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Abstract

We have used high-energy x-ray scattering to map the strain fields around crack tips in fracture specimens of a bulk metallic
glass under load at room temperature and below. From the measured strain fields we can calculate the components of the
stress tensor as a function of position and determine the size and shape of the plastic process zone around the crack tip.
Specimens tested at room temperature develop substantial plastic zones and achieve high stress intensities
(K If~76MPam1=2) prior to fracture. Specimens tested at cryogenic temperatures fail at reduced but still substantial

stress intensities (KIf~39MPam1=2) and show only limited evidence of crack-tip plasticity. We propose that the difference
in behavior is associated with changes in the flow stress and elastic constants, which influence the number density of shear
bands in the plastic zone and thus the strain required to initiate fracture on an individual band. A secondary effect is a
change in the triaxial state of stress around the crack tip due to the temperature dependence of Poisson’s ratio. It is likely
that this ability to map elastic strains on the microscale will be useful in other contexts, although interpreting shifts in the
position of the scattering peaks in amorphous materials in terms of elastic strains must be done with caution.
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Introduction

Fracture behavior is important for many prospective engineer-

ing applications of metallic glasses. Unlike conventional crystalline

alloys for which stable flow in tension is possible due to strain

hardening resulting from dislocation activity, metallic glasses strain

soften during plastic deformation leading to localization of flow

into shear bands. The result is apparently brittle mechanical

behavior with almost no ductility in tension in most cases.

Microscopically, however, there is often clear evidence for

extensive plastic deformation of the material near the crack path.

This allows some metallic glasses to achieve high values of fracture

toughness despite the lack of macroscopic ductility [1,2].

In any material there is a competition between flow (driven by

shear stresses) and cleavage (driven by normal stresses), the

outcome of which influences the stress intensity at the crack tip

and determines the fracture toughness [3]. In the case of metallic

glasses, crack-tip blunting may occur by either homogeneous or

inhomogeneous plastic flow, both of which are strongly affected by

the stress state around the crack tip. In addition, hydrostatic

stresses near the crack tip may promote cavitation as an alternative

ductile fracture mechanism.

Several groups have previously examined the plastic zone in

metallic glasses using shear band patterns on the surface [4,5].

Others have noted a strong correlation between the size of ‘‘vein’’

or ‘‘river’’ pattern features on the fracture surface (which are

presumed to be related to the size of the plastic zone) and the

fracture toughness over several orders of magnitude of each [6].

This observation suggests that the fracture toughness of metallic

glasses scales only with the size of the plastic zone and is insensitive

to details of the mechanism of fracture. Indeed, as the plastic zone

size approaches the atomic scale the fracture energy approaches

the Griffith limit for a brittle material [1].

The present work is motivated by a desire for a deeper

understanding of the fracture behavior of metallic glasses, and in

particular the influence of stress and strain fields on competing

mechanisms of deformation and fracture near the crack tip. To

this end, we have conducted fracture toughness tests on specimens

of a Zr-based metallic glass using in situ high-energy synchrotron x-

ray scattering to map out the strain field around the crack tip as a

function of applied stress intensity at various temperatures well

below the glass transition. This technique allows us to probe the

entire volume of material, including the plane-strain region in

the interior of the specimen around the crack tip. An analysis of

the strain maps (and corresponding maps of stress) allows us to

determine the size and shape of the plastic process zone around

the crack tip. We observe that the extent of the plastic zone

increases, as expected, with applied stress intensity. The plastic

zone is reduced at cryogenic temperatures, an observation that is

correlated with a reduction in fracture toughness.

Although plastic deformation of metallic glasses has been

studied extensively, fracture has been less thoroughly investigated

even though it is obviously of central importance for structural

applications. Much of the early experimental work, limited as it

was to studies of thin specimens not well suited to mechanical

PLOS ONE | www.plosone.org 1 December 2013 | Volume 8 | Issue 12 | e83289



testing, focused on phenomenology and in particular on the

development of the characteristic ‘‘river’’ patterns observed on

fracture surfaces, and on the tendency for annealing to foster

brittle behavior due to either structural relaxation or devitrifica-

tion. A more fundamental understanding of fracture of metallic

glasses developed from the work of Spaepen [7] and Argon and

Salama [8] who described the development of river patterns as

arising from an instability of a deforming thin fluid against

fluctuations in density. Such a mechanism clearly invokes

significant flow of the material around the advancing crack tip,

but not all glasses show this behavior. Steif [9] used free volume

theory to develop a constitutive law describing flow in the stress

field around a crack tip, and showed that an increase in viscosity

(as, for example, due to structural relaxation by annealing) limits

the ability of the material to relax crack-tip stresses by flow,

favoring brittle fracture. Wu and Spaepen [10] clearly demon-

strated the existence of a ductile-to-brittle transition with

decreasing temperature in an Fe-based metallic glass and were

able to correlate the temperature at which the transition occurred

with the degree of structural relaxation induced by annealing.

