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Cyclosporine (CsA) is a component of the first-line treatment for acquired aplastic anemia
(acquired AA) in pediatric patients. This study aimed to develop a population
pharmacokinetic (PK) model of CsA in Chinese pediatric patients with acquired AA to
inform individual dosage regimens. A total of 681 CsA whole blood concentrations and
laboratory data of 157 pediatric patients with acquired AA were retrospectively collected
from two hospitals in Shanghai. A nonlinear mixed-effect model approach was used to
build the population PK model. Potential covariate effects of age, body weight, and
biochemical measurements (renal and liver functions) on CsA PK disposition were
evaluated. Model fit was assessed using the basic goodness of fit and a visual
predictive check. The CsA concentration data were accurately described using a two-
compartment disposition model with first-order absorption and elimination. Body weight
value was implemented as a fixed allometric function on all clearance and volume of
distribution parameters. Total bilirubin level was identified as a significant covariate on
apparent clearance (CL/F), with a 1.07% reduction per 1 nmol/L rise in total bilirubin level.
The final estimates for CL/F and central volume (Vc/F) were 29.1 L/h and 325 L,
respectively, for a typical 28 kg child. Other covariates (e.g., gender, age, albumin,
hemoglobin, hematocrit, serum creatinine, and concomitant medication) did not
significantly affect the PK properties of CsA. This population PK model, along with a
maximum a posteriori Bayesian approach, could estimate individual PK parameters in
pediatric patients with acquired AA to conduct individual CsA therapy.
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INTRODUCTION

Acquired aplastic anemia (acquired AA) is a rare heterogeneous disorder characterized by peripheral
pancytopenia and bone marrow aplasia or hypoplasia. Most patients with acquired AA (70–80%) are
idiopathic because their primary etiology remains unknown (Marsh et al., 2009; Shallis et al., 2018).
The annual incidence of acquired AA in Asians is 2- to 3-fold higher than that in the Western
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population, which has been reported to be approximately
2–2.3 patients per million (Issaragrisil et al., 1991; Montane
et al., 2008; Young and Kaufman, 2008). The median age at
disease diagnosis among children is around 9 years (Jeong et al.,
2011). Acquired AA diagnosis was divided into three subtypes
according to the related clinical guidance (Camitta et al., 1975;
Camitta et al., 1976; Bacigalupo et al., 1988; Brodsky and Jones,
2005), including nonsevere AA (NSAA), severe AA (SAA), and
very severe AA (vSAA). As per current clinical guidelines,
immunosuppressive therapy (IST) using antithymocyte
globulin (ATG) combined with cyclosporine A (CsA) is the
standard first-line treatment for patients with SAA or vSAA
without a suitable donor and for those with NSAA who are
transfusion-dependent or experienced bleeding (Speck et al.,
1977; Bacigalupo et al., 1988; Marsh et al., 1999; Rosenfeld
et al., 2003; Viollier et al., 2005; Yoshida and Kojima, 2018).
The overall survival rate of patients treated with IST was reported
to be 68–90%, and the response rate ranged from 58 to 90%
(Frickhofen et al., 1991; Rosenfeld et al., 1995; Frickhofen and
Rosenfeld, 2000; Rosenfeld et al., 2003; Führer et al., 2005;
Locasciulli et al., 2007; Pongtanakul et al., 2008; Saracco et al.,
2008; Deyell et al., 2011; Samarasinghe et al., 2012; Dufour et al.,
2015).

