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Background: Idiopathic pulmonary fibrosis (IPF) needs a precise prediction method for its
prognosis. This study took advantage of artificial intelligence (AI) deep learning to develop a
new mortality risk prediction model for IPF patients.

Methods: We established an artificial intelligence honeycomb segmentation system that
segmented the honeycomb tissue area automatically from 102 manually labeled (by
radiologists) cases of IPF patients’ CT images. The percentage of honeycomb in the
lung was calculated as the CT fibrosis score (CTS). The severity of the patients was
evaluated by pulmonary function and physiological feature (PF) parameters (including FVC
%pred, DLco%pred, SpO2%, age, and gender). Another 206 IPF cases were randomly
divided into a training set (n = 165) and a verification set (n = 41) to calculate the fibrosis
percentage in each case by the AI system mentioned previously. Then, using a competing
risk (Fine–Gray) proportional hazards model, a risk score model was created according to
the training set’s patient data and used the validation data set to validate this model.

Result: The final risk prediction model (CTPF) was established, and it included the CT
stages and the PF (pulmonary function and physiological features) grades. The CT stages
were defined into three stages: stage I (CTS≤5), stage II (5 < CTS<25), and stage III (≥25).
The PF grades were classified into mild (a, 0–3 points), moderate (b, 4–6 points), and
severe (c, 7–10 points). The AUC index and Briers scores at 1, 2, and 3 years in the training
set were as follows: 74.3 [63.2,85.4], 8.6 [2.4,14.8]; 78 [70.2,85.9], 16.0 [10.1,22.0]; and
72.8 [58.3,87.3], 18.2 [11.9,24.6]. The results of the validation sets were similar and
suggested that high-risk patients had significantly higher mortality rates.

Conclusion: This CTPF model with AI technology can predict mortality risk in IPF
precisely.
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INTRODUCTION

The survival of IPF patients varies considerably. Some are stable
for a long time, some progress slowly, and some exacerbate
acutely, leading to short-term death (Ley et al., 2011; Raghu
et al., 2018). A widely accepted method of assessing disease
severity and estimating prognosis remains absent (Gonnella
et al., 1984).

Currently, severity assessment models of IPF mainly include
the following: 1)The CRP (clinical-radiographic-physiologic)
scoring model proposed by Leslie C. Watters et al. (Watters
et al., 1986; Watters et al., 1987) in 1986, which consists of seven
variables: the degree of dyspnea, X-ray chest radiograph
quantitative score, forced vital capacity (FVC), forced
expiratory volume in one second (FEV1), intrathoracic gas
volume (Vtg), diffusing capacity of the lung for carbon
monoxide (DLco) and lung volume (VA) ratio (DLco/VA),
and the alveolar–arterial oxygen partial pressure difference
(AaPO2) in the resting state. The CRP model includes
numerous parameters, the calculation is complex, and it is
difficult to identify fibrotic lesions from chest X-ray images.
King et al. (2001) improved the CRP scoring system in 2001,
by adding parameters such as gender, age, smoking status, and
clubbing, which further increased the complexity of the
evaluation. 2)In 2002, Wells et al. (2003) proposed CPI
(composite physiologic index), which only used the lung
function parameters to assess the severity of interstitial lung
disease (ILD); however, its calculation formula is complicated,
and its clinical application is limited. 3) Ley et al. (2012) proposed
a GAP (gender, age, and physiologic variables) model based on
gender, age, FVC, and DLco. However, the essential CT data was
still not included. 4) Okuda et al. (2013) proposed to use arterial
partial pressure of oxygen (PaO2) and oxyhemoglobin saturation
(SaO2%), two leading arterial blood gas indicators to assess
severity; however, CT, lung function, and other essential
parameters are still missing from this approach. Hence, it is
necessary to establish a precise and easy-performing model to
evaluate and predict the prognosis of IPF.