The development of bulk metallic glasses has enabled new

studies with specimens appropriate for fracture mechanics

experiments, and in particular proper plane-strain fracture

toughness measurements. Gilbert and coworkers [11] measured

a fracture toughness of &55MPam1=2 on fatigue-precracked

specimens of Zr41:2Ti13:8Cu12:5Ni10Be22:5 in a compact tension

geometry but noted that fracture toughness predicted on the basis

of the instability model of Argon and Salama [8] is only

&13MPam1=2. Flores and Dauskardt [4] demonstrated that the

difference is due to the effect of branching at the crack tip; the

stress intensity at the tips of the individual branches is consistent

with the predictions of the instability model and is much lower

than the far-field stress intensity factor.

On the basis of this work it is clear that the strain state around

the crack tip is of central importance for understanding fracture of

metallic glasses. To probe the strain state in a spatially-resolved

way we employ high-energy x-ray scattering. Although there is a

long history of using scattering techniques to measure elastic

strains in crystalline materials [12], applications to amorphous

materials were rare (see Ref. [13] for an interesting early example)

until Poulsen and coworkers [14] demonstrated the ability to

measure strains in a metallic glass using x-ray scattering from

either shifts in the positions of the scattering maximum in

reciprocal space or from shifts in peak positions in the radial

distribution function (RDF) in real space. Generally speaking, the

strains from scattering measurements are in reasonable agreement

with the strains calculated on the basis of the known load and

elastic constants known from other techniques (typically ultra-

sound), although in some cases there do appear to be discrepancies

that may be related to fundamental differences in the physical

basis of the two kinds of measurement [15]. One cautionary note is

that the measurement of elastic strains from shifts in peak position

in reciprocal space makes an implicit assumption that the

deformation is homogeneous and does not involve a significant

alteration of the atomic-scale structure of the material. This

assumption can be violated in several ways, for example if there is

significant plastic deformation [16,17], and in such cases a simple

peak shift may no longer be a reliable measure of elastic strain.

Even for nominally elastic deformation the microscopic strains

measured from scattering can show significant non-linearity as the

macroscopic yield stress is approached [18]. This complicates the

interpretation of our results, as will be discussed below.

An important feature of the high-energy x-ray technique is that

it allows us to make a direct assessment of the strain state in a thick

specimen, including the interior region ahead of the crack tip that

is in a state of plane strain. This is in contrast to earlier work that

examined the plastic zone using shear band patterns on the surface

[4,5] (which is necessarily in a state of plane stress) or which

inferred the size of the plastic zone indirectly from the scale of

features on the fracture surface itself [6].

Results

Stress intensity at fracture and fracture surface
morphology

The stress intensity at fracture from our tests on

Zr57Ti5Cu20Ni8Al10 is shown in Fig. 1. Because we did not

strictly follow standard techniques for plane-strain fracture

toughness testing (as discussed in the Methods and Materials

section below) we refer to the data in Fig. 1 as apparent fracture

toughnesses or the stress intensities at fracture (KIf ) rather than

true mode I plane strain critical stress intensities (KIc). Figure 1

demonstrates a significant drop in apparent toughness with

decreasing temperature, with the average stress intensity at

fracture falling from KIf~76 MPam1=2 at room temperature to

K If~39 MPam1=2 at the lowest temperature tested (128 K). We

note that the room-temperature average is consistent with other

measurements on fatigue pre-cracked specimens on glasses of

similar composition [5,19].

The degree of scatter in Fig. 1 is common in fracture toughness

measurements on metallic glasses and is sometimes attributed to

the presence of crystallites in the glass [5,19]. In our work we can

examine this question, because the synchrotron x-ray scattering is

sensitive to the presence of small volume fractions of crystallites

and specifically probes the local region around the crack tip.

Although we did occasionally observe crystalline peaks in the data

they were rare, with most specimens showing no evidence of

crystals at all. Only on one specimen did we observe evidence of

crystallization more than a few percent of the regions probed.

Data from that specimen are not included in this report.

Fracture surfaces for specimens tested at room temperature and

low temperature are shown in Fig. 2. The fatigue precracking

process produces a relatively flat fracture surface, with a curved

crack front resulting from the difference in stress state through the

thickness of the specimen (plane stress at the surfaces and plane

strain in the interior). The overload fracture surface is much

rougher for specimens fractured at room temperature than for the

specimens fractured at cryogenic temperature, implying a greater

degree of plastic deformation. The roughness of the fracture

surface apparently correlates with the fracture toughness, as has

been previously reported by others [20].

Figure 1. Loss of toughness with decreasing temperature in
Zr57Ti5Cu20Ni8Al10.
doi:10.1371/journal.pone.0083289.g001

Crack-Tip Strain Field Mapping in Metallic Glasses

PLOS ONE | www.plosone.org 2 December 2013 | Volume 8 | Issue 12 | e83289



Crack tip strain and stress fields
Using the analysis outlined in the Methods and Materials

section below we can deduce the components of strain perpen-

dicular to the x-ray beam as functions of position around the crack

tip. In particular, we can determine the normal strains in the

laboratory coordinate system (Exx and Eyy) as well as the two

principal strains E1 and E2 in the plane perpendicular to the x-ray

beam. Figure 3 shows these strains mapped out around a crack tip

in a specimen under a high load KI~76MPam1=2 at room

temperature. Notice that the coordinate system used here is drawn

from the x-ray literature, which typically makes the zz the

direction of propagation of the incident beam. Given this and the

geometry described in the Methods and Materials section below,

the crack-opening normal strain is Exx. In the fracture literature it

is usual to make the zx direction the direction of crack

propagation, meaning that the crack-opening strain is Eyy. Using

these strain measurements (under the assumption of plane strain as

discussed in the Methods and Materials section) with the elastic

constants from Table 1 we can now calculate all of the

components of the stress tensor along with any derived quantities.

