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Abstract: (1) Background: Deoxynivalenol (DON) and zearalenone (ZEA) are type B trichothecene
mycotoxins that exert serious toxic effects on the reproduction of domestic animals. However, there is
little information about the toxicity of mycotoxins on testis development in Equus asinus. This study
investigated the biological effects of DON and ZEA exposure on Sertoli cells (SCs) of Equus asinus; (2)
Methods: We administered 10 µM and 30 µM DON and ZEA to cells cultured in vitro; (3) Results:
The results showed that 10 µM DON exposure remarkably changed pyroptosis-associated genes and
that 30 µM ZEA exposure changed inflammation-associated genes in SCs. The mRNA expression
of cancer-promoting genes was remarkably upregulated in the cells exposed to DON or 30 µM
ZEA; in particular, DON and ZEA remarkably disturbed the expression of androgen and oestrogen
secretion-related genes. Furthermore, quantitative RT-PCR, Western blot, and immunofluorescence
analyses verified the different expression patterns of related genes in DON- and ZEA-exposed SCs;
(4) Conclusions: Collectively, these results illustrated the impact of exposure to different toxins and
concrete toxicity on the mRNA expression of SCs from Equus asinus in vitro.
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1. Introduction

Deoxynivalenol (DON) and zearalenone (ZEA) are Fusarium mycotoxins produced
by Fusarium fungi [1]. DON frequently occurs in the feed of livestock in combination with
ZEA [2]. It is inevitable that grains will be contaminated by mycotoxins such as DON or
ZEA during growth, storage, and processing [3,4]. Previous in vitro studies demonstrated
that DON or ZEA exposure is linked to reproductive disorders in farm animals [5–8], and
the toxins cause major economic loss in domestic animal industries [5,9]. In addition,
ZEA causes reproductive disorders and demonstrates species-specific, organ-targeted
oestrogenic activity in farm animals [10]. The effects include ovarian atrophy in pigs [11],
follicular haematomas in horses [5], and reproductive failure in domestic animals [12–15].
However, the specific toxicity of DON and ZEA on reproduction in male Equus asinus is
still unclear.

Equus asinus is a domestic animal that serves as a pet and draft animal and is important
in mule and milk production worldwide [16,17]. According to the statistics of the Food
and Agriculture Organization of the United Nations (FAO), in 2019, there were 50,583,572
Equus asinus in the world, of which 2,600,700 were in China (http://www.fao.org/faostat/
zh/#data/QA; accessed on 7 June 2021). China has a long history of raising Equus asinus
for agriculture and transportation [8,18,19]. Moreover, Equus asinus is the major source
of the Chinese traditional tonic E Jiao, the production of which was worth 17.8 billion
dollars in 2020. Previous in vitro investigations indicated that DON or ZEA exposure may
influence the genomic stability of Equus asinus and porcine granulosa cells (GCs) [7,20].
In addition, horses fed oats contaminated with ZEA have a high incidence of follicular
haematomas [5,21]. The aberrant development of Sertoli cells is also related to some
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primary testicular carcinomas in animals and humans [22,23]. Abnormal expression of
functional genes in Sertoli cells such as androgen-regulated homeobox gene (NKX3.1) was
seen in testicular Sertoli cell tumors [24].

According to daily testing of mycotoxins in feed from the National Black Equus asinus
Breeding Center in China, the annual average levels of DON and ZEA were 646.90 µg/kg
and 545.52 µg/kg, respectively, in 2020. However, the annual average levels of DON and
ZEA were also extremely high compared to US Food and Drug Administration (FDA)
mycotoxin regulatory guidance (<500 µg/kg) [25] and European Commission Guidance
(EU) standards (<250 µg/kg) [26] for animal feed. In August, the contents of DON and
ZEA in forage had reached their annual peak, with monthly averages of 1386.24 µg/kg and
1170.47 µg/kg, respectively, which was more than twice as high as the national standard for
porcine feed (<500 µg/kg). To date, the national or local standards of mycotoxin content in
the forage of Equus asinus have not been publicised in China. But high levels of mycotoxins
in feed, especially DON and ZEA, have severely impacted the breeding of Equus asinus.

SCs perform numerous functions in vivo, including secretion of factors and nutrition
of germ cells [27], coordinating spermatogenesis and formation of the blood–testis bar-
rier, and phagocytosis of degenerating germ cells [28,29]. There are foetal and adult SC
populations that differ in function and age in the testis [30,31]. Only immature SCs can
proliferate [29,32]. Therefore, adult SCs have a finite number of germ cells that they can
support [32]. Accordingly, the efficiency of spermatogenesis is influenced by SCs, and
factors affecting SCs influence testis size and daily sperm production [30]. In addition,
SCs are the most widely used testicular cells for in vitro toxicology [29,33,34]. The testis is
highly vulnerable to xenobiotics and toxins, yet the number of studies undertaken in Equus
asinus is insufficient and should be drastically increased.

2. Materials and Methods
2.1. Reagents

DON and ZEA were procured from Sigma-Aldrich® (D0156 and Z2125 St. Louis, MO,
USA). Stock solutions of DON and ZEA at a concentration of 20,000 µM were prepared
by dissolving the toxins in dimethyl sulfoxide (DMSO) and stored at −80 ◦C. DMSO
(D12345), M-199 medium (11150067), foetal bovine serum (FBS, 10091148), penicillin, and
streptomycin were provided by Thermo Fisher Scientific (Waltham, MA, USA). Collagenase
IV (C8160), hyaluronidase (H8030), and DNase I (D8071) were provided by Solarbio (Beijing,
China). Trypsin-EDTA solution (0.25%, SH30042.01) was provided by HyClone (Beijing,
China).

