small α,

i.e., a(d)!aC(d) in Eq (6) for α! 0+. Two choices of a(d;α) that satisfy these properties (and

also a(0;α) = 1 and limd!1 a(d, α) = 0 for any α) are:

(G) Gravitational model:

aGðd; aGÞ ¼
1

1þ
d
aG

� �2
;

ð7Þ

inspired by models of gravitational interactions (for large d the interactions decay as a* 1/

d2, one can also replace the power 2 by an additional parameter) [3, 8, 15].

(E) Exponential model:

aEðd; aEÞ ¼ e� d ln ð2Þ=aE : ð8Þ
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For α!1, the distances do not matter, everyone is equally linked to everyone else, and

the P-model is retrieved. Altogether, the four models discussed above are summarized in

Table 1 and satisfy

C 
a!0
ðG;EÞ !

b!1

a!1
P:

2.3 Likelihood

We now discuss how the likelihood of our models can be computed from the data. We assume

that (xi, yi) data is available at locations i = 1, . . ., N. We denote the locations i as cities but we

stress that this does not need to correspond to any urban definition of cities as the spatial inter-

action between different regions can be accounted explicitly in our models by choosing an

appropriate function a(d). We assume also that a measure of distance di,i0 between all pairs of

cities is available (e.g., the geodesic distance between the centroid of the cities).

Besides their location (city), individuals are indistinguishable. Therefore, the probability

pc(i) that a token is assigned to city i is given by a sum of pp(j) over persons j on city i (i.e. c(j) =

i), which contains exactly xc(j)� xi terms

pcðiÞ ¼
X

j

ppðjÞdðcðjÞ � iÞ ¼
xi

ZðbÞ

X

j0
aðdj;j0 Þ

 !b� 1

¼
xi

ZðbÞ

X

i0
xi0aðdi�cðjÞ;i0�cðj0ÞÞ

 !b� 1

�
xiA

b� 1
i

ZðbÞ
;

ð9Þ

where we used Eq (4) and consider that xi� 1 for all i. The last equation defines the attractive-

ness of an individual in city i as

Ai ¼
X

j0 ;cðjÞ¼i

aðdj;j0 Þ ¼
X

i0
xi0aðdi�cðjÞ;i0�cðj0ÞÞ: ð10Þ

This can be thought also as the number of effective interactions available for an individual

in city i so that Ai = xi in the city model (6) and Ai� xi otherwise (e.g., for the gravitational

and exponential models). It depends only on the population xi of all cities and on the distances

di,i0 between cities, e.g. through Eqs (7) or (8), and therefore Ai can be computed independently

of the data yi.
The expected number of tokens in city i is given by

yi ¼ YpcðiÞ ¼ Y
xiA

b� 1
i

ZðbÞ
: ð11Þ

Table 1. The four models considered in this paper.

Model Attractiveness a(d) Parameters θ
Per capita P - -

City C δ(d) β

Gravitational G 1/(1 + (d/α)2) α, β

Exponential E e−dln2/α α, β

https://doi.org/10.1371/journal.pone.0243390.t001
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The probability of observing yi tokens in each city of size xi is a multinomial distribution

Pðy1; � � � ; yN jx1; � � � ; xNÞ ¼ Y!
YN

i¼1

1

yi!
xiA

b� 1
i

ZðbÞ

� �yi

: ð12Þ

This corresponds to the likelihood P(D|M, θ) of the data D� {y1, � � �, yN}—since the popu-

lations (x1, � � �, xN) are fixed—for a given model class M and given parameters θ. It is conve-

nient to write the log-likelihood as

lnPðDjM; yÞ � lnPðy1; � � � ; yN jx1; � � � ; xNÞ

¼ lnY! �
XN

i¼1

lnðyi!Þ þ
XN

i¼1

yiln
xiA

b� 1
i

ZðbÞ

� �

:
ð13Þ

3 Data analysis

3.1 General framework

The models described above contain strong simplifying assumptions Our focus on the scaling

relationship led to the assumptions that individuals are identical and that the token assign-

ments are independent. and therefore our approach here is not to test whether the data is com-

patible with them (we know it is not While in linear fitting the number of observations equals

to the number of cities, our model focus on individuals j and tokens of output y (X = ∑xi, Y =