For example, the von Mises effective shear stress is defined as

sVM~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(s1{s2)2z(s2{s3)2z(s1{s3)2

2

s
ð1Þ

where si are the principal stresses, and the mean or hydrostatic

stress is

sH~
s1zs2zs3

3
: ð2Þ

Figure 4 shows each of these along with the crack-opening

normal stress sxx and the stress triaxiality factor g~sH=sVM

for a room temperature specimen at a stress intensity of KI~

47MPam1=2:
As a check on our results, we compare the stresses determined

from the x-ray data with a calculation based on a simple model for

the stresses around a crack tip in mode I loading in an infinite,

fully elastic body [21] (also shown in Fig. 4). Even at the lowest

stress intensities considered in this work we expect there to be

some plastic deformation around the crack tip, so it would be

unreasonable to expect such a simple model to be quantitatively

correct within or near the plastic zone (which, as we show below,

has characteristic dimensions of a few hundred microns under

these conditions). At the other extreme this simple model does not

work when the distance from the crack tip approaches the

dimensions of the specimen.

For all four quantities compared (sVM, sH, sxx, and g) the data

sets and the calculations show similar features. (Below we show

that the stresses extracted from the x-ray data show the r{1=2

behavior expected of an elastic material well away from the crack

tip.) For example, the ‘‘butterfly’’ shape of the lobes in the von

Mises effective stress is characteristic of plane strain conditions. As

expected the stress concentration near the crack for the

experimental data is less intense than that of the elastic solution

(for which the stresses become infinite as r?0). Because the stress

concentration at the crack tip is smaller, the stress field extends out

to larger distances for the experimental data than for the elastic

calculation.

It is particularly interesting to note that directly ahead of the

crack tip (zy in Fig. 4) there is excellent quantitative agreement

between the measured triaxiality (which has a maximum of

g~3:451) and that calculated from the model (g~3:455). For

both the x-ray stress determination and the elastic model the

particular value of the triaxiality depends strongly on the value of

Poisson’s ratio chosen, but the fact that the model and data do

agree is strong evidence that the x-ray technique measures the

strain in a fundamentally correct way, at least outside of the plastic

zone.

Plastic zone around crack tips
With the ability to measure strains and stresses in a spatially-

resolved way, we can examine trends that develop as a function of

load, temperature, or both, using data collected from multiple

specimens. We have found it convenient to look at the maximum

value of the von Mises stress, hydrostatic stress, and stress

triaxiality from each map (i.e. for a given stress intensity on a

given specimen), and then compile these into plots showing the

trends with stress intensity, as shown in Fig. 5. At low loads the

behavior is fully elastic, with the various components of stress

increasing linearly with stress intensity. At stress intensities above

about 50MPam1=2 the stresses no longer increase, instead

maintaining approximately constant values with increasing stress

intensity. Only the specimens tested at room temperature show

this behavior; all of the specimens tested at lower temperatures

fractured at KIv50MPam1=2.

Figure 2. Fracture surfaces of SENB specimens of Zr57Ti5Cu20Ni8Al10 tested at (a) 298 K and (b) 128 K. The fatigue pre-cracking process
produces a relatively flat fracture surface with a curved crack tip. When the specimen fails at the critical load, a fast-fracture surface morphology
results that is much rougher for the specimen tested at room temperature than for the cryogenic specimen.
doi:10.1371/journal.pone.0083289.g002
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This behavior is broadly consistent with that expected for

metallic glasses, which demonstrate macroscopic mechanical

behavior (at temperatures well below the glass transition) that is

nominally elastic-perfectly plastic until fracture, with no strain

hardening. We would expect a linear increase in the stress

components with increasing stress intensity, except for the region

immediately around the crack tip where plastic deformation can

occur. Only when the size of the plastic zone exceeds the spatial

resolution of the measurement would we expect to see the

saturation in stress values apparent for KIw50MPam1=2.

The plateau in von Mises stress in Fig. 5 occurs at about

1200 MPa, lower than the expected room-temperature yield stress

of 1750 MPa based on the uniaxial yield stress (Ref. [22]) under

the assumption that the glass follows the von Mises yield criterion.

A more appropriate yield criterion might incorporate some

dependence on either the hydrostatic stress or the normal stresses

[1] so the fact that we observe a reduced effective shear stress is not

surprising. Furthermore, Das and coworkers observed a non-linear

relationship between stress and strain (measured via scattering) in

metallic glasses approaching the yield stress [18]. Although we

have previously verified a linear relationship between x-ray strain

and stress in this alloy up to about 60% of the yield stress [23], a

similar effect here would affect the observed value of sVM at

higher stresses.