In recent years, artificial intelligence (AI), especially deep
learning, has been evolving rapidly and has achieved
remarkable results in computer vision (CV). Traditional
computer-based CT analysis provided objective quantitation of
IPF disease programs such as CALIPER. Jacob et al. (2017) used it
to measure disease severity with feature engineering, which
usually involves subjective experience and might lead to non-
optimal results. Compared with the traditional CV method, the
deep learning-based method learns the features by itself with an
end-to-end architecture that avoids human subjective feature
selection, and this usually archives the state-of-the-art results
(O’Mahony et al., 2019). One of the essential tasks of CV is
semantic segmentation, which can be thought of as pixel-wise
classification. Deep learning-based semantic segmentation has
been widely applied in biomedical image processing
(Ronneberger et al., 2015) in areas such as the lung
(Hofmanninger et al., 2020; Handa et al., 2021), kidney
(Bazgir et al., 2020), brain tumor (Myronenko and
Hatamizadeh, 2020), sublingual vein (Xiong et al., 2020), and

prostate (Yoo et al., 2019) and achieved state-of-the-art results.
We extended semantic segmentation into pulmonary fibrosis
image analysis by training a deep learning model that
segments fibrosis tissue regions in chest CT images
automatically and calculates the fibrosis tissue percentage of
the entire lung (patent application no. 202010985175.8).
Combining the aforementioned pulmonary function and
physiological feature (PF) parameters , which have been
proved to have a good prognostic value and are easy to be
accessed clinically, we set up a new comprehensive framework
for evaluating the severity of pulmonary fibrosis (patent no: ZL
2019 1 0514972.5). We conducted clinical verification (ChiCTR-
RRC-17010683), which achieved accurate pulmonary fibrosis
severity assessment and prognosis evaluation (software
registration no. 6406807).

METHODS

Study Cohorts
For testing the AI system that we established (patent application
no. 202010985175.8), we did a retrospective analysis of 232
patients diagnosed with IPF from 1 January 2011 to 31
January 2020 in the Department of Respiratory Medicine,
Shanghai Pulmonary Hospital. IPF diagnosis of these cases
was confirmed by the criteria of the 2018 IPF International
Guidelines (Raghu et al., 2018). Data of gender, age, lung
function, fingertip SpO2% (or SaO2% measured by arterial
blood gas analysis), chest CT, occupation, and smoking history
were recorded. All patients were followed up in outpatient clinics
or via phone, including the patient’s survival status, time of death
(the year and month), cause of death, whether there were other
complications, whether undergoing lung transplantation, and the
time of lung transplantation. The deadline for follow-up was 1
August 2020. After follow-up, finally, 206 qualified cases were
involved in the study. The patient screening process and follow-
up are shown in Figure 1. This study was approved by the
Institutional Ethics Committee of Shanghai Pulmonary Hospital
(No. K17-016).

Development of the Mortality Risk
Prediction Model for IPF
Based on the IPF diagnosis guidelines in 2018 (Raghu et al.,
2018), the honeycomb lung extent and scope of the disease
presented on the CT images of IPF patients are essential
indicators for predicting IPF mortality (Flaherty et al., 2003;
Best et al., 2008; Raghu et al., 2011; Rosas et al., 2011). The
thickness of HRCT sections was 1–2 mm; section spacing was
2 cm. Patients were in the supine position. The minimum
exposure was 200 mA per second. First, we established a
deep learning AI model by a neural network (Ronneberger
et al., 2015) (lung segmentation network, LSN) to calculate the
proportion of honeycomb in the total lung. The LSN was
trained by identifying the 102 IPF patients’ honeycomb
lesion area labeled by radiologists manually
(Supplementary Material S1). Then, we used this AI model
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to quantify the extent of honeycomb lung lesions for another
206 patients. The CT images were also reviewed separately by
two radiologists, who were blinded to the clinical information
and the deep learning model results. Both radiologists were
board-certified diagnostic radiologists, who were majoring in
chest radiology. The observers evaluated the extent of the
honeycomb and gave the manual-CT score results.

The patient’s PF parameters are indispensable for prognosis
estimation (Wells et al., 2003; Ley et al., 2012). After analysis of
the pros and cons of existing scoring systems (CRP, GAP, CPI,
and JRS) shown in Table 1, we chose five parameters, namely,
FVC%pred, DLco%pred, SpO2%, age, and gender, to evaluate the
severity of the patient’s disease (patent no: ZL 2019 1 0514972.5).
These parameters have a significant predictive value and can be

accessed easily in clinical practice. According to previous studies
(Watters et al., 1986; Watters et al., 1987; King et al., 2001; Wells
et al., 2003; Ley et al., 2012; Okuda et al., 2013), we formed a
multi-parameter severity evaluation metric (PF grading) based
on PF.