2.2. Animals

Prepubertal Equus asinus testes were collected from the slaughterhouse of Dong E
Equus asinus Production Company (Qingdao, China) and maintained at 32 ◦C–35 ◦C Hank’s
balanced salt solution (Sigma-Aldrich, St. Louis, MO, USA) for the isolation of SCs. All
Equus asinus used in the experiment were fed and treated humanely during slaughter (no.
11002009000012, production license number: SCXK: 2020-7077, Qingdao, China).

All animal experiments were performed in accordance with Chinese welfare guidelines
and approved by the Institutional Animal Ethical Committee of Qingdao Agricultural
University (DEC 2020-019). All experiments were performed in accordance with relevant
guidelines and regulations.

2.3. Dose Selection

The annual average dose of DON and ZEA from the “National Black Equus asinus
Breeding Center” in 2020 was selected and translated to SCs in vitro. The doses of toxins
were standardised according to the results of previous studies on ZEA-induced impair-
ments in the fertility of Equus asinus, pigs, and mice [8,35]. DMSO was used as the vehicle
for DON and ZEA. For accuracy, the same dose of DMSO added to the 10 µM and 30 µM
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DON or ZEA groups was added to the control group. Culture media were supplemented
with DMSO at a final concentration of 0.1%.

2.4. Isolation and Culture of Equus asinus SCs

Equus asinus testes were collected and transported to the laboratory at 37 ◦C with 10%
(v/v) antibiotic-antimycotic solution (Sangon Biotech, Shanghai, China) for 30 min. The
testes were longitudinally split, and the tissue was fragmented into fine pieces by surgical
scissors and digested using 1.5 mg/mL collagenase IV and 0.2% hyaluronidase mixed
solution (Sigma-Aldrich, St. Louis, MO, USA) in HBSS at 37 ◦C for 30 min. Then, 10 µg/mL
DNase I and 0.25% trypsin were used to digest the mixed solution at 37 ◦C for 15 min. The
digested cells were filtered through 74 µm nylon mesh (Sangon Biotech, Shanghai, China).
A sedimentation step collected cell clumps at the bottom of a tube after separating the
filtered cells under unit gravity by incubating in a 15 mL tube (Corning, NY, USA) at room
temperature for 10 min. This procedure was repeated twice to remove debris included in
the cell clump. Subsequently, an adherent step separated the attached SCs and suspended
cells by incubating the clumped cells on a 10 cm culture plate (Corning, NY, USA) at 37 ◦C
for 20 min, which was repeated three times. Finally, isolated SCs were identified using
immunohistochemistry methods. The fibroblast used for the contrast group being cultured
from the cell clump of Equus asinus testes.

2.5. Flow Cytometry Analysis of Apoptosis

SCs were treated with DON and ZEA at 10 µM and 30 µM for 72 h. Then, they
were collected and washed three times using PBS. An Annexin V-FITC/7-AAD kit (Sino
Biological, APK10448-F, Beijing, China) was used to detect apoptosis or necrosis of Equus
asinus SCs by flow cytometry according to the manufacturer’s instructions.

2.6. Immunofluorescence and Cell Counting

Cultured SCs were fixed in 4% paraformaldehyde for 2 h, heated at 42 ◦C for another
2 h, and fixed on polysine-coated slides. SC sections were blocked with 10% goat serum for
40 min and incubated with primary antibodies overnight at 4 ◦C (Table 1). Subsequently,
the sections were incubated for 1.5 h at 37 ◦C with Alexa Fluor 488/Alexa Fluor 594-goat
anti-rabbit secondary antibody at a dilution of 1:100 (ABclonal, AS053/AS039, Wuhan,
China). The sections were incubated for 5 min with Hoechst 33,342 (Solarbio, C0031) to
visualise the nuclei of SCs. Immune signals were detected using a fluorescence microscope
(Olympus, XB51, Japan), and captured images were analysed in accordance with the ImageJ
standard.

Table 1. Primary antibodies.

Proteins Article Number Producer Origin

GAPDH AC001 ABclone Wuhan, China
GSDMD-N A20197 ABclone Wuhan, China
Caspase-1 A0964 ABclone Wuhan, China

CCL 17 A2854 ABclone Wuhan, China
IL 10 RA A1830 ABclone Wuhan, China

ESR 1 A1668 ABclone Wuhan, China
PRDX 4 A1486 ABclone Wuhan, China
SOX 9 A2479 ABclone Wuhan, China
MSH 6 A0983 ABclone Wuhan, China
CDK 1 A0220 ABclone Wuhan, China

CCNB 2 A3351 ABclone Wuhan, China
AR A2053 ABclone Wuhan, China

NOX 1 A12309 ABclone Wuhan, China
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2.7. Western Blot Analysis

Proteins isolated from SCs were used for Western blot analysis in accordance with
previous standard methods [36,37]. Proteins from SCs in each treatment group were
separated through 10% SDS-PAGE and transferred to PVDF membranes. The membranes
were incubated overnight at 4 ◦C with primary antibodies (Table 1), rinsed three times with
TBST, and incubated for 2 h at 37 ◦C with secondary antibodies (Sangon Biotech, D110058)
in TBST. Related proteins were detected using AlphaImager® (ProteinSimple, 92-13824-00,
San Jose, CA, USA) HP. The intensity of all bands was quantified with GAPDH as the
internal control using ImageJ software.

2.8. TUNEL Staining

The apoptosis rates of SCs were evaluated using a TUNEL BrightRed Apoptosis
Detection Kit (Vazyme, A11302, Nanjing, China). Briefly, SCs were fixed for 2 h with 4%
paraformaldehyde after 72 h of exposure to 0, 10, or 30 µM DON and ZEA. After the
TUNEL reaction, the cells were observed under fluorescence microscopy in accordance
with the manufacturer’s instructions. TUNEL-positive cells were detected and counted
under fluorescence microscopy (Olympus, XB51, Tokyo, Japan). More than 2000 SCs were
obtained from each group and counted. Three biological replicates were used for analysis
of the TUNEL-positive cell ratio.