The observation of a plateau in the stress components in Fig. 5

is evidence for the development of a substantial plastic zone

around the crack tip and we use the extent of the region over

which the von Mises stress reaches its plateau value as an estimate

of the size of the plastic zone. Tandaiya and coworkers [24] have

calculated the crack-tip strain fields for mode I fracture in a

metallic glass, using a constitutive model for metallic glasses

developed by Anand and Su [25]. Figure 6 compares their

calculated plastic zone with the region determined from the x-ray

scattering measurements to have achieved the plateau value of von

Mises effective stress from one of the room-temperature

specimens. (Because the location of the crack tip is not precisely

known for the x-ray data, they have been shifted by 0.1 mm

vertically to bring them approximately into coincidence with the

calculation.) The apparent shape of the plastic zone from the

Figure 3. Strain maps around the crack tip of an amorphous Zr57Ti5Cu20Ni8Al10 specimen loaded in the SENB geometry loaded to a

stress intensity K~76MPam1=2 at room temperature. Top row: Normal strains in the laboratory coordinate system, xx and Eyy. Middle: Principal
strains E1 and E2 , the orientation of which defines the x0{{y0 coordinate system. Bottom: Orientation of principal axes with respect to the lab
coordinate system, x. See also Fig. 9.
doi:10.1371/journal.pone.0083289.g003

Table 1. Elastic constants.

Temperature (K) E (GPa) n

298 86.8 0.368

183 88.8 0.366

128 89.8 0.365

Young’s modulus E and Poisson ratio n used for the stress calculations. Room-
temperature data are from Ref. [39] and the temperature dependence is
estimated from data in Ref. [40].
doi:10.1371/journal.pone.0083289.t001
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scattering measurements is in rough agreement with the calcula-

tions, although it is somewhat larger in spatial extent.

A quantitative estimate of the plastic zone size can be made by

calculating the radius of gyration (Rg) of the region of material

around the crack tip for which the von Mises stress has reached its

plateau value of &1200 MPa (Fig. 6). Rg is calculated from

R2
g~

1

N

XN

i~i

~rri{~rrmeanj j2, ð3Þ

where~rri is a vector from the origin to the ith pixel for which the

von Mises stress has reached the plateau value, and ~rrmean is the

average position of all N such pixels. This is plotted in Fig. 7(a)

along with an analytical estimate of the extent of the plastic zone

directly ahead of the crack tip,

rp~
1

kp

KI

sys

� �2

, ð4Þ

where k~1 for plane stress conditions and k~3 for plane strain

[26]. The agreement is reasonably good for KIw50MPam1=2,

allowing for the uncertainty in the data and the fact that the

experimental measurement averages a range of stress states

through the thickness of the material.

Another way of determining the approximate size of the plastic

zone makes use of the fact that all of the components of stress are

proportional to r{1=2 for the fully elastic solution [27]. If there is

plasticity around the crack tip the stresses deviate from the r{1=2

behavior close to the crack tip, but at distances sufficiently far from

the crack tip the stresses still go as r{1=2. The distance from the

crack tip at which the deviation from r{1=2 behavior occurs can be

taken as a measure of the size of the plastic zone [27]. An example

of this is shown in Fig. 7(b) where we see that sxx is indeed linear

with r{1=2 at large r but that the proportionality breaks down at

r&400mm. This distance is also shown in Fig. 7(a), but for reasons

discussed below it should be interpreted with caution and is

probably best viewed as an upper bound on the size of the plastic

zone.

Discussion

An important point to consider in evaluating our results is

whether a peak shift in the scattered intensity I(q) can in fact be

used as a reliable measure of elastic strain. The available evidence

suggests that it can, at least under loading conditions where there is

little or no plasticity [14,23,28]. There is cause for concern,

however, in situations where there is large-scale plasticity, which is

associated with atomic rearrangements that can change the peak

positions without an associated elastic strain [16,17]. Furthermore,

Das and coworkers [18] observed the stress-strain relationship

under uniaxial compression [where strain was measured from

shifts in I(q)] became significantly nonlinear even for nominally

elastic loading when the stresses approached the yield stress of the

glass. It is possible that similar effects are at play here, for example

in our observation that the plateau value of the von Mises stress is

lower than expected.

Bearing these caveats in mind, our results indicate that x-ray

scattering can be used to map out the strains and thus stresses

around crack tips in metallic glasses (and possibly in other

amorphous materials as well). In particular, we observe an r{1=2

dependence of the stresses away from the plastic zone, in

agreement with classic models of crack-tip stress fields. Whether

or not the values of stress are quantitatively accurate depends in

part on our knowledge of the appropriate elastic constants to use in

calculating the stresses from the measured strains. Although the x-

ray elastic constants for this alloy appear to be in reasonable

agreement with elastic constants measured in other ways [23], this

is not necessarily the case for other alloys [15]. Furthermore, for

our low-temperature measurements we have extrapolated from

the room-temperature data on the basis of the expected behavior

of the elastic constants, but there is no guarantee that this

extrapolation is correct.

Our results show that the fracture toughness of amorphous

Zr57Ti5Cu20Ni8Al10 is reduced at low temperatures (Fig. 1).