CsA, a classic calcineurin inhibitor, has been widely used in
IST for decades (Yoshida and Kojima, 2018). CsA is mainly
metabolized via cytochrome P450 isoenzymes (CYP) 3A4 and
3A5 in the liver and is also a substrate of P-glycoprotein
(Kronbach et al., 1988; Aoyama et al., 1989; von Richter et al.,
2004; Wojnowski, 2004; Patel and Wairkar, 2019). CsA has been
reported to have high variability in its pharmacokinetic (PK)
disposition (Ptachcinski et al., 1986), especially for oral dosing
(Lindholm et al., 1988; Patel and Wairkar, 2019). CsA has a
narrow therapeutic window for immunosuppressive purposes,
usually with a whole blood trough concentration of 100–200 ng/
ml for clinical indications (Marsh et al., 2009; Jain et al., 2019).
Suboptimal concentration results in an insufficient clinical
response, and high exposure raises patient safety concerns.
The serious adverse effects included dyslipidemia,
posttransplant diabetes mellitus, hypertension, intermittent
renal hypoperfusion, and both reversible acute toxicity and
irreversible tubulointerstitial fibrosis (Dunn et al., 2001; Olyaei
et al., 2001). Its effects are different in children compared to adults
because of the developmental processes, and the ontogeny of
enzymes and body size could affect the disposition of the drug in
the body. Thus, according to clinical guidelines, routine
therapeutic drug monitoring (TDM) is strongly recommended
for CsA, particularly in pediatric patients.

Population PK properties of CsA in pediatric patients have
been investigated in several clinical trials, mainly targeting stem
cell transplantation, posttransplantation, and nephrotic
syndrome conditions (Irtan et al., 2007; Willemze et al., 2008;
Kim et al., 2015; Li et al., 2019; Zhao et al., 2022). To date,
population PK analysis of CsA in children with acquired AA has
seldom been reported (Ni et al., 2013). Considering the
remarkable difference in the physiopathology between
transplantation and acquired AA, PK extrapolation across
indications would have high uncertainties. This study aimed to

establish a population model to characterize the PK of CsA in
Chinese pediatric patients with acquired AA and to explore the
potential covariate effects. The proposed population PK model
can provide guidance for individual CsA therapy in pediatric
patients with acquired AA.

MATERIALS AND METHODS

Study Population
The eligibility criteria for the study population were pediatric
patients (≤18 years old) diagnosed with acquired AA who
received CsA treatment at two hospitals in Shanghai
(Children’s Hospital of Fudan University and Tongji
Hospital of Tongji University) from January 2014 to
December 2021. The diagnosis of acquired AA was based
on several critical criteria (e.g., peripheral blood
investigations, bone marrow smear, and biopsy) and
excluded other disease conditions such as autoimmune
disease, congenital bone marrow failure, acute myeloid
leukemia, acute lymphoblastic leukemia, myelodysplastic
syndrome, and other malignant hematological tumors.
Patients with acquired AA who received stem cell
transplantation were also excluded from this study. The
study protocol and the data collection were approved by the
hospital’s research ethics committee.

Acquired Aplastic Anemia Treatment
Protocol
The acquired AA treatment regimen was in accordance with
the suggestions in the clinical guidance, including IST-
containing treatment (e.g., ATG + CsA, CsA + androgen, or
CsA monotherapy) and supportive care measures
(transfusions, protective isolation, antibiotics, and others).
The initial oral dosing regimen of CsA was 5 mg/kg/day
orally, twice daily. In general, the dose was adjusted from
5 to 8 mg/kg/day and could even to 10 mg/kg/day, depending
on CsA concentration, to ensure that the concentration is
within the therapeutic window. As per a clinical guideline for
childhood acquired AA in China (The Society of Pediatrics,
2014), it was recommended that the therapeutic windows for
CsA be 100–200 ng/ml and 300–400 ng/ml for trough and peak
concentration, respectively. The first whole blood
concentration of CsA at a steady state was monitored after
2 weeks of administration, and then every 3–6 months
afterward, if indicated. The dose was reduced only after the
concentration was maintained at these levels for at least
12 months. The dose was tapered slowly (e.g., 10–20% of
the original dosage was tapered once every 3 months). The
clinical physician closely monitored the complete blood count,
liver and renal functions, and whole blood CsA concentration
at each time of dose adjustment and carefully reduced the
amount if there was any fluctuation. All treatments were in
accordance with the diagnosis and treatment
recommendations of the pediatric society of the Chinese
Medical Association.
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Pharmacokinetic Sampling and
Measurement
For TDM purposes, only sparse whole blood samples were
routinely collected for CsA concentration measurement
according to clinical practice in the two study hospitals.
The PK samples were collected at or around the peak (2–4 h
postdosing) and predose (within 1 h prior to dosing). CsA
whole blood concentrations were determined using an Emit®
2000 Cyclosporine Specific assay (6R079UL; Siemens
Healthcare Diagnostics, Inc., Newark, NJ, United States) in
accordance with the procedures in the manual.