∑yi) so that the number of observations is much larger and the expected fluctuations (for large

cities) are much smaller than the fluctuations in the data. This accounts only to fluctuations of

the (random) assignment of tokens and neglects fluctuations (present in the data) due to mea-

surement imprecision and due to factors that are not part of our model.) but instead to com-

pare the different models. This means that instead of the likelihood P(D|M, θ) that models

generate the data D = {y1, � � �, yN}, computed in the previous section, we should focus on what

the data D tells us about the model class M 2 {P, C, G, E} and their parameters θ = {α, β}. This

is done based on the (posterior) probability

PðM; yjDÞ ¼ PðDjM; yÞ
PðM; yÞ
PðDÞ

; ð14Þ

computed from the three terms in the right hand side:

• P(D) depends only on the data, act as a normalization, and does not affect the choice

between models.

• P(M, θ) is the prior probability and is taken flat so that no a priori preference is given to any

model. Specifically, we write P(M, θ) = P(θ|M)P(M) with P(M) = 1/4 and constant P(θ|M) in

0� β� 2 and 0� α� αmax, where αmax is an arbitrary maximum distance (we use αmax = 6,

371 km, Earth’s radius). This implies that P(θ|M) for our the models P, C, G, E are 1, 1/2, 1/2

αmax, 1/2 αmax, respectively.

• P(D|M, θ) is the likelihood and is evaluated numerically from Eq (13). This is facilitated by

two observations: (i) the two first terms in the log-likelihood (13) are independent of the

models so that the variation across M and θ depends only on the last term; (ii) in this last rel-

evant term, the parameter α enters only in Ai through the dependence on a(d) so that for a

fixed α the dependence of the matrix di,i0 is reduced to the vector Ai. It is thus computation-

ally more efficient to fix α, compute Ai once, and then consider variations in β.
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3.2 Estimation of parameters θ = {α, β}

The best parameters θ = {α, β} of a given model M are the ones that maximize the posterior P
(θ|D, M). Since the priors are constant, this is equivalent to the maximization of the log likeli-

hood (13) in the space of admissible parameters set by the priors.

3.3 Model selection

In the comparison of the different model classes M we account for the fact that models have

different (number of) parameters θ by computing P(M|D), or equivalently, the description

length

D ¼ � log ðPðM;DÞÞ; ð15Þ

by integrating over all parameters θ of model M

PðM;DÞ ¼ PðMjDÞPðDÞ ¼
R
PðD;M; yÞdy

¼
R
PðDjM; yÞPðyjMÞPðMÞdy:

The description length D corresponds to the size (in number of bits, for based 2 logarithm)

of the optimal encoding of data and model [22]. Since the priors P(θ|M) and P(M) are con-

stant, the crucial computational step is the integration of the likelihood over the parameters θ.

When the number of observations Y = ∑i yi is large (often the case for relevant urban scaling

analysis), the likelihood is expected to be sharply peaked around the maximum-likelihood

parameters θ. In this case, the description length D is dominated by the maximum log-likeli-

hood and further approximations can be used to compute D (e.g., the Bayesian Information

Criterion). However, one should be careful using these approximations to compare non-

nested models (e.g., G and E) and around parameters θ in which the priors are discontinuous

(as in the relevant case of α = 0).

4 Results

4.1 Data

We apply the models and data-analysis methods described above to five datasets from two dif-

ferent countries. For Brazil, the data on three observables y—GDP, deaths due to external

(non-natural) causes, and deaths due to AIDS—in the year 2010 is given for thousands of

municipalities (administrative boundaries). For USA, the data on two observables y—GDP

and miles of roads—in the year 2013 are given for hundreds of metropolitan areas. The USA

cases can be considered as the paradigmatic examples of super- and sub-linear urban scaling

laws [12]. In both countries, the average distance between two urban units is of thousands of

km. The results of our analysis are reported in Table 2. The data and codes used in this paper

are available in Ref. [23]. The data was collected from censuses and governamental agencies,

was used in Refs. [12, 17], and is available with further documentation and all codes used in

this paper in Ref. [23].