Based on observations of fracture surface features, Xi and

coworkers proposed that the toughness of metallic glasses scales

with the size of the plastic zone [6]. Our results provide a more

direct assessment of the plastic zone size. As Fig. 7(a) shows we do

Figure 4. Comparison of crack-tip stress fields from experi-
mental data (left-hand side of each pair) with a fully elastic,
plane-strain calculation for amorphous Zr57Ti5Cu20Ni8Al10

loaded to KI ~47MPam1=2 at room temperature.
doi:10.1371/journal.pone.0083289.g004
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not observe a large plastic zone in the low-temperature specimens,

but we note that a small plastic zone (v50mm) would be below the

spatial resolution of our measurement and would probably not be

detected in these experiments. Furthermore, the apparent fracture

toughness at low temperature is still relatively high (at least

compared to the Griffith limit for truly brittle fracture) again

suggesting some plasticity.

Our observation that the crack-tip stresses do deviate from

r{1=2 behavior close to the crack tip, even for the low-temperature

specimens, should not be used as direct evidence for the existence

of a plastic zone because the relationship between strain (derived

from x-ray peak shifts) and stress can become nonlinear at high

stresses [18]. This is why we view the distance at which deviation

from r{1=2 behavior is observed as an upper bound on the plastic

zone size. We observe that it is always larger than the plastic zone

size estimated from the extent of the plateau in von Mises stress

[Fig. 7(b)] and that it is only weakly dependent on the stress

intensity. Even the specimens at low KI for which the von Mises

stresses do not reach the plateau show deviations from r{1=2

behavior at significant distances (&300mm) from the crack tip. We

suspect that this is due in part to complicating effects such as the

curved crack tip and non-flat crack surface.

Our data clearly show that a reduction in fracture toughness at

low temperatures is associated with a reduction in the size of the

plastic zone. Part of the explanation for this is that the flow stress of

Zr-based metallic glasses increases with decreasing temperature,

by amounts on the order of 15–20% [29]. On the basis of Eqn. 4

we would therefore expect the size of the plastic zone would be

reduced by approximately 40% for the same stress intensity,

compared to room temperature. Given the stress intensities at

which the low-temperature specimens failed (KIfv50MPam1=2)

the plastic zone size would be less than 100mm in size [Fig. 7(a)]

and probably not observable in these experiments.

Tandaiya and coworkers recently proposed that fracture in

ductile metallic glasses is not stress-controlled but rather is a strain-

controlled process [30]. They reported that initiation of fracture in

notched specimens requires that a critical shear displacement be

attained on an individual shear band. Although the conditions in

Figure 5. Trends in measured (a) maximum effective (von Mises) stress sVM , (b) mean (hydrostatic) stress sH , (c) crack-opening
normal stress sxx, and (d) stress triaxiality g(~sVM=sH ) as functions of stress intensity KI for multiple specimens at three
temperatures. The dashed lines in (d) are the triaxialities calculated from the stress fields ahead of a crack tip in an elastic material under plane
strain, using the values of n from Table 1 for the three temperatures.
doi:10.1371/journal.pone.0083289.g005

Figure 6. Points for which the von Mises stress is at the plateau
value (Fig. 5) for a specimen loaded to KI ~76MPam1=2 at
298 K. Also shown is the shape of the plastic zone from a finite
element model for n~0:36 from Ref. [24].
doi:10.1371/journal.pone.0083289.g006
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our specimens (which were fatigue-precracked) are somewhat

different, it is worth considering whether this mechanism is

consistent with our results.

If attainment of a critical strain on an individual band is

required for fracture, the number density of shear bands around

the crack tip becomes an important consideration because a larger

number of bands implies a smaller strain on each individual band,

at least on average, for a given overall level of strain.

Ravichandran and Molinari [31] showed that for metallic glasses

in bending the number density of shear bands Nsb is related to

both the elastic constants and the flow stress s0 of the glass:

Nsb!
E

(1{n2)s0
:

Although the bending geometry is not directly applicable to the

mode I opening around the crack tip in our experiments, we

assume that a similar scaling relationship holds. With increasing

temperature the flow stress of metallic glasses decreases signifi-

cantly [29]; E also decreases and n increases, but only slightly

(Table 1). Taken together these suggest that for the same imposed

strain the shear band density increases with increasing tempera-

ture. With more shear bands on which to distribute the imposed

strain at the crack tip, the strain on the individual bands would, on

average, be smaller. This in turn suggests that reaching the critical

shear displacement at which a shear band becomes a crack

requires a larger imposed strain or, in other words, a larger plastic

zone. This is consistent with our observation that the plastic zone

is significantly larger in the room-temperature specimens. Con-

versely, the low-temperature specimens have fewer shear bands in

the plastic zone, concentrating the shear on a few bands and

allowing the critical strain to cause fracture to be reached in a

smaller plastic zone.

Several groups have reported that tough metallic glasses tend to

have high values of n or, equivalently, low ratios of shear modulus

to bulk modulus [32,33]. This observation has been rationalized in

terms of a competition between plastic flow (which is related to the

shear modulus) and the dilation necessary for fracture (which is

related to the bulk modulus) [1]. It is not clear to us that small

changes in Poisson’s ratio due to changing temperature signifi-

cantly alter this balance.