Data Collection
All relevant clinical data for the present population PK
analysis were collected from patients’ medical records in
the hospital information system. The data mainly
contained: 1) Demographic data (gender, age at treatment,
and body weight at treatment); 2) laboratory tests, including
but not limited to complete blood count (red blood cell, white
blood cell, platelets, hemoglobin [Hb], hematocrit [HCT]),
liver function (aspartate transaminase [AST], alanine
transaminase [ALT], alkaline phosphatase [ALP], direct
bilirubin, total bilirubin [TBIL]), and renal function
(serum creatinine [SCr] levels); 3) concomitant
medications (e.g., granulocyte colony-stimulating factor,
rabbit ATG [r-ATG], glucocorticoids, and testosterone
undecanoate) during the therapy; and 4) PK data, such as
the date and time of CsA administration, and CsA
concentration readout.

Population Pharmacokinetic Analysis
Approach
Population PK analysis was conducted using a nonlinear
mixed-effect modeling approach using NONMEM® software
(version 7.4, ICON Development Solutions, Ellicott City, MD,
United States) with a gFortran compiler (version 4.6.0). PsN
(version 4.6.0) and the R language (version 3.4.0) were used to
summarize and visualize the modeling outputs. First-order
conditional estimation with the η-ε interaction algorithm
(FOCE-I) was utilized throughout the model-building
procedures. Discrimination between hierarchical models was
based on the objective function value (OFV), which was
proportional to twice the log-likelihood (-2LL). A decrease
in OFV (ΔOFV) of 3.84 was considered a statistically
significant improvement in model fitting (p < 0.05) between
the two hierarchical models after the inclusion of one
additional parameter (df = 1).

CsA concentrations were logarithmically converted for
modeling analysis. A base model was selected without any
covariates capable of appropriately capturing the
concentration–time data. During the base model selection
stage, all possible structural compartments (i.e., one- and
two-compartment disposition models) were investigated.

Interindividual variability (IIV) was modeled as an
exponential function on all PK parameters, where applicable
(Eq. 1).

θi � θ•exp(ηi,θ) (1)
where θi is the individual PK parameter estimate for the ith
individual patient, θ is the population estimate of the investigated
PK parameter, and ηi,θ is the IIV of the investigated PK
parameter, which is assumed to follow a normal distribution
with a zero mean and variance ω2. The residual variability,
assumed to be normally distributed with zero mean and
variance σ2, was modeled with an additive error on the natural
log-transformed concentrations, which was approximately equal
to an exponential residual error on an arithmetic scale.

Covariate Modeling
Body weight was implemented in the model as a simultaneous
inclusion of an allometric function for all clearance and
distribution volume parameters (Eqs 2, 3, respectively).

CLi � CLtypical · ( BWi

BWmedian
)

0.75

· exp(ηi,CL), (2)

Vi � Vtypical · ( BWi

BWmedian
) · exp(ηi,V), (3)

where BWi is the individual body weight for the i
th individual and

BWmedian is the median body weight of the study population
(28 kg).

In addition to bodyweight, other potential covariates, such as age,
gender, laboratory tests of liver and renal function, and concomitant
drugs, were investigated for all model parameters, except absorption-
rate constant, using a forward selection (p = 0.05) and followed a
strict backward elimination (p = 0.01) procedure.