Statistical Method
The Spearman correlation coefficient was used to analyze the
correlation between CTS and lung function parameters, namely,
FVC%pred, DLco%pred, SpO2%, and CPI. The patient’s survival
time was calculated from the evaluation time to the endpoint
event, which was death due to lung disease or lung
transplantation, measured in months. According to survival
time, X-tile software (internal cross-validation method) was

FIGURE 1 |Case screening process. In total, 232 cases were diagnosed as IPF according to the 2018 IPF diagnosis and treatment guidelines. A total of 26 patients
were excluded, two patients were diagnosed as interstitial pneumonia with autoimmune features (IPAF) during follow-up; 24 patients had incomplete CT and lung
function data. Finally, 206 cases were included in the retrospective analysis (including 16 cases of lung transplantation): 93 surviving cases, including 11 lung transplants;
81 deaths, out of which 10 died from lung cancer, 67 died from acute exacerbation of IPF, and 4 died after lung transplantation; and 32 patients failed to follow up,
including one failed to follow up after lung transplantation.
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TABLE 1 | Comparison of different pulmonary staging methods.

Scoring
method

Parameter Advantage Disadvantage

Gender Age FVC
%

DLco
%

Tlc% FEV1% Lung
capacity
(vtg)

HRCT X-ray PaO2 SpO2% Smoking Clubbing
finger

Extent
of dyspnea

GAP √ √ √ √ Simple Lack HRCT and
PaO2 data

CPI √ √ √ Can reflect
combined
emphysema

Lack HRCT and
PaO2 data

CRP √ √ √ √ √ √ √ Require
many
parameters

Complex and
lack HRCT and
lung function
data

JRS √ √ Simple Lack HRCT and
PaO2 data

Accessibility Easy Easy Easy Easy Easy Easy Require a
comprehensive
device to
measure lung
function

Easy Easy
but
images
overlap

Require
arterial
blood

Easy Difficult for
quantification

Vary
greatly in
individuals

Require a
complex
scoring
system and
may be
influenced
by
subjective
bias

Importance Y Y Y Y Affected
by
multiple
factors

Correlate
to airway
disease

? Y Y Y Y ? ? Y

Parameters
in our
method

√ √ √ √ √ √

Notes: Y: the parameter is important. ? the importance of the parameter is currently unknown. √: the parameter was included in the model of this study.
SpO2%: oxygen saturation of peripheral blood. SpO2 is the resting arterial oxygen saturation measured at fingertips. FVC: forced vital capacity. FVC%pred: the percentage of the actual FVC over the predicted FVC. FEV1: forced expiratory
volume in one second. FEV1%pred: the percentage of the actual FEV1 over the predicted FEV1. DLco: diffusing capacity of the lung for carbon monoxide. DLco%pred: the percentage of the actual DLco over the predicted DLco. FEV1/FVC%:
the percentage of FEV1 over FVC. GAP (gender, age, and physiologic variables) stage followed the recommendation by Brett Ley, and a higher stage represented a greater death risk. CPI: composite physiologic index. In 2002, Athol U. Wells
and others proposed to use CPI, which combined chest CT and pulmonary functional parameters, to assess the severity of interstitial lung diseases (ILDs). A higher CPI represents a more severe ILD. CRP: clinical-radiographic-physiologic.
Leslie C. Watters et al. published the CRP system in 1986. JRS: Ryo Okuda et al. proposed the IPF staging method in 2004. HRCT: high-resolution computed tomography.
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used to find the optimal CT score threshold to classify patients in
three CT stages.

Lung transplantation was considered the most effective
treatment for IPF (Thabut et al., 2009), so lung
transplantation was considered a competing risk event and
used the competing risk (Fine–Gray) model for establishment
and evaluation of the disease prognosis prediction model as
follows: 1) based on the total number of our cases, the
modeling parameters were selected, by referring to the existed
literature (Roecker, 1991; Zhang et al., 2018); all 206 cases were
randomly divided into the training set (165 cases) and the
verification set (41 cases). 2) CT staging, PF staging, and
CTPF comprehensive staging were used as predictors. We
compared the accuracy of the model with GAP staging
proposed by Brett Ley and MD and established four mortality
risk predictionmodels based on Fine–Gray regression analysis for
training set data, namely the CT staging model, PF grading
model, CTPF staging model, and GAP staging model. The
predictive accuracy of the risk model was assessed by
calculating the area under ROC curve (AUC) and Brier score.
3) The validation set was used to validate the four models. 4) A
nomogram was drawn referred to some reports (Zhang et al.,
2017; Zhang et al., 2018) to show the 1, 2, and 3-year survival rates
of the CTPF model for patients visually with different CT stages
and PF grades.