However, we also note that n can have an indirect effect on the

competition between flow and fracture though its influence on

the stress state ahead of the crack tip. Increasing Poisson’s ratio has

the effect of increasing the stress triaxiality ahead of the crack tip

[Fig. 5(d)]. The significance of increased triaxiality is twofold: It

promotes cavitation (a ductile fracture mode) ahead of the crack

tip and it facilitates diffusive annihilation of free volume generated

by plastic deformation of the metallic glass. Although the latter

effect could be viewed as opposing plastic flow, it might allow

steady-state plastic flow around the crack tip without accumulation

of a critical level of free volume that would lead to unstable

fracture.

More generally, we believe that the x-ray strain mapping

technique demonstrated here can be broadly applied to amor-

phous materials in many contexts. A key concern for such studies

will be the conditions under which shifts in the scattering peak

position can be correctly interpreted in terms of elastic strain, and

the precise nature of the relationship between the strains measured

from such peak shifts and the stress state of the material. Although

the elastic constants inferred from x-ray scattering strain

measurements are in rough agreement with those measured via

ultrasound, there may be systematic differences in some cases [15]

and at high stresses careful attention must be paid to whether the

relationship between stress and x-ray strain is linear [18].

Complicating matters further is the observation that the elastic

constants of metallic glasses depend on the hydrostatic stress [34].

Materials and Methods

Experimental
The specimens for this study were single edge-notch bend

(SENB) samples of a Zr-based metallic glass. We prepared

amorphous specimens of nominal composition Zr57Ti5Cu20

Ni8Al10by arc melting the pure elements and then suction-casting

the alloy melt into plates of nominal dimensions

40mm|9mm|2mm. Additional details of the melting and

casting process can be found in Reference [35]. After casting, each

plate was mechanically polished to a 1200 grit finish using SiC

grinding paper, and a notch approximately 0.3 mm wide by 2 mm

Figure 7. Plastic zones around crack tips. (a) The size of the plastic zone rp as determined in two ways: Solid symbols are from the radius of

gyration Rg of the region for which the von Mises effective stress has achieved its plateau value (Eqn. 3), while open symbols are from r{1=2 fits
similar to those in part (b). The uncertainty in the plastic zone size is approximately +100mm but for clarity error bars are not shown. For comparison,
analytical estimates of rp are shown for plane stress and plane strain conditions (Eqn. 4) using a room-temperature yield stress of sys~1750 MPa. (b)

Crack-opening normal stress sxx ahead of the crack tip for a specimen loaded to KI ~76MPam1=2 at 298 K. The straight line is a fit to the data for
rw0:5mm.
doi:10.1371/journal.pone.0083289.g007
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deep was cut in the center of the long side of each specimen with a

low-speed diamond saw. Finally, the specimens were subjected to

fatigue loading at room temperature at 2 Hz under a stress ratio of

smin=smax~0:08 with a maximum stress intensity of

KI^20MPam1=2 to produce fatigue precracks approximately

2 mm long. As shown in Fig. 8 the fatigue cracks are accompanied

by significant shear band activity over length scales of about

100mm. Although the crack does not appear flat in this view, this is

a surface effect. The pre-crack fracture surface in the interior of

the specimen [Fig. 2(a)] is flatter than this view would suggest.

The x-ray scattering experiments were performed at beamline

1-ID of the Advanced Photon Source (APS), with the SENB

specimens loaded in three-point bending (outer span S~32mm)

using a hydraulic load frame (Fig. 9). The load frame was mounted

on a table capable of translation perpendicular to the x-ray beam

in both horizontal and vertical directions, allowing us to position

the incident x-ray beam relative to the crack tip in the specimen.

The x-ray scattering experiments were performed with 86 keV x-

ray s, with scattering in transmission through the specimen

recorded by a GE amorphous silicon position-sensitive x-ray

detector positioned approximately 750 mm downstream of the

specimen. The x-ray beam size was 50|50mm which, together

with a typical translation step size of 100mm, determines the

spatial resolution of the strain mapping. To enable measurements

at sub-ambient temperatures the experiments were carried out in

an environmental chamber in which the specimens could be

cooled by introducing cold nitrogen vapor. The temperature was

measured by means of a thermocouple located near the specimen,

and the chamber temperature was allowed to equilibrate prior to

the scattering experiments.

Although our procedures were in general accord with ASTM

standard E399 for fracture toughness testing of metals [36],

measuring fracture toughness per se was not our primary aim and

we did not adhere strictly to this test method. For example, E399

calls for loading the specimen monotonically until fracture but we

loaded our specimens incrementally with pauses to record the x-

ray scattering data. Also, because we did not record load-

displacement data during loading we could not apply the secant

technique from Ref. [36]. Instead, the apparent fracture tough-

nesses are based on the manually-noted load at fracture, following

the calculations in E399, and therefore probably overestimate the

fracture toughness by 5–10%.