2.9. RNA Extraction, Reverse Transcription, and RNA-Seq

RNAex pro reagent (AG, AG21101, Beijing, China) was used to extract total RNA from
cultured DON- and ZEA-exposed SCs in accordance with the manufacturer’s instructions.
Then, mRNA was reverse transcribed into first-strand cDNA with a cDNA synthesis kit
(TransGen, AT311-03, Beijing, China), referring to a previous study [35,38]. The Novogene
Company performed RNA sequencing with the 4000 platform (Beijing, China).

2.10. Identification of Differentially Expressed Genes

The NovoMagic and R Bioconductor/DESeq2 packages were used to identify differ-
entially expressed genes (DEGs) between different groups of SCs (0, 10, and 30 µM DON
and ZEA treatment groups). Raw counts for differential expression analysis were obtained
by using NovoMagic online and checked by using our own normalisation approach [35,39].
Data for differential expression analysis were previously normalised through other meth-
ods to prevent possible biases [40,41]. The log2|fold change|was disallowed as the filter
condition because the sequencing design contained biological replicates for each group.
Adjusted p < 0.01 was considered statistically significant.

2.11. GO and KEGG Enrichment Analysis

The functional profiles of DEGs were analysed through GO functional enrichment
and KEGG pathway analysis by using NovoMagic. NovoMagic is the analysis platform
developed by Novogene Company that can visualise GO and KEGG analysis results for
DEGs online. In GO analysis, genes can be categorised as molecular function, biological
process, and cellular component. NovoMagic was applied to visualise the KEGG analysis
results. The log2|fold change|value of DEGs reflects the active status of enriched signalling
pathways. Adjusted p < 0.05 was considered statistically significant.

2.12. Quantitative Real-Time PCR

Total RNA extraction and cDNA reverse transcription were performed as previously
described. A SYBR® Green Premix Pro Taq HS qPCR Kit was used to perform quantitative
real-time PCR (RT-qPCR) on a LightCycler® 96 RT-PCR instrument (Roche, Germany).
RT-qPCR was performed under the following cycling conditions: 30 s at 95 ◦C; 40 cycles
at 95 ◦C (5 s), 60 ◦C (30 s), and 72 ◦C (30 s); melting at 95 ◦C (1 s), 65 ◦C (15 s), and 95 ◦C
(1 s); and a final cooling step at 4 ◦C. The RT-qPCR primers used in this study are listed in
Table 2. GAPDH was used as the reference gene for the normalisation of mRNA expression
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in SCs. Gene expression was quantified through the 2−∆∆CT method. The expression level
of each gene is expressed as the mean ± standard deviation (SD), which was calculated
from the data of at least three independent biological replicates.

Table 2. Primers used for quantitative-PCR.

Genes Sequences of Primers (5′ to 3′) Products Genbank

GAPDH
F: GAAAGCTGCCAAATACGATGAG

136 XM_014866500.1R: GAAGGTGGAAGAGTGGATGTC

Caspase-1 F: GGGCACGGGTACAGTAAATAG
114 XM_014851328.1R: CGGGCCTTATCCATAACTGTAG

GSDMD
F: GTTATTGGCTCTGACTGGGAC

148 XM_014858171.1R: TGAATCCTGACACGCTCTTG

CCL 17
F: ACTGAAGATGCTGTTCCTGG

106 XM_014827258.1R: GAAGTACTCCAGACAGCACTC

IL 10 RA
F: GTGGATGAAGTGACTCTGACAG

139 XM_014855577.1R: CTCGGAAGTTAGGGAAGATGC

IL 32
F: CAACTCAAGACACCCTCCC

136 XM_014833201.1R: AAGTAGCTCGAAACAGGCG

IL 23 A
F: GATGGCTGTGATCCTGAAGG

113 XM_014843912.1R: TCCCCTGTGAAAATGTCTGAG

AR
F: AGAGTTGTGTAAGGCAGTGTC

96 XM_014832024.1R: TACATGCAATCTCCCCGAAG

AIG 1
F: AGTGGGAACCAAGAACAAGAG

72 XM_014850699.1R: CAGTACGGCTAACATCCAGTC

ESR 1
F: GAAGAGACAAACCAAAGCCAG

83 XM_014827966.1R: GCCTCCCCAGTGATGTAATATG

ESR 2
F: AGAGGGAAAATGCGTAGAAGG

143 XM_014853708.1R: CAGGGTACATACTGGAGTTGAG

MSH 6
F: TTCTCTGGTGCTTGTGGATG

130 XM_014833021.1R:ATGGTAGTGGTAGAAAACAGTG

MCM 6
F: GTGAAGGAGTGGGAGAAAGTG

129 XM_014849526.1R: AAAGAGCATCAGAAGGACACC

POLD 1
F: TCCGTCATGTGCCGATTC

123 XM_014830334.1R: GTAGACCTTCTCAAACTCCAGC

CDK 1
F: CTTGCCAGAGCTTTTGGAATAC

129 XM_014833411.1R: ACCTATACTCCAAATGTCAACCG

CCNB 2
F: AACAGAGTTACAACCAGAGCC

143 XM_014835324.1R: GCCAATATTTCCATCTGCACTG

PFKM
F: TCCAACTACCTGAACATCGTG

116 XM_014850046.1R: GCGTCTACAATCTCTATGATCCG

PRDX 4
F: CTCTGAATGACCTTCCTGTGG

73 XM_014867883.1R: TCGGTGTACTGGAATGCTTG

NOX 1
F: ACTACCGTCTCTTCCTTACCG

142 XM_014859678.1R: GCAGAAAACTCATTGTCCCAC

2.13. Scanning Electron Microscopy (SEM)

The treated SCs were washed with PBS 3 times, centrifuged for 10 min at 3000 rpm at
4 ◦C and fixed with 2.5% glutaraldehyde overnight. Next, tert-butanol was used to separate
the glutaraldehyde. After being air-dried, the slides were critical-point dried, mounted
on stubs, sputter-coated with a thin layer of conductive metal, gold, and palladium, and
viewed by SEM (Hitachi HT7700, Hitachi, Ltd., Tokyo, Japan).