The statistical software used in this study was IBM SPSS24.0,
Stata/MP14.0 X-Tile, and R3.4.3.

RESULTS

Patient Baseline Clinical Characteristics
Following the process shown in Figure 1, we screened 232 cases
of IPF patients. Among them, 206 cases met the scoring
requirements and were included in the CTPF staging
verification: 93 cases survived, 81 cases died, 32 cases failed to
follow up, and 16 cases received lung transplantation. Table 2
shows the primary characteristics of the patients. The average age
is 64.1 ± 7.9 (years), and the average survival time is 28.7 ± 19.3
(months). Most patients are male (196/206, 95.1%), and most of
them have a history of smoking (156/206, 75.7%). The average CT
score is 14.1 ± 11.30 (ranges from 0.04 to 52.3).

Test the CT Score Calculated by AI
The fibrosis segmentation network (FSN) was the essential
component of deep learning, which performed the semantic
segmentation of fibrosis regions in the CT images, and is the
basis of further calculation, such as CT scores (CTS) and FSN’s
performance, shown in Supplemental Material 2. Figures 2A–D
show that the CTS was negatively correlated to FVC%pred (rs =
-0.40, p < 0.01), DLco%pred (rs = -0.66, p < 0.01), and SpO2% (rs
= -0.44, p < 0.01) and positively correlated with the existing CPI
(rs = 0.65, p < 0.01) which reflects the severity of the patient’s
disease. In addition, the CTS was closely related to manual-CT
scores by radiologists and Spearman correlation coefficient rs =
0.80, p < 0.01 (Figure 2E.). It indicates that the CT scoring system
designed in this study properly reflects the severity of pulmonary
fibrosis.

Establishment of the CTPF Model
According to the survival time of all patients, we used X-tile
software to find the cut-off points of CT scores and are calculated
as 5.6 and 25.4, which divide the patients into three groups, and
the survival rates of the three groups are statistically different (χ2
= 27.985, p < 0.05). To facilitate clinical application, we tried to
take integer cut-off points, i.e., 5 and 25. We used the two cut-off
point CT scores (5.6, 25.4) and (5,25) to establish the prediction
model and found that both scores have the same prediction
efficiency. For ease of clinical use, we chose the latter. So, the three
groups were as follows: stage I (CTS<5), stage II (5 < CTS<25),
and stage III (CTS>25).

After analyzing the pros and cons of existing scoring systems
(CRP, GAP, CPI, and JRS) shown in Table 1, we chose five
parameters, namely, FVC%pred, DLco%pred, SpO2%, age, and
gender, to evaluate the severity of the patient’s disease and
calculated the scores using PF grading to assess the severity in
patients (Table 3) and prognosis.

Figure 3A shows the relationship between CT staging and
mortality risk in Fine–Gray univariate regression analysis, in
which the effect of PF grading might be involved. Figure 3B
shows the result of multi-factor analysis after eliminating the
effect of PF grading, that is, the relationship between CT staging

TABLE 2 | Patients’ general clinical characteristics.

Patient data (n-206) Value

Median age years 64.1 ± 7.9
Male/female 196/10
Smokers/non-smokers 150/56
Survival time (months) 28.7 ± 19.3
SpO2% 95.2 ± 3.5
FVC%pred 71.9 ± 20.1
FEV1%pred 75.1 ± 20.6
DLco%pred 52.0 ± 28.4
FEV1/FVC% 83.5 ± 7.8
CT score values by AI 14.1 ± 11.30
CT score values by radiologists 24.5 ± 13.8
CT stage I/II/III 56/114/36
PF stage a/b/c 95/80/31
GAP stage I/II/III 108/63/35
CPI 44.6 ± 21.0

