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Targeted therapy with epidermal growth factor receptor (EGFR) tyrosine kinase

inhibitors (TKIs) is an effective treatment for EGFR-mutant non-small-cell lung

cancer (NSCLC), however most patients invariably relapse after a period of

minimal residual disease (MRD). This mini-review explores the mechanistic

pathways leading to tumour dormancy, cellular senescence and epigenetic

changes involving YAP/TEAD activation. We describe the various approaches of

utilising TKIs in combination with agents to intensify initial depth of response,

enhance apoptosis and target senescence-like dormancy. This mini-review will

also highlight the potential novel therapies under development targeting MRD

to improve outcomes for patients with EGFR-mutant NSCLC.
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Introduction

Lung cancer, the second most commonly diagnosed cancer in 2020, remains the

leading cause of global cancer death with an estimated 1.8 million deaths worldwide (1).

Early-stage non-small-cell lung cancer (NSCLC) is managed by curative intent

treatments such as surgical resection or ablative radiotherapy (2). Depending on

histological and nodal staging, this is followed in most cases by a course of adjuvant

systemic chemotherapy and/or immunotherapy to reduce the risk of cancer recurrence

(3). Following complete surgical resection, the additional survival benefit conferred by

platinum-based adjuvant chemotherapy increases with pathological stage (4, 5).

Nevertheless, recurrence rates remain high with 30% to 55% of patients with NSCLC

developing recurrence (6). This is largely attributed to a propensity for NSCLC to persist

within the body following curative and adjuvant treatments in the form of minimal

residual disease (MRD): micrometastatic deposits or circulating tumour cells (7, 8).

Detecting MRD has become standard in some haematological malignancies, and liquid

biopsy for circulating tumour DNA (ctDNA) is an active area of interest in several solid
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tumour types (9). However, the biology driving MRD in solid

cancers seems to be highly variable between solid tumour types,

with some clinically important differences recently associated

with the presence of oncogenic driver mutations.

Oncogenic driver mutations have emerged as key

therapeutic targets. EGFR is a receptor tyrosine kinase

involved in extracellular growth factor signalling which is

associated with growth, proliferation and survival (10). EGFR

mutations are common and are seen in 10-15% of North

American/European NSCLC, but up to 30-50% of East Asian

patients.(ref) They are characteristically seen in pulmonary

adenocarcinoma with bronchoalveolar features, particularly in

patients without a history of smoking. EGFR mutations such as

exon 19 deletion and L858R substitution lead to dysregulated

EGFR activation and anti-apoptotic signalling can be achieved

by mutation within the four exons (18-21) encoding the part of

the tyrosine kinase domain clustered around the ATP-binding

pocket of the enzyme.

Like other oncogenic mutations, EGFR mutations display

“clonal” behaviour in vivo: they arise within individual cells

which propagate and diverge into different lineages which

undergo a quasi-Darwinian process where tumour cell

populations descended from a progenitor or ‘clone” acquire

successive somatic mutations that confer a selective advantage

(11). This inevitably results in solid tumours which display

highly heterologous cell populations. Exposure to systemic

anti-cancer treatments has the effect of a selective pressure

selecting for cancer cell lineages which contain or develop

treatment resistance. As treatment resistance is only present in

a small proportion of treatment-naïve cancer cells, initial clinical

response can often be quite promising. Unfortunately, these

responses lack durability, either over time or in the absence of

ongoing systemic treatment. An archetypal example of this

pattern can be seen in the response of EGFR-mutant NSCLC

to tyrosine kinase inhibitors.

In advanced EGFR-mutant NSCLC, gefitinib (12), and

erlotinib (13) were the first TKIs to demonstrate improved

progression free survival (PFS) in comparison with platinum

doublet chemotherapy. Osimertinib, a third generation TKI with

improved binding activity, demonstrated high response rates as

well as superior PFS compared to gefitinib and erlotinib in the

advanced disease setting, and is the current standard-of-care

therapy (14). Interestingly, while long term responders were

observed in both the osimertinib and gefitinib/erlotinib groups,

the survival rates for the FLAURA study at 3 years was 54% in

the osimertinib group (15). Unfortunately, despite good initial

response to treatment, TKIs do not in most patients create a

durable response. This pattern of failure suggests that the effect

of TKIs on EGFR-mutant NSCLC is more likely to be

suppression rather than eradication. This distinction between

cancer suppression and cancer eradication, calls into question
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elimination (not suppression) of MRD is the therapeutic goal.