4.2 The effect of α
We start investigating the central question of this paper: does spatial proximity between cities

help to explain the observations y studied in urban scaling? And, if so, does it affect the scaling

exponent β? The results in Fig 2 demonstrate that the answer to both questions is positive in

most (but not all) cases. The top row of the figure shows that the value of the (maximum likeli-

hood) exponent β for a fixed α changes significantly with α. The bottom row shows that often
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(Brazil GDP, USA Roads, but not in USA GDP) the best model is observed for α> 0. In these

cases, there is an interval in α for which the model with geographic distance has a larger likeli-

hood than the α = 0 case, compatible with the idea that the spatial scales we are accounting in

this interval are meaningful (i.e., distances of 10–100 km that are relevant to interacting

people).

The addition of spatial interactions does not trivialize the urban scaling law, differently

from the effect of city boundaries reported in Ref. [14]. In fact, the non-linear scaling exponent

β is often enhanced by the spatial relation α, i.e., super- (sub-) linear scalings β> 1 (β< 1) in

the usual approach (at α = 0) show an even larger (smaller) value of β for the maximum-likeli-

hood value of α. For instance, for Brazil GDP the estimation of β in the non-spatial models are

1.05 (linear fitting) and 1.17 (city model) while in the spatial models it is 1.24 (gravitational

model) and 1.21 (exponential model). The same effect is observed in the case of sublinear scal-

ing in the data for USA Roads Lengths, see Table 2.

4.3 Comparing different models

In all our five datasets the models with non-linear scaling (C,G, and E, for which β 6¼ 1) are

preferred over the per-capita (P) model (negative DD in Table 2). In four of the five datasets,

the models with spatial interactions (α 6¼ 0 in the G and E models) are preferred over the one

(C-model) that ignores it. The exception is the case of USA GDP, for which the estimated

value of α is zero for the G model and very small (1.65 km) for the E model. The description

length D of the C model is smaller than the one in the G, E models by 2 and 3 bytes, respec-

tively, indicating that the largest likelihood of the data obtained with α = 1.65 in the E model is

not sufficient to justify its increased model complexity.

The comparison of the Gravitational and Exponential models reveal that both show a very

similar behaviour as a function of α (Fig 2), similar inferred model parameters α and β, and

similar description lengths D (Table 2). This indicates that the conclusions are not very sensi-

tive to the functional form of a(d), used to account for spatial interactions (as long as they sat-

isfy the natural constraints we used to propose a(d)). The most important distinction we

found is between models that ignore spatial interactions (linear fitting, C model, and α = 0)

and those that account for it (α> 0 in the G and E models).

Table 2. Results of the four models in five databases.

Dataset Models

Country y Ncities Linear fit Per Capita, β = 1 Cities, α = 0 Gravitational Exponential

β D (DD ¼ 0) β DD α β DD α β DD

USA GDP 381 1.11 25MB 1.12 −40, 008B 0 1.12 −40, 006B 1.65 1.12 −40, 005B

USA Roads 338 0.82 1.6MB 0.79 −8, 358B 20.4 0.75 −8, 596B 28.8 0.77 −8, 593B

Brazil GDP 5,480 1.05 8, 309MB 1.17 −43 MB 14.6 1.24 −50MB 17.6 1.21 −49MB

Brazil External 5,480 0.97 0.35MB 1.02 −18B 289.8 0.91 −48 B 219.4 0.93 −42 B

Brazil AIDS 4,328 0.77 0.03MB 1.16 −117B 3.1 1.17 −116B 4.6 1.16 −118B

α, β are the parameters in each model that best describe the data. D is the description length (15) of the model M (measured in bytes, B) and is used to compare different

models (the smaller, the better). The description length is reported (in megabytes, MB) for M = P and the difference to DðM ¼ PÞ is reported as DD ¼ DðMÞ � DðPÞ
for M = {C, G, E}. The uncertainty σβ in the estimation of β is σβ � 0.01 in all cases, computed using bootstrapping [19]. The data and codes used to obtain these results

are provided in Ref. [23].