Notes: Measurement data are presented as mean ± standard deviation (SD). Count data
are presented as percentage or proportion.
SpO2%: oxygen saturation of peripheral blood. SpO2 is the resting arterial oxygen
saturation measured at fingertips. FVC: forced vital capacity. FVC%pred: the percentage
of the actual FVC over the predicted FVC. FEV1: forced expiratory volume in one second.
FEV1%pred: the percentage of the actual FEV1 over the predicted FEV1. DLco: diffusing
capacity of the lung for carbon monoxide. DLco%pred: the percentage of the actual
DLco over the predicted DLco. FEV1/FVC%: the percentage of FEV1 over FVC. CT score
values were calculated by AI according to the method in the article. CT-based stage: the
stage was determined by using CT score values by AI following the criteria described in
Table 3. PF-based grade: the grade was determined by using the pulmonary function
and physiological parameters (age, gender, FVC%pred, DLco%pred, and SpO2%) and
following the description in Table 3. The grade was defined as (a) mild, (b) moderate, and
(c) severe. GAP (gender, age, and physiologic variables) stage followed the
recommendation by Brett Ley, and a higher stage represented a greater death risk. CPI:
composite physiologic index. In 2002, Athol U. Wells and others proposed to use CPI,
which combined chest CT and pulmonary functional parameters, to assess the severity
of interstitial lung diseases (ILDs). A higher CPI represents a more severe ILD.
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and mortality risk. In both adjusted and unadjusted cases, PF
staging was positively correlated with mortality risk. Similarly,
Figures 3C, D illustrate the relationship between PF grading and
mortality risk in Fine–Gray regression with unadjusted and
adjusted CT staging. In both cases, PF stages were positively
correlated with mortality risk. We then combined the two factors
to create a new mortality prediction model, the CTPF model. The
score was calculated based on the five pulmonary function and
physiological feature prognostic predictors, and CT scores were
calculated by the AI model, which are shown in Table 3.

Validation of the CTPF Model
Table 4 shows the patients’ clinical characteristics in the training set
and validation set. There is no significant difference between the two
sets. Then, classification of the training set was followed according to
the CT staging, PF grading, GAP staging, and CT + PF staging. The
analysis results in Table 5 show that the AUC index and Briers
scores at 1, 2, and 3 years are as follows: 74.3 [63.2,85.4], 8.6
[2.4,14.8]; 78 [70.2,85.9], 16.0 [10.1,22.0]; and 72.8 [58.3,87.3],
18.2 [11.9,24.6]. The CTPF model has the best AUC index and
Briers scores. The results of the validation sets were similar. The
AUC index and Briers scores at 1, 2, and 3 years in the validation set
are as follows: 92.0 [83.4,100.0], 8.1 [0.5,15.7]; 75.0 [57.1,92.9], 14.3
[6.6,22.1]; and 76.0 [56.8,95.2], 17.6 [9.4,25.9].

Prognostic Significance of the CTPF Model
A nomogram of death risk prediction for a CTPF
prediction model and calibration curve are shown in Figure 4.

The 1-year, 2-year, and 3-year cumulative survival rates of
different CTPF stages based on the nomogram are shown in
Table 6. The higher the PF grade, for patients with the same CT
staging, the lower the cumulative survival rate and vice versa.

As the flow in Supplementary Figure S1 shows that all the
patients’ chest CT lung images were read into the deep learning
model. The model segmented the patients’ fibrotic lesion
region and calculated the area percentage of the whole lung.
Age, gender, FVC%pred, DLco%pred, and SpO2% data were
included in the metric to calculate patient’s CTPF staging
results (Figure 5), and an evaluation report
(Supplementary Figure S7) was generated.

A total of two representative cases are displayed as follows:
Figure 5 shows the output of the fibrosis segmentation
network. Figure 5A shows a 74-year-old male patient,
whose CT fibrosis score is 15.9. In Table 3, the
physiological indicators of lung function (PF) correspond
to seven points of severity, so his comprehensive stage is
IIc; the patient died of exacerbation 23 months later.
Figure 5B shows another patient, a 62-year-old male with
an AI fibrosis score of 4.0. According to Table 3, the final stage
of the patient is Ia. The patient is still alive after 39 months
when we followed up.

As some IPF patients had also developed emphysema (Rosas
et al., 2011), we trained another semantic segmentation model for
pulmonary bulla and calculated its percentage of the entire lung
based on the same framework with different parameters. See
Supplementary Material S1 for details.