2.14. Statistical Methods

Data are presented as the mean ± SD. The statistical significance of different effects
among the control, DON and ZEA exposure groups of SCs was determined through one-
way ANOVA for multiple comparisons. All analyses were conducted using GraphPad
Prism analysis software (San Diego, CA, USA). All experiments were repeated at least three
times, and the results were considered significant at p < 0.05.
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3. Results
3.1. Apoptosis Rates and DEGs of Equus asinus SCs Exposed to DON and ZEA

First, we examined the purity of isolated SCs. The isolated cells were identified as
SOX9 (a specific Sertoli cell marker)-positive [42] using immunohistochemistry methods
(purity of isolated SCs > 97%) (Figure 1A,B). Then, we exposed the SCs to 10 or 30 µM DON
and ZEA for 72 h of in vitro culture (Figure 1C). As shown in Figure 2, flow cytometry
analysis was used to investigate the effects of DON and ZEA on cell apoptosis (Figure 2A).
The results showed that the apoptosis rate was significantly increased under DON and
ZEA treatment (10 µM DON: 16.60% ± 1.39%; 30 µM DON: 22.05% ± 1.11%; 10 µM
ZEA: 8.06% ± 0.49%; 30 µM ZEA: 14.58% ± 1.42%) relative to that under the control
treatment (0 µM DON: 4.47% ± 0.24%; 0 µM ZEA: 4.72% ± 0.31%; p < 0.05 or p < 0.01;
Figure 2B,C). Interestingly, 10 µM DON exposure remarkably increased the apoptosis
rate of SCs compared with 30 µM ZEA treatment. From Figure S1, the percentages of
TUNEL-positive SCs also remarkably increased under DON and ZEA treatment (10 µM
DON: 22.72% ± 1.79%; 30 µM DON: 64.15% ± 3.15%; 10 µM ZEA: 15.36% ± 2.79%; 30 µM
ZEA: 24.17% ± 2.22%) relative to those under the control treatment (0 µM DON: 3.07% ±
0.14%; 0 µM ZEA: 3.32% ± 0.61%; p < 0.01; Figure S1).
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Figure 1. The purity of isolated SCs, as well as DON and ZEA exposure, affect the morphology of Equus asinus SCs. (A)
The isolated cells were identified by SOX9 positivity using immunohistochemistry methods, and fibroblasts were used
for contrast. Bar indicates 50 µm. (B) The percentages of SOX9-positive SCs. (C) The morphology of SCs following
administration of 0 µM, 10 µM, and 30 µM DON and ZEA after 72 h of culture in vitro. Bar indicates 100 µm.
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Figure 2. The effect of DON and ZEA on SCs apoptosis, analysed by flow cytometry. (A) The apoptosis results of SCs
following administration of 0 µM, 10 µM, and 30 µM DON and ZEA after 72 h of culture in vitro. (B) The apoptosis rate of
SCs after 0 µM, 10 µM, and 30 µM DON treatment. ** p < 0.01. (C) The apoptosis rates of SCs after exposure to 0 µM, 10 µM,
and 30 µM ZEA treatment. * p < 0.05; ** p < 0.01.

Nine libraries from the three groups were sequenced, and 715,715,682 raw reads (GEO
accession number: GSE172037), with 703,892,136 clean reads, were obtained. Then, we
performed RNA-seq analysis to confirm the effects of DON and ZEA exposure on SCs
(Figure 3). We screened a total of 9393 and 6065 DEGs in the DON and ZEA treatment
groups, respectively, based on the research criterion FDR < 0.05 (Figure 3F). We found
that 3300 and 3251 genes were up- and downregulated under 10 µM DON treatment,
while 4841 and 3764 genes were up- and downregulated under 30 µM DON treatment,
respectively (Figure 3A,B). Furthermore, we identified 2816 and 3131 DEGs that were up-
and downregulated under 30 µM ZEA treatment, while only 391 and 412 DEGs were up-
and downregulated under 10 µM ZEA treatment, respectively (Figure 3C,D). Meanwhile,
we selected some DEGs between the mycotoxin and control groups with degrees greater
than 20 to form a heat map (Figure 3E).
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treatment; 10 µM DON treatment group vs. Control group, 30 µM DON treatment group vs. Control group, 30 µM
DON treatment group vs. 10 µM DON treatment group. Green and red plots represent differentially expressed genes.
(B) Comparison of DEGs among the control, 10 µM and 30 µM DON-treated groups. (C) Scatterplot of gene expression
after ZEA treatment; 10 µM ZEA treatment group vs. control group, 30 µM ZEA treatment group vs. control group, 30
µM ZEA treatment group vs. 10 µM ZEA treatment group. Green and red plots represent differentially expressed genes.
(D) Comparison of DEGs among the control, 10 µM and 30 µM ZEA treated groups. (E) Heatmap indicating the group
difference of DEGs in the 10 µM and 30 µM DON and ZEA treated groups compared with the control group, and the
repeatability within each group. The results are presented as the means ± SD. All experiments were repeated at least three
times. (F) Venn diagram showing the differential expression of 9393 and 6065 genes in the DON and ZEA treated groups
compared to the control groups.
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We annotated the functional interactions of genes that were differentially expressed
between the control and DON or ZEA treatment groups by using the STRING database
to investigate the potential effects of mycotoxin exposure on SCs. Search Tool for the
Retrieval of Interacting Genes/Proteins (STRING, https://string-db.org/; accessed on 7
June 2021) is a database of protein-protein interaction. This database contains the direct
and physically related interactions between known and predicted protein and genes. The
R Bioconductor/STRINGdb was applied for PPI of interested DEGs [43].