Model Evaluation
Basic goodness-of-fit plots, such as the conditional weighted
residue versus population prediction, conditional weighted
residue versus time, observation versus population prediction,
and individual prediction, were used to evaluate systematic
discrepancies and model misspecification if it exists. The
sampling importance resampling approach was employed to
derive parameter uncertainties for the final population PK
model with the options of sample = 2,000 and resample =
1,000. The overall predictive performance of the final
population PK model was evaluated using prediction-corrected
visual predictive checks [(Bergstrand et al., 2011), n =
1,000 simulations].

In Silico Simulation
Based on the final population PK model, in silico simulations were
conducted according to different clinical scenarios, such as body
weight, significant covariates, and dosing regimens (n = 1,000 for
each scenario). The simulated PK exposure parameters (e.g., trough
concentration) for each scenario were summarized and visualized.
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RESULTS

In total, 681 whole blood CsA concentrations of samples from
157 pediatric patients were included in the current population PK
modeling analysis. The basic demographic characteristics of
patients are presented in Table 1. Overall, the baseline
demographic data of the patients were comparable between
the two hospitals.

A one-compartment model with first-order absorption and
elimination processes offered an OFV of 299.011. Utilizing a two-
compartment model indicated a significant improvement in the
model fit (ΔOFV = −249.597). However, the peripheral volume of
distribution estimate was implausible (6350 L); therefore, this
parameter and intercompartment clearance were fixed at 496 and
5 L/h, respectively, according to the reported literature value
(Eljebari et al., 2012). This model still resulted in a superior
model fit compared with the one-compartment model
(ΔOFV = −136.676).

Body weight implemented as an allometric function on all
clearance and volume of distribution parameters in the model did
not lead to a worse model (ΔOFV = −1.363).

Further inclusion of albumin (ALB) on clearance with a linear
function resulted in a significant decrease in OFV
(ΔOFV = −11.425). However, the parameter estimate had poor
precision (RSE = 56%); therefore, ALB was not retained in the
model. Inclusion of TBIL on clearance in a linear manner led to a
significant improvement in the model fit (ΔOFV = −8.762) with a
good precision of estimate (RSE = 20.4%) and therefore was
retained in the model. Other covariates had no statistically
significant effects on PK parameters.

The final parameter estimates had a good precision
(RSE<30%) and confirmed the stability of the model
(Table 2). The basic goodness-of-fit diagnostic plots
(Figure 1) did not show any evident systematic discrepancies.
Overall, the predictive-corrected visual predictive checks showed
good consistency between the model-predicted and observed CsA
concentration versus time profiles, although the maximum
concentrations were slightly underestimated (Figure 2).

In Silico Simulation
After orally administering a 5 mg/kg daily dose of CsA, the model
predicted a trough concentration at a steady state by body weight
and TBIL levels, as shown in Figure 3. Considering the proposed
dosing regimen, the exposure in pediatric patients with low body
weight bands (<30 kg) was below the therapeutic windows
(100–200 ng/ml), suggesting that an increase in dosage must
be considered to achieve sufficient exposure. Moreover,
pediatric patients with higher TBIL levels appeared to have
higher exposure, and dose reduction in these patients was
deemed necessary.

DISCUSSION

This is a pooled population PK analysis of CsA in pediatric
patients with acquired AA in two study hospitals. The proposed
population PKmodel could accurately describe the PK properties
of CsA in the target population, and TBIL could affect clearance.

As CsA has high variability in PK profiles, routine TDM is
mandatory in clinical practice for individual therapy. The
population PK approach combined with Bayesian estimates for
individual PK parameters offers a powerful tool to achieve this
purpose. Regarding the structural model in population analyses
for CsA, the one-compartment deposition model was commonly
used for sparse PK data (Xiaoli and Qiang, 2009; Ni et al., 2013; Li
et al., 2019; Albitar et al., 2020). The current modeling analysis
using CsA trough and peak concentrations suggested an
appropriate two-compartment disposition model, which was
consistent with several published CsA population analyses
(Wilhelm et al., 2012; Okada et al., 2017). In the current
investigation, the apparent clearance (CL/F) estimate for a
typical 28 kg child was 29.1 L/h, which was higher than that
reported in a previous study including 102 children with AA
(15.1 L in a child weighing 29.8 kg) (Ni et al., 2013). The
discrepancy in CL/F might be attributed to the difference in
sampling strategy (trough and peak concentrations in our study)
and the sequential utilization of different structural models.
However, the CL/F estimate in the present study was within

TABLE 1 | Demographic data of children with acquired aplastic anemia.