FIGURE 2 | Correlation of AI–CT fibrosis score and lung function parameters. (A) Correlation between CT-score and FVC%pred, Spearman correlation coefficient
rs = -0.40, p < 0.01; (B) correlation between CT-score and DLco%pred, Spearman correlation coefficient rs = -0.66, p < 0.01; (C) correlation between CT-score and
SpO2%, Spearman correlation coefficient rs = -0.44, p < 0.01; (D) correlation between CT-score and CPI, Spearman correlation coefficient rs = 0.65, p < 0.01; and (E)
correlation between CT-score and manual-CT scores by radiologists, Spearman correlation coefficient rs = 0.80, p < 0.01.
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DISCUSSION

Current IPF staging evaluation methods shown in Table 1 are
either too simple, such as GAP and JRS which cannot accurately
reflect the severity of the disease and estimate prognosis because
of fewer data, or too complex, such as CPR and CPI which are
complex and difficult to access in clinical practice (Jacob et al.,
2017). In fact, chest CT scans are one of the standard clinical
examination methods in the diagnosis of IPF, and honeycomb in
the lung is the most representative lesion of pulmonary fibrosis
and directly related to the prognosis (Flaherty et al., 2003; Lynch
et al., 2005; Best et al., 2008; Raghu et al., 2011; Rosas et al., 2011).
The semi-quantitative evaluation is the most common method in
practice, which requires physicians’ expertise, and is labor-
intensive and time-consuming, and the results of different
practitioners might vary considerably. The Cohen-weighted k
values of semi-quantitative evaluation are only 0.40–0.58
(Watadani et al., 2013; Hansell et al., 2015), and both
repeatability and accuracy are also low. The pulmonary
fibrosis segmentation model based on deep learning in this
study segmented fibrosis honeycomb accurately and
automatically and calculated its percentage of the whole lung,
which quantifies the essential factor of fibrosis staging. Compared
with manual-CT scores evaluated by radiologists, the scores
evaluated by AI were low. Due to the fact that the AI
evaluation was a whole-lung range in the chest CT, the
manual evaluation was usually selected for the dominant
lesion section in the CT, such as the aortic arch section,
tracheal bifurcation section, and lung diaphragm section.

This method has the advantages of fast incremental learning,
objective and accurate quantitative calculation, efficient complete
lung scanning, and high repeatability. TheDSC of themodel reached
77.26%, which is 8.39% higher than that of the benchmark (U-Net
with the spatial pyramid pooling module) that is 68.78%
(Ronneberger et al., 2015). Compared with CALIPER (Jacob
et al., 2017) based on traditional CV technology, deep learning
methods learn features automatically and archive better
performance. Although Handa et al. (2021) adopted deep
learning U-Net architecture, we enhanced it with an attention
mechanism and Squeeze-Excitation Network to archive better
outcomes. The running time of the CT evaluation for each
patient was only 11 s, which is a significant efficiency improvement.

We selected FVC%pred, DLco%pred, SpO2%, age, and gender as
five essential indicators that have been proved to have a good
prognostic value and are easy to be accessed clinically to evaluate
the severity of IPF. In both univariate and multivariate regression
analyses, the results suggested that PF classification was an
independent risk factor for predicting IPF patients’ mortality risk.
The severity of each patient’s disease stage (a, b, or c) was calculated
according to these five parameters. The CTPF evaluation system
combines the results from CT pulmonary fibrosis staging (I, II, and
III) and severity grading (a, b, and c) to form a complementary
pulmonary fibrosis staging/severity grading model CTPF (Table 3).
The assessment report shows the result (Figure 5.).

In the task of mortality risk prediction, the CTPF model has
better AUC, Brier score, and stability than any other model (PF, CT,
and GAP staging). Lung transplantation is an effective way toT
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improve the prognosis of IPF patients (Thabut et al., 2009).
However, lung transplantation itself also has a mortality risk. In
2015, Yusen et al. (2015) reported a global mortality risk of lung

transplantation as 20% in 1 year and 35% in 3 years. We suggest
those patients whose mortality risk (Table 6) is higher than the lung
transplantation risk to consider transplantation. In this regard, our

FIGURE 3 | Analysis of CT stage and PF grading and mortality.(A) shows the relationship between CT staging andmortality risk based on Fine–Gray regression CT
staging univariate analysis, which might be mixed with the influence of PF grade. (B) shows the same relationship in the multivariate analysis of CT staging and PF
grading. Adjusted PF grading means the effect of PF grading was eliminated. The results showed that CT stage, with both PF grade adjusted and unadjusted, was
positively correlated with mortality risk. (C) shows the relationship between PF grade andmortality risk based on Fine–Gray regression PF grade univariate analysis,
which might be mixed with the influence of CT staging. (D) shows the same relationship between the multivariate analysis of CT staging and PF classification. CT staging
adjustedmeans the effect of the CT stage was eliminated. The results show that the PF grade, with both CT staging adjusted and unadjusted, is positively correlated with
mortality risk.