3.2. DEGs Involved in GO Classification and KEGG Pathways

We applied the NovoMagic and R packages to annotate the GO enrichment functions
of DEGs in each group (Figure 4A–C). We found that DEGs in DNA metabolic process,
immune system process, DNA repair, and apoptotic process (Figure 4A) were remarkably
enriched in SCs exposed to 10 µM and 30 µM DON. Meanwhile, DEGs involved in the
small molecular metabolic process, immune system process, DNA metabolic process, and
cell cycle were remarkably enriched in SCs exposed to 10 µM and 30 µM ZEA (Figure 4B).
Moreover, DEGs were significantly enriched in the regulation of apoptotic processes in SCs
exposed to 30 µM ZEA (Figure 4C). In addition, upregulated DEGs in SCs under 10 µM
DON treatment were significantly enriched in the immune system and apoptotic processes
(p < 0.001). Downregulated DEGs in SCs exposed to 10 µM ZEA were significantly enriched
in the steroid biosynthesis process [8].
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with 10 μM and 30 μM ZEA were significantly enriched in the regulation of the cell cy-
cle and P53 signalling pathway (Figure 4E). In addition, we identified DEGs that were 
significantly enriched in the PI3K/AKT [35], MAPK, and Hippo signalling pathways af-
ter 30 μM ZEA treatment (Figure 4F). 

The results of GO and KEGG pathway analyses revealed that POLD1, Caspase1, 
GSDMD, CCL17, and PRDX4, which are involved in DNA metabolism, pyroptosis, and 

Figure 4. GO and KEGG biological processes involving DEGs in Equus asinus SCs exposed to DON and ZEA. (A) GO
enrichment of 5763 DEGs in the 10 µM and 30 µM DON-exposed Equus asinus SCs, including biological process, cellular
component, and molecular function. (B) GO enrichment of 685 DEGs in the 10 µM and 30 µM ZEA-treated Equus asinus SCs.
(C) GO enrichment of 5262 DEGs in the SCs of 30 µM ZEA treatment group. (D) KEGG enrichment of the 5763 DEGs in the
10 µM and 30 µM DON-exposed Equus asinus SCs. (E) KEGG enrichment of the 685 DEGs in the 10 µM and 30 µM ZEA
treated group. (F) KEGG enrichment of the 5262 DEGs of 30 µM ZEA treatment group. The lengths of the bars indicate the
number of DEGs that are enriched in each pathway. The blue to red gradient represents the p.adjust trend from high to low.

We used NovoMagic and the clusterProfiler R package to identify extremely affected
KEGG pathways to obtain insight into the function of DEGs (Figure 4D–F). DEGs in SCs
exposed to 10 µM and 30 µM DON were significantly enriched in the PI3K/AKT [35],
MAPK, and TNF signalling pathways (Figure 4D). Meanwhile, DEGs in SCs treated with

https://string-db.org/
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10 µM and 30 µM ZEA were significantly enriched in the regulation of the cell cycle and
P53 signalling pathway (Figure 4E). In addition, we identified DEGs that were significantly
enriched in the PI3K/AKT [35], MAPK, and Hippo signalling pathways after 30 µM ZEA
treatment (Figure 4F).

The results of GO and KEGG pathway analyses revealed that POLD1, Caspase1, GS-
DMD, CCL17, and PRDX4, which are involved in DNA metabolism, pyroptosis, and
inflammation processes, were differentially expressed in SCs exposed to 10 µM and 30 µM
DON. The CDK1, CCNB2, ESR1, and NOX1 genes involved in the cell cycle and steroid-
related signalling pathways were changed in SCs exposed to 30 µM ZEA. WNT2, MSH6,
RAF, and Cyclin D1 (CCND1), genes involved in cancer processes, were also differentially
expressed after exposure to 10 µM and 30 µM DON.

3.3. Cellular and Molecular Effects of DON and ZEA Exposure on SCs

Exposure to 10 and 30 µM DON may lead to the pyroptosis of SCs (Figures 5–7), and
DON and ZEA might induce inflammation and endocrine effects in SCs through different
molecular mechanisms (Figures 8–11).

As shown in Figure 5, the number of immunofluorescence-positive genes, such as
Caspase1 (Figure 5A–C) and GSDMD (Figure 5D–F), remarkably increased in the 10 µM and
30 µM DON groups, whereas the genes showed no significant differences in SCs treated
with 10 µM and 30 µM ZEA relative to those in the control group. Moreover, exposure to
10 µM and 30 µM DON significantly upregulated the mRNA abundance and protein levels
of Caspase1 (Figure 6A–C) in SCs. In addition, the mRNA abundance and protein levels
of GSDMD (Figure 6B) and GSDMD-N (Figure 6D) were increased after the treatment of
10 µM and 30 µM DON. Representative SEM images indicated that SCs treated with 10 µM
and 30 µM DON undergo membrane perforation and produce apoptotic body-like cell
protrusions prior to plasma membrane rupture [44] (Figure 7). However, there were no
significant differences in SCs treated with 10 µM ZEA compared with the control group
(Figure 7).