Variable Value

Patient numbers 157
Age (years) [median (range)] 7.8 (1.5, 18.8)
Bodyweight (kg) [median (range)] 27.5 (12.0, 91.0)
The severity of AA, n (%)
NSAA 94 (59.9)
SAA 40 (25.4)
vSAA 21 (13.4)

Biochemistry tests [median (range)]

White blood cell (109/L) 3.97 (0.26, 12.10)
Hb (g/ml) 85 (48.2, 150)
Neutrophil (%) 34.4 (1.1, 83.0)
Blood urea nitrogen (mmol/L) 5.10 (1.10, 16.30)
Total protein (g/L) 66.8 (45.5, 86.6)
Albumin (g/L) 40.3 (25.8, 48.4)
ALT 13.0 (1.0, 209.9)
AST 21.0 (8.0, 91.3)
Total bilirubin (µmol/L) 10.90 (4.00, 70.00)
Direct bilirubin (µmol/L) 2.50 (0.30, 39.50)
Serum creatine (µmol/L) 40.0 (16.0, 127.0)

Concomitant medications, n (%)

Testosterone undecanoate 111 (70.7)
Prednisone 24 (15.3)
Methylprednisolone 47 (29.9)
Prednisolone 2 (1.3)
Dexamethasone 1 (0.6)
r-ATG 47 (29.9)
Granulocyte colony-stimulating factor 27 (17.2)

Note: The continuous variables were presented as median (range). NSAA, nonsevere
aplastic anemia; SAA, severe aplastic anemia; vSAA, very severe aplastic anemia; Hb,
hemoglobin; ALT, alanine transaminase; AST, aspartate transaminase; r-ATG, rabbit
anti-thymocyte globulin.
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the range of that of published population PK models for pediatric
patients receiving transplantation. The CL/F was 23.1 L/h in
98 pediatric renal transplant patients weighing 35.2 kg (Irtan
et al., 2007) and 29.3 L/h in 17 pediatric patients receiving stem
cell transplantation with an average body weight of 32.4 kg
(Willemze et al., 2008). In the present study, the central

volume (Vc/F) estimate was 325 L for a typical 28 kg child,
which was higher than that reported in a previous pediatric
AA study (89.1 L for a 29.8 kg child) (Ni et al., 2013),
pediatric patients who received renal transplants (70.3 L for a
35.2 kg child) (Irtan et al., 2007), and pediatric patients who
received stem cell transplantation (42.7 L for a 32.4 kg child)

TABLE 2 | Pharmacokinetic parameter estimates from the final population model of cyclosporine A in children with acquired aplastic anemia.

Parameters NM estimates SIR median
(95%CI)

CV for IIV SIR median
(95%CI)

Shrinkage (%)

Ka (/h) 1.26 (20.9) 1.27 (0.78–2.02) — — —

CL/F (L/h) 29.1 (3.8) 29.0 (26.9–31.2) 28.0 (24.9) 28.7 (20.9–35.7) 34.7
VC/F (L) 325 (15.7) 319 (273–398) 62.1 (29.3) 62.1 (48.7–77.3) 43.6
Q/F (L/h) 3.1 FIX — — — —