TABLE 4 | Patients’ clinical characteristics of the training set and validation set.

Characteristic Combined set Training set Validation set p-value

No.[n (%)] 206 (100) 165 (80) 41 (20)
FVCpred [mean (SD)] 71.91 (20.12) 71.95 (20.45) 71.74 (18.97) 0.953
Fibrosis rate [median (Q1,Q3)] 11.34 (4.61,20.74) 11.45 (4.86,20.28) 9.62 (3.92,23.2) 0.390
Emphysema rate [median (Q1,Q3)] 0.16 (0.02,1.23) 0.18 (0.02,1.23) 0.16 (0.01,1.05) 0.931
Age [median (Q1,Q3)] 64.5 (60,69) 65 (59,70) 64 (60,68) 0.542
SaO2 [median (Q1,Q3)] 96 (94.4,97.3) 96 (94.2,97.1) 96.8 (95.4,97.8) 0.156
FEV1pred [median (Q1,Q3)] 73.75 (60.7,88.7) 74.1 (60.8,87.6) 69 (60.4,91.6) 0.764
DLCO pred [median (Q1,Q3)] 51.6 (36.9,70.1) 51.5 (36.9,69.6) 51.7 (37.4,73.9) 0.977
Survivetime [median (Q1,Q3)] 27 (13,40) 26 (14,40) 27 (10,38) 0.441
GAP stage I/II/III 108/63/35 86/49/30 22/14/5 0.631
PF grade a/b/c 95/80/31 74/65/26 21/15/5 0.729
CT stage I/II/III 56/114/36 43/94/28 13/20/8 0.636

Notes: Measurement data are presented as mean ± standard deviation (SD). Count data are presented as percentage or proportion.
SpO2%: oxygen saturation of peripheral blood. SpO2 is the resting arterial oxygen saturation measured at fingertips. FVC: forced vital capacity. FVC%pred: the percentage of the actual
FVC over the predicted FVC. FEV1: forced expiratory volume in one second. FEV1%pred: the percentage of the actual FEV1 over the predicted FEV1. DLco: diffusing capacity of the lung for
carbonmonoxide. DLco%pred: the percentage of the actual DLco over the predicted DLco. CT-based stage: the stage was determined by using the average score of the two radiologists
and following the criteria described in Table 3. PF-based grade: the grade was determined by using the pulmonary function and physiological parameters (age, gender, FVC%pred, DLco
%pred, and SpO2%) and following the description in Table 3. The grade was defined as (a) mild, (b) moderate, and (c) severe. GAP (gender, age, and physiologic variables) stage followed
the recommendation by Brett Ley, and a higher stage represented a greater death risk.
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TABLE 5 | Discrimination of different models in the training and validation cohort.

Prediction time Model Training set Validation set

AUC Brier score AUC Brier score

1 year CTPF 74.3 [63.2,85.4] 8.6 [2.4,14.8] 92.0 [83.4,100.0] 8.1 [0.5,15.7]
CT 66.4 [55.4,77.4] 8.9 [2.5,15.4] 86.2 [70.9,100.0] 8.5 [0.5,16.5]
PF 71.8 [60.7,82.9] 8.7 [2.4,15.1] 84.6 [71.6,97.5] 8.4 [0.4,16.4]
GAP 73.5 [63.0,84.0] 8.7 [2.4,15.0] 75.3 [60.0,90.5] 8.7 [0.5,16.9]

2 years CTPF 78 [70.2,85.9] 16.0 [10.1,22.0] 75.0 [57.1,92.9] 14.3 [6.6,22.1]
CT 69.6 [61.6,77.5] 17.5 [11.2,23.7] 73.7 [58.0,89.4] 14.3 [7.2,21.3]
PF 74.1 [65.4,82.7] 16.5 [10.2,22.8] 65.2 [43.8,86.6] 15.2 [6.5,23.8]
GAP 71.2 [62.3,80.0] 17.0 [10.9,23.1] 62.3 [41.9,82.7] 15.3 [7.0,23.5]