A valid plane-strain fracture toughness measurement (according

to ASTM E399) requires that the specimen be sufficiently thick

that plane-strain conditions predominate. The specified minimum

thickness is Bw2:5(KIc=sy)2, where KIc is the mode I plane-strain

fracture toughness and sy is the yield stress [36]. Given a room-

temperature yield stress of 1750 MPa (Ref. [22]) and a thickness of

2 mm plane-strain conditions are satisfied for fracture toughness

KIcv50 MPa1=2. As described in the Results section above the

apparent fracture toughness of some of specimens tested at room

temperature exceeds this value, so plane-strain conditions are not

fully satisfied for these specimens. At lower temperatures where the

fracture toughness is reduced all of our specimens satisfied plane-

strain conditions.

Data analysis
The real-space structural information obtained in a scattering

measurement is from a direction parallel to the scattering vector

~qq:
2p

l
ŝs{ŝs0ð Þ, where ŝs0 and ŝs are unit vectors defining the

direction of propagation of the incident and scattered x-ray s,

respectively, and l is the x-ray wavelength (Fig. 9). Because the x-

ray detector in our experiment records scattering from all

azimuthal angles w we can obtain structural information about

any orientation perpendicular to the incident x-ray beam. The

scattering vector ~qq is actually off of perpendicular by h, but

because the wavelength of the high-energy x-ray s used in these

experiments is small (l~0:14Å for 86 keV x-ray s) h is also small

(about 1:70) and we ignore this difference.

Elastic strain in amorphous alloys can be determined directly

from shifts in the position of the first maximum in the scattering

pattern [14,23,28]. To do so, we used the software package fit2d to

azimuthally integrate the two-dimensional scattering data from the

area detector into 72 one-dimensional scattering patterns, each

corresponding to a unique w about the incident beam [37]. These

patterns are the scattering intensity I as a function of distance R on

the detector from the center of the scattering ring (which is the

position of the direct beam). From basic geometry one can convert

these data from R to the magnitude of the scattering vector

q (~4p sin h=l), but because in calculating strain we are interested

in peak shifts and not absolute positions this conversion is

unnecessary.

We determined the positions of the first scattering maximum

Rmax for each pattern by fitting the top of the peak to a Gaussian

function. To avoid systematic errors associated with uncertainty in

the position of the direct beam (which defines h~0), we use pairs

of diametrically-opposed points to determine the diameter of the

scattering ring D(w)~½Rmax(w)zRmax(wz1800)�=2 [distance PQ
on Fig. 9(a)]. For purposes of strain measurement there is no

distinction to be made between the w and wz1800 directions.

We can determine the normal component of elastic strain E(w)
from the diameter measured with the specimen under load Ds(w)
and the diameter measured for an unloaded specimen, D0(w):

E(w)~
D0(w)

Ds(w)
{1, ð5Þ

as discussed in Ref. [23]. One potentially complicating factor is

determining the appropriate value of the scattering ring diameter

for an unstrained specimen, D0 (which is equivalent to the problem

of determining the unstrained lattice parameter in strain

measurements of crystalline materials). We used values of D0
measured from each samples to be tested a position well away

(w1mm) from the precrack tip, at the temperature of interest.

Under these conditions the scattering rings were observed to be

circular, with no apparent dependence of D0 on the azimuthal

angle w. This suggests that any residual stresses due to casting,

which could influence the results, are small.

Although there is considerable uncertainty in the individual E(w)
values in Eqn. 5, by using values for all w simultaneously one can

reliably determine the strain components perpendicular to the

incident beam. For example, from a plot of E(w) v. sin2 w the

Figure 8. Optical micrograph showing the surface of a
specimen after fatigue precracking.
doi:10.1371/journal.pone.0083289.g008
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normal strain components in the horizontal (sin2 w~0) and

vertical (sin2 w~1) directions can be obtained; this approach is

convenient for simple situations such as uniaxial loading [28].

For more complex strain states we determine the principal

strains as well as the rotation of the principal axes relative to the

laboratory coordinate system [Fig. 9(b)] from the measured E(w)
data. To do so, we first write an expression for the normal strains

in the laboratory (x{{y) coordinate system in terms of the

strains in the principal axes (x0{{y0) coordinate system and the

angle of rotation x (about z) between the two sets of axes. Using

the transformation rule for a second-rank tensor this expression is

Eij~akialjEkl , ð6Þ

where aij are the direction cosines between the i and j directions

and summation over repeated indices is implied [38]. The

components of strain of interest in the laboratory system are those

corresponding to the x and y directions, perpendicular to the z

direction and therefore experimentally accessible to our x-ray

scattering experiment [Fig. 9(b)]. Furthermore, we know that in

the coordinate system corresponding to the principal strains there

are no shear strains, so Ekl~0 for kl. Therefore, the expressions for

the nine components of strain (only six of which are independent)

implicit in Eqn. 6, each with nine terms, are reduced to just three

expressions of two terms each for the strains in the laboratory

coordinate system:

E11~a11a11E011za21a21E022~E1 cos2 xzE2 sin2 x ð7Þ

E22~a12a12E011za22a22E022~E1 sin2 xzE2 cos2 x ð8Þ

E12~a11a12E011za21a22E022

~(E2{E1) cos x sin x ð9Þ

where E1~E011 and E2~E022 are the principal strains.

