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Potential reduction in healthcare carbon footprint by
autonomous artificial intelligence
Risa M. Wolf 1, Michael D. Abramoff 2,3✉, Roomasa Channa4, Chris Tava3, Warren Clarida3 and Harold P. Lehmann 5

Healthcare is a large contributor to greenhouse gas (GHG) emissions around the world, given current power generation mix.
Telemedicine, with its reduced travel for providers and patients, has been proposed to reduce emissions. Artificial intelligence (AI),
and especially autonomous AI, where the medical decision is made without human oversight, has the potential to further reduce
healthcare GHG emissions, but concerns have also been expressed about GHG emissions from digital technology, and AI training
and inference. In a real-world example, we compared the marginal GHG contribution of an encounter performed by an
autonomous AI to that of an in-person specialist encounter. Results show that an 80% reduction may be achievable, and we
conclude that autonomous AI has the potential to reduce healthcare GHG emissions.
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INTRODUCTION
There are efforts worldwide to reduce greenhouse gas (GHG)
emissions, as they adversely affect the environment and human
health1. Based on present, real world, mix of energy production
methods (i.e., lacking renewables, nuclear, or other low or zero-
carbon energy production), up to 10% of all annual GHG emissions
may be due to healthcare processes and services2. The combined
emissions of healthcare in the US, Canada, Australia, and the UK
have been estimated to be ~7.5 × 1014 grams (g) of carbon dioxide
equivalents (CO2-eq) annually3. These include energy use at the
healthcare facility, including heating, ventilation and air condi-
tioning, as well as its construction, provider, personnel and patient
travel, training of physicians and other healthcare workers,
healthcare technology and systems usage, pharmaceuticals and
medical devices, and cleaning and disposables3.
Digital health technology, and specifically telemedicine or

telehealth, has the potential to improve patient care, population
health, reduce the per capita cost of healthcare, and improve the
experience of providing care4. During the recent pandemic, these
advantages became more apparent, as shown recently by Cortez
et al.5. Importantly in this context, by reducing patient, physician
and personnel travel, telemedicine also has the potential to
substantially lower GHG emissions from travel energy use6–11.
Another digital health technology, artificial intelligence (AI), also

has the potential to improve the quality, access, and experience of
healthcare12,13. Such AI systems perform tasks intended to mimic
human cognitive capabilities. These anthropomorphic AI systems
are not explicitly programmed, and instead learn from data to
perform highly cognitive tasks, such as those typically performed
by trained healthcare professionals. As such, these AI systems
have the potential to equalize access to healthcare for under-
served populations, while improving care quality, at both the level
of the individual patient and the population, at reduced cost for
patient, payor, and society14,15. Initially, most healthcare AI
systems were assistive, in other words, they assisted the physician
or other provider in making medical decisions, but the ultimate
authority for the clinical decision remained with the physician16.

While such assistive AI may save time or effort on the part of the
provider, it may also be additive to GHG emissions.
On the other hand, autonomous AI, where the medical decision is

made by the AI system without human oversight, avoids the
additive GHG emissions, and is infinitely scalable, with the potential
to address healthcare disparities, improve patient outcomes, and
patient and physician satisfaction17–21. The introduction of auton-
omous AI in the healthcare system has the potential to limit GHG
emissions, and may even exceed the carbon emission reductions
that resulted from telemedicine.
The goal of this study is to estimate the potential GHG emission

reduction, if any, that can be achieved by the deployment of
autonomous AI for point of care diagnostics.

HEALTHCARE AND DIGITAL TECHNOLOGY GHG EMISSION
ESTIMATION
Multiple studies have analyzed GHG emissions, typically quanti-
fied as carbon dioxide release, resulting from specific healthcare
processes, such as cataract surgery, anesthesia, and critical care
as a means to determine where emissions can be reduced22–24.
Generally, the largest fraction of emissions was due to energy
use, including transportation of patients, providers, and staff to
and from the facility10,11. A study measuring transportation
associated GHG emissions at a large U.S. regional health system
demonstrated significant reductions in GHG over all outpatient
visits, as the use of telemedicine increased: from 8 × 103 g
CO2-eq per visit to 4 × 103 g CO2-eq per visit25. The authors went
further in accounting for the potential increase in emissions
related to use of computer equipment and internet for
telemedicine visits, estimating that there would be a net
increase of 5 × 107 g CO2-eq for telemedicine encounters,
compared to 8.7 × 109 g CO2-eq reduction from patient travel
avoided25. Similarly, a telemedicine program in Catalan (Spain)
showed a significant reduction in emissions over the course of a
year by avoiding more than 9000 in-person visits, and reducing
travel time, fuel use, and carbon emissions related to patient
travel10. Modeling this out across the US, expansion of
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telemedicine programs nationwide has the potential to reduce
GHG emissions by 2 × 1011 g CO2-eq annually11.
As mentioned above, while most outpatient GHG analyses,

including the aforementioned studies, primarily consider patient
travel-related emissions, they do not typically account for provider
and personnel travel emissions, which is likely to be reduced9.
On the other hand, the use of digital technology itself,

contributes to GHG emissions26. For example, a widely cited
study based on data from 2015, estimated that digital technology
is responsible for ~5 × 1017 g CO2-eq emissions27. The training of a
single AI system may create up to 5 × 108 g CO2-eq emissions28,
though inference—the calculation of a single output—may be
only a fraction thereof29, and newer AI algorithms have shown
improved GHG emission efficiency30.