3 years CTPF 72.8 [58.3,87.3] 18.2 [11.9,24.6] 76.0 [56.8,95.2] 17.6 [9.4,25.9]
CT 64.2 [51.0,77.5] 19.8 [13.2,26.5] 65.2 [46.8,83.7] 20.1 [12.1,28.1]
PF 70.6 [56.5,84.8] 18.5 [12.0,25.0] 72.5 [54.3,90.7] 18.3 [9.7,26.9]
GAP 69.9 [55.6,84.3] 18.7 [12.4,25.0] 68.8 [50.8,86.8] 19.0 [10.7,27.3]

Notes: CI: confidence interval. Model CT: CT-based stage was used in the univariate Fine–Gray death risk regression analysis. Model PF: PF-based grade was used in the univariate
Fine–Gray death risk regression analysis. Model CTPF: CTPF comprehensive stage was used in the multivariate Fine–Gray death risk regression analysis. Model GAP: GAP stage
proposed by Brett Ley was used in univariate Fine–Gray death risk regression analysis. AUC: area under curve. The AUC value reflects the model’s capability of discrimination. The higher
the AUC value, the higher the model’s ability to identify themortality risk. Brier score is an indicator that comprehensively reflects the discrimination and calibration of themodel. The smaller
the Brier score, the better the discrimination and calibration predicted by the model.

FIGURE 4 | Model prediction nomogram and calibration curve. (A) Mortality nomogram of CTPF as the predictive model. (B–D) Calibration curves after cross-
validation using CT staging, PF staging, CTPF comprehensive staging, and GAP staging to predict patients’ cumulative mortality risk at 1, 2, and 3 years. The CTPF
prediction model has the best AUC value, Brier score, and stability.
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TABLE 6 | CTPF model-predicted 1-, 2-, and 3-year accumulative survive rate of patients at different CTPF stage.

CTPF stage 1-year cumulative survival
rate%

2-year cumulative survival
rate%

3-year cumulative survival
rate %

I a 96.90 91.77 89.11
I b 94.15 84.83 80.20
I c 90.68 76.56 69.88
II a 92.79 81.51 76.02
II b 86.64 67.60 59.15
II c 79.23 52.96 42.63
III a 91.23 77.84 71.46
III b 83.89 61.90 52.55
III c 75.18 45.89 35.18

Notes: CTPF, stage: CTPF-based comprehensive stage. I a: CT, stage I and PF, grade a; I b: CT, stage I and PF, grade b; I c: CT, stage I and PF, grade c; II a: CT, stage II, and PF, grade a; II
b: CT, stage II, and PF, grade b; II c: CT, stage II, and PF, grade c; III a: CT, stage III, and PF, grade a; III b: CT, stage III, and PF, grade b; III c: CT, stage III, and PF, grade c.
CT I: honeycomb lesion area was <5% of the entire lung. CT II: honeycomb lesion area was 5–25% of the entire lung. CT III: honeycomb lesion area was >25%. The PF-based grade was
determined by assessing the scores of age, gender, FVC%pred, DLco%pred, and SpO2% according to the criteria in Table 3 and adding the scores. PF (a): score 0–3. PF(b): score 4–6.
PF(c): score 7–10.

FIGURE 5 | Examples of patient’s original lung CT image, honeycomb lung region segmentation, and staging. (A-1,2,3) are the original CT images, the segmented
lung region, and honeycomb lung region identified by the deep learning model of patient Zhang. The corresponding stage of this patient is II c. Similarly, (B-1,2,3) are the
corresponding images of patient Xu, whose stage is Ia. (C) shows their comprehensive CTPF staging; patient Zhang’s comprehensive stage is IIc; the comprehensive
stage of patient Xu is Ia.
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model could suggest the appropriate time window for lung
transplantation.

The prognostic evaluation of pulmonary fibrosis with
emphysema needs to be further analyzed in additional cases.

The major limitation of this study is lack of an external
validation cohort to further evaluate the CTPF model. We are
planning a multicenter clinical study in the future and hope to
verify its clinical significance.

CONCLUSION

The deep learning-based model calculated the percentage of
fibrosis lesions of the whole lung quantitatively by segmenting
the fibrosis region from chest CT images automatically, combined
with the IPF severity determined by five important physiological
and pulmonary function indicators. The CTPF model predicted
the mortality risk for IPF patients more precisely.
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