Immunohistochemical results of SCs exposed to the mycotoxin indicated that the
number of CCL17-positive cells remarkably increased in the 10 µM and 30 µM DON
exposure groups (Figure 8A–C), while there was a significantly increased number of
IL10RA-positive cells in the 10 µM and 30 µM ZEA treatment groups (Figure 8D–F). The
mRNA abundance and protein levels of CCL17 and IL10RA were significantly upregulated
in SCs exposed to 10 µM and 30 µM DON (p < 0.05 or p < 0.01; Figure 9A,C) and ZEA (p <
0.05 or p < 0.01; Figure 9B,D) relative to those in SCs under the control treatment.

As shown in Figure 10, the number of immunofluorescence-positive genes, such as
AR, remarkably decreased in the 10 µM and 30 µM DON exposure groups (Figure 10A–C),
whereas the expression of ESR1 genes was significantly increased in SCs treated with 10 µM
and 30 µM ZEA (Figure 10D–F) relative to those in the control group. Moreover, exposure
to 10 µM and 30 µM DON significantly downregulated the mRNA abundance and protein
levels of the AR gene (Figure 11A,C), while ZEA exposure significantly upregulated the
expression of the ESR1 gene (Figure 11B–D) in SCs.
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Figure 6. DON exposure affects the mRNA and protein abundance levels of pyroptosis-related genes
in cultured Equus asinus SCs. (A) Quantitative RT-PCR for Caspase1 transcription factors. The mRNA
levels of the genes were normalised to the GAPDH gene. (B) Quantitative RT-PCR for GSDMD
transcription factors. The mRNA levels of the genes were normalised to the GAPDH gene. (C)
Protein levels of Caspase1/GAPDH by Western blot. (D) Protein levels of GSDMD-N/GAPDH by
Western blot. The protein levels were normalised to GAPDH. The exposure time was 50 s. The results
are presented as the means ± SD. All experiments were repeated at least three times. ** p < 0.01.
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Figure 7. Representative scanning electron microscopy images of SCs treated with 10 µM and 30 µM DON and ZEA. Red
arrows indicate membrane perforation, and green arrows indicate the apoptotic body-like cell protrusions. Bar indicates
1.0 µm in the DMSO, 10 µM and 30 µM ZEA groups. Bar indicates 1.5 µm in the 10 µM and 30 µM DON groups.

The results of the 10 µM DON and 30 µM ZEA analyses showed that DEGs were re-
markably enriched in the oxidation-reduction process, PI3K-AKT signalling pathway
and Ras signalling pathway (Figure 12A,D,G). Exposure to 10 µM and 30 µM DON
(Figure 12B,E) and ZEA (Figure 12C,F) significantly downregulated the mRNA abundance
and protein levels of PRDX4 genes in SCs, respectively. The number of PRDX4-positive cells
was remarkably reduced in the 10 µM and 30 µM DON exposure groups (Figure 13A–C),
while there was a significantly decreased number of PRDX4-positive cells in the 30 µM
ZEA treatment group (Figure 13D–F). In addition, the number of NOX1-positive cells re-
markably increased in the 10 µM and 30 µM DON (Figure S2A–C) and ZEA (Figure S2D–F)
exposure groups.

Our RT-qPCR and Western blot results indicated that SCs under 10 µM and 30 µM
DON treatment exhibited significantly lower MSH6 mRNA and protein levels than those
under the control treatment (p < 0.05 or p < 0.01) (Figure 14A,D), whereas the CDK1 and
CCNB2 genes were significantly upregulated in the 10 µM and 30 µM ZEA exposure
groups (Figure 14B,C,E,F). We conducted more RT-qPCR to evaluate the expression of
different transcripts in the pathways of SCs among the control, DON and ZEA treatments
(Figure S3).
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Figure 8. Immunofluorescence assay probing the expression of SC phosphor-CCL17 (A), and IL10RA (D) proteins in the
DON and ZEA treatment groups. The percentages of positive cells (B,E) and fluorescence intensity (C,F) were analysed. Bar
indicates 50 µm. Data are presented as the means ± SD. ** p < 0.01.
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tion factors. (B) Quantitative RT-PCR for the IL10RA transcription factors. The mRNA levels of the 
gene were normalised to the GAPDH gene. (C) Protein levels of CCL17/GAPDH by Western blot. 
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Figure 9. DON and ZEA exposure affects the mRNA and protein abundance levels of inflammation-related genes in
cultured Equus asinus SCs. (A) Quantitative RT-PCR for the CCL17 transcription factors. (B) Quantitative RT-PCR for the
IL10RA transcription factors. The mRNA levels of the gene were normalised to the GAPDH gene. (C) Protein levels of
CCL17/GAPDH by Western blot. (D) Protein levels of IL10RA/GAPDH by Western blot. The protein levels were normalised
to GAPDH. The exposure time was 50 s. The results are presented as the mean ± SD. All experiments were repeated at least
three times. * p < 0.05; ** p < 0.01.
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Figure 10. Immunofluorescence assay probing the expression of phosphor-AR (A) and ESR1 (D) proteins in SCs in the DON
and ZEA treatment groups. The percentages of positive cells (B,E) and fluorescence intensity (C,F) were analysed. Bar
indicates 50 µm. Data are presented as the means ± SD. * p < 0.05; ** p < 0.01.
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mRNA levels of the genes were normalised to the GAPDH gene. (C) Protein levels of 
AR/GAPDH by Western blot. (D) Protein levels of ESR/GAPDH by Western blot. The 
protein levels were normalised to GAPDH. The exposure time was 50 s. The results are 
presented as the means ± SD. All experiments were repeated at least three times. ** p < 
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As shown in Figure 10, the number of immunofluorescence-positive genes, such as 
AR, remarkably decreased in the 10 μM and 30 μM DON exposure groups (Figure 10A–
C), whereas the expression of ESR1 genes was significantly increased in SCs treated with 