EXAMPLE OF AN AUTONOMOUS AI: IDX-DR
The management of a person with diabetes requires regular
diabetic eye exams to prevent blindness and vision loss31. The
patient is typically referred by their primary care physician to an
eye care provider for an in-person diabetic eye exam, generally
requiring a separate clinic appointment. With implementation of
autonomous AI at the point-of-care for the diabetic eye exam,
screening for diabetic retinopathy can be performed during the
same primary care encounter. Autonomous AI for the diabetic
eye exam has been validated against patient outcome, with high
sensitivity and specificity for diagnosing diabetic retinopathy at
the point of care, and has been shown to be cost-effective from
the patient perspective19,32. Developed under a rigorous ethical
framework16, with FDA clearance of the first autonomous AI in
201833, specifically for the diabetic eye exam (IDx-DR, Digital
Diagnostics, Coralville, IA)34, the Centers for Medicare and
Medicaid Services (CMS) recently confirmed national coverage
and reimbursement for such autonomous AI34,35,34.
In our analysis, we considered that the autonomous AI in this

case may potentially reduce GHG emissions, by avoiding both
those related to patient travel to the eye care provider, as well as
GHG emissions generated by the healthcare facility where the in-
person exam would take place.

METHODOLOGY
In our analysis, we compare the marginal contribution, i.e., the
additional GHG emissions of a single additional diabetic eye exam,
either through the traditional eye care provider, or the autono-
mous AI, at the margin. Thus, our comparison does not consider
emissions related to the care episode that leads to the diabetic
eye exam, emissions arising from the design and development
(including training) of the AI system, or the emissions resulting
from the education and training of the ophthalmologist. We
compare the marginal contributions, to CO2-eq emissions only, of
a diabetic eye exam for a single patient, performed at the point of
care by the autonomous AI for the diabetic eye exam, to the
estimated marginal emissions if this diabetic eye exam is instead
performed by an ophthalmologist after referral. We use the
Environmental Protection Agency (EPA) in the U.S., conversion
table, based on the present electricity generation mix, to convert a
kWh of energy results in carbon emissions of 7.09 × 10−4 metric
tons CO2-eq, or 0.709 g CO2-eq per Wh of energy36.
We set the marginal GHG emissions for a diabetic eye exam by

an ophthalmologist, after referral, to that estimated by Dacones
et al. for an in-person outpatient visit, i.e., ~8 × 103 g CO2-eq per
patient encounter25.
In our comparison, when calculating the marginal contribution

of the autonomous AI we account for the fact that a ‘disease
present’ output will lead to an in-person referral with an eye care
provider—in our example about 20% of all cases will lead to a
referral, with a concomitant increase in GHG emissions34.

RESULTS
This autonomous AI systems’ diagnostic computations, from
interactive image capture, through AI inference—the AI is
completely locked and deterministic after FDA authorization—
and diagnostic output to the electronic health record and
provider, occupies about 144 × 109 CPU cycles. As an example,
computations run for 10 s (0.003 h) on 4 parallelized Nvidia Tesla
K80 processors37. AI power consumption estimates vary in the
literature. For machine learning inference heavy applications,
estimates range, for a single CPU, between 2.1 and 25 Wh. Using
Sommer et al.’s estimate of 2.1 Wh38, and Bergman et al.’s
estimate of 3.3 KWh/24 h39, respectively, we estimate power
usage for a single autonomous AI diagnostic exam to be
between 0.03 and 0.3 Wh.
Under these assumptions, each autonomous AI diagnostic exam

generates 0.02–0.2 g CO2-eq emissions per exam. As mentioned
above, if we account for 20% of patients receiving a diagnostic
output requiring an additional in-person diabetic eye exam34, the
total emissions are estimated to be 1.6 × 103 g CO2-eq leading to
an 80% reduction if patients get their initial diabetic eye exam
using autonomous AI as opposed to in-person diabetic eye exams.

DISCUSSION
The use of a specific autonomous AI can lead to an 80% reduction
in GHG emissions in the present state. We only compared the
marginal GHG emissions generated by one additional diabetic
eye exam, and did not consider training of either the autonomous
AI system or the eye care provider, and other personnel involved
in the in-person visit. If we were to do so, the comparison would
be more stark: a retina specialist performing the in-person
diabetic eye exam typically undergoes 8–10 years of training.
Annual CO2-eq emissions per year of higher education per
student for the US are estimated at 5 × 106 g CO2-eq, or a total of
5 × 107 g CO2-eq for the entire training40. Such a specialist may
perform 100,000 diabetic eye exams in their career16, so that
training may contribute 0.5 × 103 g CO2-eq to GHG emissions per
exam. Training the AI may take 5 × 108 g CO2-eq, as mentioned
above. Such an autonomous AI system has almost unlimited
scalability, so that it may perform diabetic eye exams for 30 × 106

people with diabetes. Assuming such an autonomous AI
functions without retraining for 5 years, the GHG emissions for
the AI system training amounts to only 3 g CO2-eq/exam, in this
worst-case scenario, <1% of the training for the human specialist.
However, because of the many additional assumptions necessary
in accounting for training, we only considered any marginal
reduction in greenhouse emissions—and assume GHG emissions
for eye care provider education and training and autonomous AI
training are accounted for.
Limitations to this study include that we used 2021 estimates

for all variables. These are subject to change, for example the
production mix of power generation is expected to change
over the coming years due to various initiatives, and thereby
the GHG emissions per kWh will also change. The carbon
efficiency of computer hardware is also changing, and thus the
power consumption per inference, all else being equal, will
change as well.
Based on the above assumptions and limitations, and extra-

polation of currently available data estimates from 2021,
autonomous AI has the potential to substantially lower healthcare
GHG emissions, and thereby compensate for increasing carbon
emissions attributed to information technology41. As use of
autonomous AI systems expand in the healthcare industry,
measurement of real-world carbon emissions attributed to
these systems in comparison to usual care will help elucidate
the potential contributions of autonomous AI in reducing
healthcare emissions.
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