With these expressions we can now write a new expression for

the experimentally-observed component of normal strain along the

w azimuth relative to the x direction, again using the transforma-

tion rule. Using a double prime to indicate the coordinate system

specified by a rotation of w about the incident beam, this is

E(w)~E0011~a11a11E11za11a12E12

za12a11E21za12a12E22

~E11( cos2 w)zE12(2 cos w sin w)zE22( sin2 w) ð10Þ

where the aij in the first line now refer to direction cosines between

the laboratory coordinate system and the coordinate system

rotated by w, and we note that E12~E21. Using Eqns. 7–10 after

some simplification we obtain

E(w)~ cos2 w E1 cos2 xzE2 sin2 x
� �

ð11Þ

z sin 2w sin x cos x E2{E1ð Þ

z sin2 w E1 sin2 xzE2 cos2 x
� �

:

To find the principal strains and x we fit Eqn. 11 to the

measured E(w) data with E1, E2, and x as the fitting parameters.

Figure 9. Experimental geometry and coordinate systems for the in situ studies of fracture. (a) The single-edge notched bend (SENB)
specimen is loaded in three-point bending using a load frame that can be translated in both horizontal (x) and vertical (y) directions. A high-energy x-
ray beam with a cross section of 50mm|50mm is used to produce transmission scattering patterns as a function of position relative to the crack tip.
From changes in the diameter of the scattering ring PQ the strain as a function of orientation w relative to the laboratory (x{{y) coordinate system
can be determined. (b) Structural information comes from a direction determined by the scattering vector~qq. Because 2h is small (v50),~qq lies nearly in
the x–y plane, allowing determination of the normal strains Exx and Eyy as well as the shear strain Exy. The principal axes of strain x0{{y0 are
oriented at an initially unknown angle x relative to the laboratory (x{{y) coordinate system. No information is available about the strain
components in the z{{z0 direction parallel to the incident beam.
doi:10.1371/journal.pone.0083289.g009
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Due to limitations in the geometry of the experiment we cannot

access any information about components of strain parallel to the

x-ray beam (z in Fig. 9). Calculation of the components of stress

therefore requires an assumption about the conditions in this

direction. The simplest choices are plane strain (E3~Ezz~0) or

plane stress (szz~0). In reality, the truth lies somewhere in

between. Even in a thin specimen the strain state near a crack tip

varies rapidly with position, and our transmission x-ray scattering

experiment inherently averages over regions near the surface

(which is in plane stress) and plane strain (in the interior). Because

the scattering angles are small, each volume element sampled by

the x-ray beam in transiting the specimen is equally weighted.

Examination of the fracture surfaces [Fig. 2(a)] and in particular

the curved precrack front and the existence of shear lips (in the

room-temperature specimen) suggests that both regions are

substantial and thus make significant contributions to the x-ray

scattering measurements. In this paper we assume plane strain to

allow us to calculate all of the components of the stress tensor.

Although this assumption influences the values we report, the

qualitative trends do not change if a different assumption is made.

Once we have the principal strains (E1, E2, and E3) we can

calculate the components of stress. Written in matrix form these

are

si~CijEj , ð12Þ

where Cij are the components of the stiffness matrix and

summation over the repeated index j on the right-hand side is

implied [38]. Doing so requires knowledge of two independent

elastic constants for this (presumed) isotropic material in order that

the Cij values may be determined. We are unaware of any reliable

published elastic constants derived from ultrasound measurements

for Zr57Ti5Cu20Ni8Al10 but values for the closely related

amorphous alloy Zr57Nb5Cu15:4Ni12:6Al10 are available [39].

The elastic constants at different temperatures were estimated

from results for for similar glasses reported in Ref. [40], assuming a

linear dependence for both E and n on temperature. The specific

values used in the stress calculations are reported in Table 1. The

choice of Young’s modulus (E) acts as a scaling factor on the

stresses and has only a minor influence on the results. The effect of

Poisson’s ratio (n) is more important because (under our

assumption of plane strain) it strongly affects the stresses in the

out-of-plane direction. In particular, a larger value of n results in a

larger stress triaxiality. This is illustrated by the dashed lines in

Fig. 5(d) which show the triaxiality calculated from the stress field

ahead of a crack tip in a fully elastic material for several values of

n.

Conclusions

High-energy x-ray scattering can be used to examine the strain

state locally around crack tips in metallic glasses, and presumably

in other amorphous materials as well. Care must be taken in

interpreting the data due to the complicating effects of plastic

deformation and a nonlinear relationship between peak shifts and

stress. In amorphous Zr57Ti5Cu20Ni8Al10 we observe the

development of a substantial plastic zone for specimens tested at

room temperature, which achieve apparent fracture toughnesses of

K If~76 MPam1=2, while specimens tested at 128 K do not

develop such a large plastic zone and fail at lower stress intensities

(K If~39 MPam1=2). We propose that the difference is due to an

increase in flow stress at low temperatures and possibly to a change

in the stress state ahead of the crack tip, which becomes less

triaxial at lower temperatures due to a decrease in Poisson’s ratio.

This strain-mapping technique can be applied to other amorphous

materials, so long as care is taken in the interpretation of the

scattering peak shifts.
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