Figure 11. DON and ZEA exposure affects the mRNA and protein abundance of endocrine-related
genes in cultured Equus asinus SCs. (A) Quantitative RT-PCR for the AR transcription factors.
(B) Quantitative RT-PCR for the ESR transcription factors. The mRNA levels of the genes were
normalised to the GAPDH gene. (C) Protein levels of AR/GAPDH by Western blot. (D) Protein levels
of ESR/GAPDH by Western blot. The protein levels were normalised to GAPDH. The exposure time
was 50 s. The results are presented as the means ± SD. All experiments were repeated at least three
times. ** p < 0.01.
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2340 DEGs in Equus asinus SCs exposed to 10 μM DON and 30 μM ZEA. (E,F) The protein levels of PRDX4/GAPDH by 
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Figure 12. Gene expression of RNA-seq analysis and protein verification between the 10 µM DON- and 30 µM ZEA treated
groups. (A) Venn diagram showing DEGs in SCs exposed to 10 µM DON and 30 µM ZEA. (B,C) Quantitative RT-PCR for
the PRDX4 transcription factors in SCs treated with DON and ZEA. (D,G) GO and KEGG enrichment of 2340 DEGs in
Equus asinus SCs exposed to 10 µM DON and 30 µM ZEA. (E,F) The protein levels of PRDX4/GAPDH by Western blot in
DON and ZEA treatment groups. The protein levels were normalised to GAPDH. The exposure time was 50 s. The results
are presented as the means ± SD. All experiments were repeated at least three times. * p < 0.05; ** p < 0.01.
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Figure 13. Immunofluorescence assay probing the expression of SC phosphor-PRDX4 proteins in the DON (A) and 
ZEA (D) treatment groups. The percentages of positive cells (B,E) and fluorescence intensity (C,F) were analysed. Bar 
indicates 50 μm. Data are presented as the means ± SD. * p < 0.05; ** p < 0.01. 

Figure 13. Immunofluorescence assay probing the expression of SC phosphor-PRDX4 proteins in the DON (A) and ZEA (D)
treatment groups. The percentages of positive cells (B,E) and fluorescence intensity (C,F) were analysed. Bar indicates 50
µm. Data are presented as the means ± SD. * p < 0.05; ** p < 0.01.
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experiments were repeated at least three times. ** p < 0.01. 
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tured in vitro and RNA-seq methods to compare the toxic effects of DON and ZEA to 
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Figure 14. DON and ZEA exposure affected the mRNA and protein abundance levels of tumorigenesis-related genes
in cultured GCs. (A–C) Quantitative RT-PCR for MSH6 in the DON treatment group, CDK1 and CCNB2 in the ZEA
exposure groups. The mRNA levels of all genes were normalised to the GAPDH gene in SCs. (D–F) The protein levels
of MSH6/GAPDH in the DON treatment group, CDK1/GAPDH and CCNB2/GAPDH in the ZEA treatment group were
detected by Western blot. The protein levels were normalised to GAPDH. The results are presented as the means ± SD. All
experiments were repeated at least three times. ** p < 0.01.

4. Discussion

Fusarium mycotoxins have been implicated in poor reproductive performance in do-
mestic animals, including male Equus asinus [5,7,8,32,39,45–47]. In vitro reports with DON
or ZEA demonstrated that mycotoxins are able to directly affect the reproductive [47–50],
endocrine [51,52], and immune systems [53–55], as well as inheritance [32,45]. Previous
research demonstrated that the function of SCs is essential in the processes of normal
spermatogenesis and testis development [30–32]. Moreover, present findings suggested
that individual or mixtures of Fusarium toxins had cytotoxic effects on porcine Sertoli and
Leydig cells [56,57]. However, additive effects were not always observed for the mixtures
of Fusarium toxins [56,58–60]. The present study was designed to investigate the effects
of mycotoxin DON and ZEA treatment on pyroptosis, viability, the cell cycle, cell secre-
tion, and cell inflammation in cultured SCs. We used immature SCs cultured in vitro and
RNA-seq methods to compare the toxic effects of DON and ZEA to Equus asinus SCs. This
is the first study to describe the differences in the transcriptomes of SCs between DON and
ZEA exposure. Our results provide a basic database for mycotoxins in SC studies of Equus
asinus.
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Pyroptosis is a newly discovered type of regulated necrotic cell death induced by
inflammasomes, such as Caspase1 and Caspase11 (in mouse cells) [61,62]. Both Caspase1 and
Caspase11 can induce pyroptosis by processing Gasdermin D (GSDMD), yielding an N-
terminal fragment that forms pores on the plasma membrane, leading to cell death [63,64].
Unlike apoptosis, pyroptosis is a highly specific type of inflammation that has been proven
to be strongly associated with cancer [65]. Our results showed that the mRNA and protein
expression levels of Caspase1 and GSDMD-N in Equus asinus SCs remarkably increased
upon exposure to 10 µM DON. Moreover, representative scanning electron microscopy
images indicated that SCs treated with DON undergo membrane perforation and produce
apoptotic body-like cell protrusions prior to plasma membrane rupture [44]. Some SCs
also showed initial changes in the substructure of the plasma membrane characterised
by focal disappearance of membrane structure and partial loss of continuity, as described
for necrotic cells [66]. These results indicated that the canonical pyroptosis pathways in
SCs had been activated and that SCs possessed the typical pyroptosis appearance [67] and
severe cellular inflammation.