VP/F—(L) 262 FIX — — — —

TBIL on CL (%) −1.07 (20.4) −1.05 (−1.50 to −0.50) — — —

σ 0.348 (10.1) 0.348 (0.356–0.393) — — —

Ka is the first-order absorption-rate constant. CL/F represents the apparent elimination clearance. VC/F is the apparent central volume of the distribution. Q/F is the apparent
intercompartmental clearance. VP/F is the apparent peripheral volume of the distribution. σ is the additive residue error on the logarithmic scale. Population estimates in Table 2 are given for
a “typical” child with a body weight of 28 kg. Body weight was implemented as a fixed allometric function on all clearance and volume of distribution parameters using a power coefficient of
0.75 and 1.0, respectively. The coefficient of variation for interindividual variability (IIV) was calculated as 100 × (evariance)1/2. The relative standard error (%RSE) was calculated as 100 ×
(standard deviation/mean). The total bilirubin (TBIL) was implemented on the CL as a linear function (CL = CLtypical × ((TBIL-10.65) × −0.0107)). SIR: Sampling importance resampling
approach. The uncertainty was derived from the SIR with 2,000 samples and 1,000 resamples.

FIGURE 1 | Basic goodness of fit of the final population pharmacokinetic model of cyclosporine A. (A) conditionally weighted residuals vs. population-predicted
concentrations. (B) conditionally weighted residuals vs. time. (C) observed plasma concentrations vs. population-predicted concentrations. (D) observed plasma
concentrations vs. individually predicted concentrations; solid red lines represent locally weighted least-squares regressions.
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(Willemze et al., 2008) and lower than that reported in a recent
study of Chinese pediatric patients with nephrotic syndrome
(2320 L for a typical 25 kg child) (Zhao et al., 2022). The Vc/F
estimate was still within the range of reported values from
literature. Moreover, the total V/F (Vc + Vp) normalized to a
70 kg adult was 1,468 L, which was similar to those reported in
some studies with adult patients (1,080 and 1,010 L for Chinese
adults (Zhou et al., 2012; Wang et al., 2022), and 1,990 L for
Korean adults (Ji et al., 2011)).

Considering the principles of allometry in pediatrics, the body
weight was highly suggested to be included in the model (Holford
et al., 2013). Fanta et al. (2007) conducted a population PK
analysis for 162 pediatric patients before a transplant and found
that young patients (<8 years) had approximately 25% higher

body weight normalized clearance than older children. In a
population PK study of pediatric patients with acquired AA,
the body weight was found to correlate with CL/F and V/F (Ni
et al., 2013). In the present study, we applied the body weight
value in all the clearance and volume parameters as an allometric
function with the fixed exponent of 0.75 and 1.0, respectively,
which did not result in a poor model. In addition, a few studies
included body surface area (BSA) (Okada et al., 2017) in the
model; however, this variable was not investigated in the present
study since some height data were missing, and we were unable to
calculate the BSA.

Since CsA undergoes liver metabolism and renal elimination,
laboratory tests for liver and renal function show that PK
disposition is seemingly affected in the body. Fanta et al.
(2007) suggested that total plasma cholesterol level was
correlated with CL/F in pediatric patients undergoing renal
transplantation, with a 5.4% reduction per 1 mmol/L increase
in cholesterol level. A population PK analysis of Chinese patients
who underwent allogeneic hematopoietic stem cell
transplantation showed that the plasma albumin level was
inversely correlated with CL/F, with a 2.89% drop per 1 g/L
increase in albumin level (Zhou et al., 2012). In the present
study, total plasma cholesterol level was not routinely measured
during outpatient visits; therefore, this covariate was not
investigated. Moreover, we had a similar finding on the
albumin covariate, but considering the poor precision of the
estimate (>50%), the albumin value was removed from the final
model. We identified TBIL as a significant covariate on CL/F,
with a 1.07% reduction per 1 nmol/L rise in TBIL. Several studies
on patients with transplantation have reported that TBIL, a
biomarker of liver function, was relevant to CL/F (Wu et al.,
2005; Ji et al., 2011). This finding suggested that dose adjustment
may be required in patients with elevated TBIL levels.

Ni et al. (2013) found that SCr levels were a significant
covariate on CL/F in pediatric patients with AA, with an 8.1%
decrease per 1 μmol/L increase in SCr. Fanta et al. (2007)

FIGURE 2 | Visual predictive check of the final population
pharmacokinetic model of cyclosporine A. The visual predictive check was
based on 1,000 stochastic simulations. Open circles are the observations and
solid lines represent the 5th, 50th, and 95th percentiles of the observed
data. The shaded areas represent 95% prediction intervals around the
simulated 5th, 50th, and 95th percentiles. The Cmax was slightly
underestimated.