https://doi.org/10.1371/journal.pone.0243390.t002
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Fig 2. Spatial dependence affects the choice of the scaling parameter β. The value of α (measured in kilometres) is varied and the most likely value of

β is estimated for each α. The three left panels shows the value of β and the three left panels indicate the likelihood L of the different models M indicated

in the legend. The panels on the top correspond to GDP data from Brazil, the best model is M = G with α = 14.6 and β = 1.24. The panels on the centre

correspond to GDP data from USA, the best model is the city model M = C (obtained for α = 0) with β = 1.12. The panels on the bottom correspond to

data from road miles in the USA, the best model (largest likelihood) is M = G with α = 20.4 and β = 0.75.

https://doi.org/10.1371/journal.pone.0243390.g002
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4.4 Increased interactivity

We now investigate how the spatial models introduced here change the number of effective

interactions of individuals. In the introduction we discussed how the GDP of cities close to

large urban areas were underestimated. Our analysis reveals that spatial interactions were not

a strong factor in the USA GDP data overall. This was different for Brazil GDP, where the best

model is the Gravitational model with α = 14.6. For these parameters, in Fig 3 we show the

increased attractiveness—or number of interactions, Ai in Eq (10)—that individuals in differ-

ent cities in Brazil experience. It fluctuates significantly from city to city because it is an intri-

cate function of the location of all cities, but it is clear that smaller cities are more affected than

larger cities.

For the case of “São Caetano do Sul”, the attractiveness of the inhabitants of this municipal-

ity is 43.6 times larger than assuming that interactions occur only within the municipality (i.e.,

A = 43.6 x for α = 14.6 in M = G). The GDP of this city is 11.0 BR$ (Billion reais), much larger

than the per-capita expectation of 2.1 BR$. The city model improves this expectation to 2.7 BR

Fig 3. Accounting for spatial interactions increase the attractiveness of individuals in small cities. The attractiveness Ai in Eq (10) divided by the

population xi is shown as a function of xi for the different Brazilian municipalities i. The horizontal black line correspond to the case in which spatial

interactions are ignored (α = 0) Ai = xi). The dots correspond to the result of the Gravitational model with the maximum likelihood parameters

obtained for the case of GDP (see Table 2).

https://doi.org/10.1371/journal.pone.0243390.g003
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$, still too low but better than the linear-fit estimation 1.6 BR$. The best spatial model (G

model with α = 14.6 and β = 1.24) improves the prediction to 4.5 BR$. Therefore, we conclude

that spatial interactions can explain a considerable amount of the GDP of this municipality,

even more than the inclusion of the non-linear scaling (β> 0), but that other factors remain

significant.

5 Discussions

We introduced models of urban scaling laws that account for spatial interactions between indi-

viduals in different locations and that allow for rigorous statistical inference and model com-

parison. Results in five databases reveal that spatial interactions between cities leads to

improved models and change the estimation of the urban scaling parameter β. Our approach

shows how the problem [13, 14] of the effect of the definition of the urban unit (city bound-

aries) on scaling laws can be solved by including spatial interactions between different loca-

tions explicitly in the model and inference.

The framework introduced in this paper can be extended to account for more sophisticated

models (of interactions), beyond the four simple models introduced here. This could include

more detailed information about the proximity and connectivity between different urban

areas (e.g., commuting time) and incorporate ideas proposed in models of scaling laws [15], in

models of the growth of cities [2, 3], and in methods to define boundaries of urban regions [5,

14]. It would be interesting to use these models to explore datasets at different spatial resolu-

tions (e.g., neighbourhoods) and when additional information on the population in each loca-

tion is available. The crucial point is that additional parameters and models for interactions

should be inferred from the data together with the parameter β of the urban scaling law, avoid-

ing arbitrary choices and leaving to the data and model-comparison techniques the choice

between different approaches.
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