Furthermore, the mRNA abundance and protein levels of CCL17 in the SCs remarkably
increased after exposure to DON. High levels of CCL17 have been found in SCs in seminoma
tumours [68]. Therefore, DON treatment may promote the expression of the hallmarks
of tumour formation given its effect on pyroptosis-related genes and CCL17 expression.
ZEA is a non-steroidal oestrogenic mycotoxin. In contrast, depending on the molecular
structure, ZEA may have binding affinities to oestrogen receptors and, therefore, mimic
oestrogenic effects in SCs. We found that exposure to 30 µM ZEA significantly increased the
mRNA abundance and protein levels of ESR1, ESR2, and IL10RA in SCs. This phenomenon
indicates that exposure to ZEA may lead to inflammation and affect the endocrine function
of SCs. A total of 6551 and 803 genes were differentially expressed in SCs under the control
of 10 µM DON and ZEA treatment. Furthermore, we identified 8605 and 5947 DEGs
in the SCs under 30 µM DON and ZEA treatment, respectively. In summary, the above
results suggest that DON treatment may lead to pyroptosis and promote the expression of
oncogenes, while exposure to ZEA results in inflammation and affects endocrine disruption
in cells. Furthermore, Equus asinus SCs are more sensitive to DON exposure than SCs treated
with the same dose of ZEA.

In addition, bioinformatics analyses found that PRDX4 and cell oxidation-reduction
related genes were influenced in SCs exposed to 10 µM DON and 30 µM ZEA. Our results
indicated that DON might have stronger oxidative toxicity than ZEA in Equus asinus
SCs. Moreover, several studies have demonstrated that MSH6 (an important component
of the mismatch repair system) is a tumour-related factor that can affect tumorigenesis,
proliferation, migration, and invasion effects [69]. It is well known that suppression of
MSH6 is associated with a variety of tumours [70,71]. Interestingly, it was found in this
study that 10 µM DON exposure significantly decreased the mRNA and protein levels
of MSH6 in SCs. Therefore, exposure to 10 µM DON may be potentially mutagenic and
carcinogenic. Several studies have indicated that CCNB2 is a regulatory protein involved
in mitosis, and its product can combine with CDK1 to form a maturation-promoting
factor [72–75]. CCNB2 overexpression can result in uncontrolled cell growth [76,77].

In this study, we found that exposure to 30 µM ZEA remarkably upregulated the
mRNA and protein abundance of CCNB2 in SCs. In contrast, exposure to 10 µM ZEA
resulted in CDK1 overexpression in SCs. These results suggest that 30 µM ZEA treatment
may promote the expression of oncogenes in SCs. Furthermore, exposure to 10 µM DON
resulted in IL32 and NOX1 gene overexpression, while the AR, AIG1, MCM6, and POLD1
genes were suppressed in SCs. In addition, 30 µM ZEA treatment led to PFKM, NOX1,
and ESR2 gene overexpression in the cells. In our experiments, we observed a suppressive
effect on the mRNA abundance of the AR gene of SCs at concentrations of 10 µM and
30 µM DON treatment, while there was a stimulatory effect on the ESR1 and ESR2 genes
of SCs under 30 µM ZEA exposure. The above results validated that DON and ZEA had
differential toxic patterns in Equus asinus SCs. Additionally, the exact mechanisms by
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which DON or ZEA changes cell secretion in Equus asinus SCs remain the subject of further
investigation.

We also found proapoptotic effects of DON and ZEA using flow cytometry and
TUNEL-positive analysis. A significant reduction in the SCs was observed at toxic con-
centrations of both mycotoxins. The results demonstrate that the mycotoxins DON and
ZEA can stimulate cell apoptosis in Equus asinus SCs. Both mycotoxins seem to transmit
their molecular effects by influencing the MAPK signalling cascades and the protein ki-
nase Akt, which could result in translation anomalies. However, it can be assumed that
DON and ZEA modulate the process of translation at different molecular levels. Whereas
DON mainly had an impact on pyroptosis and androgen disruption and therefore on the
biological activity of the Caspase1, GSDMD, CCL17, AR, and AIG1 genes, ZEA increased
the abundance of IL 10 RA, CDK1, PFKM, NOX1, and specific bands of the ESR1 and ESR2
genes. Thus, DON and ZEA exerted toxic effects on SCs in a different manner. Further
investigations are required to obtain more information about specific signalling cascades
that transmit the toxicity of DON and ZEA in Equus asinus SCs.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cells10081898/s1, Figure S1: DON and ZEA exposure increasing apoptosis rate in cultured SCs.
SCs were stained blue with Hoechst33342 solution. TUNEL assay was performed using immunostain-
ing. (A) Immunofluorescent staining of TUNEL and Hoechst33342 of DON treated SCs. Bar indicates
50 µm. (B) The percentages of TUNEL positive SCs exposed to DON. (C) Immunofluorescent staining
of TUNEL and Hoechst33342 of ZEA treated SCs. Bar indicates 50 µm. (D) The percentages of TUNEL
positive SCs exposed to ZEA. The results are presented as mean± SD. All experiments were repeated
at least three times. p < 0.05; * p < 0.01. Figure S2: Immunofluorescence assay probing the expression
of SCs phosphor- NOX1 proteins in DON (A) and ZEA (D) treatment groups. The percentages of
positive cells (B/E) and fluorescence intensity (C/F) were analyzed respectively. Bar indicates 50 µm.
Data are presented as means ± SD. p < 0.05; * p < 0.01. Figure S3: DON and ZEA exposure affecting
mRNA abundance of tumorigenesis related genes in cultured GCs. (A–E) Quantitative RT-PCR for
IL32, AIG1, NOX1, MCM6, and POLD1 in DON treatment groups. (F–J) IL32A, ESR2, NOX1, PGK1,
and PFKM in ZEA exposure groups. The mRNA levels of all genes were normalized to SCs GAPDH
gene. The results are presented as mean ± SD. All experiments were repeated at least three times.
p < 0.05; * p < 0.01.
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