FIGURE 3 | Impact of body weight and total bilirubin level on the pharmacokinetic exposure at steady state after the oral administration of cyclosporine A (5 mg/kg/
d). The data of 1,000 children were used for the simulation for each body weight band. The simulation was stratified by different total bilirubin levels: (A) the normal level
(<17.1 μmol/L). (B) and (C) 1.5 and 2 times the upper limits of the normal level (25.65 and 34.2 μmol/L), respectively. The total simulated exposure was presented as
median values (25th–75th percentiles).
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indicated that SCr levels were significantly correlated with CL/
F in children undergoing renal transplantation, although the
covariate effect size was small. A population PK analysis of
CsA in Chinese pediatric patients receiving hematopoietic
stem cell transplantation suggested a nonlinear relationship
between estimated glomerular filtration rates and CL/F, with
an exponent of 0.545 in power function (Li et al., 2019). In the
present study, we did not identify a significant effect of SCr
levels; the most likely explanation was that the majority of
children had normal renal functions during the treatment
period. Moreover, CsA was highly bound to erythrocytes
and plasma proteins, and its distribution in the blood was
reported to be approximately 41–58% in erythrocytes (Han
et al., 2013). HCT was considered a significant covariate in a
few previous studies (Wu et al., 2005; Yin et al., 2006; Fanta
et al., 2007; Zhou et al., 2012). However, we did not find such a
relationship in this study. Considering transfusion was needed
in some patients, the relationship between Hb and Vc/F has
been assessed with no statistical significance in the present
study. However, a power relationship was suggested, with the
exponent estimate of 0.159. Again, the Vc/F estimate was 290 L
for a typical child with a Hb level of 85 g/L. The impact of Hb
on Vc/F was not substantial.

Concomitant drugs, such as anabolic steroids (Ni et al.,
2013) and triazole antifungal agents (Zhou et al., 2012; Li et al.,
2019; Ling et al., 2021), have been reported to affect CsA PK
exposure. Children undergoing IST often receive steroids as a
concomitant drug (Ettenger, 1998; Benfield et al., 1999; Clucas
et al., 2019). In theory, steroids could reduce CYP450 3A
metabolism in CsA via competitive inhibition (Nakamura
et al., 2002). The effects of steroids (methylprednisolone,
prednisolone, or prednisone) on CsA PK exposure were
further assessed in adult patients (Lam et al., 2008). In the
present study, five types of steroids (Table 1) were
comedicated with CsA in the treatment; however, the most
frequently used steroids (testosterone, prednisone, and
methylprednisolone) did not significantly influence CL/F
according to the modeling analysis. Moreover, only a few
patients (<5%) received triazole antifungal agent treatment,
and its effect on CL/F was not further investigated.

This study has several limitations. 1) The CsA data were
retrospectively collected from two centers, and a prospective
clinical study would improve the data accuracy. 2) Enzyme
polymorphisms have been demonstrated to contribute to the
PK variability in CsA. However, relevant CYP3A and
ABCB1 polymorphisms were not detected in this study,
which may reduce the chance of finding polymorphism-
related covariates. 3) In the present study, only two
covariates were included in the final model; other
significant covariates such as albumin were not retained due
to the poor precision of parameter estimation. This model
should, in the future, be updated with emerging data, which
will allow the assessment of the covariates in a broader
population and improve the goodness of fit accordingly,

especially for population/individual predictions versus
observation plots.

CONCLUSION

In this study, we developed a population PKmodel to describe the
PK property of CsA in Chinese pediatric patients with acquired
AA. Body weight and TBIL level were significant covariates for
the PK disposition of CsA. The proposed model could inform
precision medicine in CsA therapy for pediatric patients with
acquired AA.
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