In the setting of completely resected EGFR-mutant NSCLC,

gefitinib demonstrated superior PFS compared to standard

platinum doublet adjuvant chemotherapy (16). However,

subsequent follow-up showed that this initial response did not

translate into an improvement in overall survival (17). The

landmark ADAURA study (18) comparing a three-year course

of adjuvant osimertinib versus placebo in completely resected

stage IB to IIIA EGFR-mutant NSCLC demonstrated an early

advantage in disease free survival of 89% vs 52% at 24 months

with an overall hazard ratio (HR) 0.2 (99% CI, 0.14 to 0.30).

Despite this significant difference, questions have been raised

about clinical significance of disease-free survival as an endpoint,

as well as the variable use of adjuvant chemotherapy between

treatment groups (19). Overall survival data is eagerly awaited. It

may well be that the effect of TKI treatment in the adjuvant

setting turns out to be one of MRD-suppression rather than

MRD-eradication.

It is important to bear in mind that the persistence of MRD

to TKI treatment is distinct from bona fide treatment resistance

which is classically characterised as the development or presence

of specific mutations such as T790M EGFR mutations. These

persister cells on the other hand do not by necessity harbour

such mutations and are able to maintain viability throughout

TKI treatment through other, less well understood mechanisms.

It has been observed that EGFR-mutant tumour cells can enter a

drug-tolerant state reminiscent of cellular senescence that

enables ongoing survival predominantly through resistance to

or inhibition of apoptosis (20).
Apoptosis and senescence in EGFR-
mutant cancer cells

Apoptosis is an inducible, stepwise process of programmed cell

death which can be classified into two broad pathways. The

extrinsic pathway which is initiated by a class of cell membrane

proteins known as death receptors, and the intrinsic pathway which

is initiated through elaborate intracellular processes which

invariably converge at the mitochondrial outer membrane. This

leads to permeabilization and the subsequent release of cytochrome

c into the cytoplasm. The release of cytochrome c from the

mitochondria is stimulated by pro-apoptotic members of the

BCL-2 family (i.e., BAX, BAK, BIM, BMF, BID and BAD) and

inhibited by pro-survival members of the same family, such as BCL-

2, BCL- XL and MCL1. Importantly, the efficacy of TKIs in EGFR-

mutant NSCLC is reliant upon their ability to induce apoptosis by

modulating the expression of members of the BCL-2 family (21).

The pro-apoptotic protein BIM is phosphorylated by several cell

survival pathways including ERK1/2 and MAPK1. The knockdown
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of BIM by small interfering RNA was observed to attenuate

apoptosis induced by EGFR TKIs in cancer cell lines in vitro (22).

Patients with EGFR-mutant NSCLC harbouring a BIM deletion

polymorphism exhibit greater resistance to TKI treatment (23). An

important pre-clinical study showed that a primary means by which

cancer cells may evade apoptosis both in vitro and in vivo is by

entering into a state of dormancy or senescence (24).

Cellular senescence is broadly defined as a viable, non-

proliferative state akin to cellular dormancy. Replicative

senescence is attributed to the progressive loss of protective

telomeric DNA with mitotic cellular division and is mediated

predominantly through the actions of p53 (25). Inducible

senescence is a more varied phenomenon and can result from

exposure to noxious and/or oncogenic stimuli such as ionising

radiation or oxidative stress. One unique form of inducible

senescence is oncogene-induced cellular senescence (OIS),

which was initially demonstrated in vitro by the transfection of

oncogenic HRAS V12 into murine fibroblasts which produced a

strong anti-proliferative effect associated with activation of

p16INK4A and p19ARF (26). The cell signalling pathways

mediating OIS are complex but both pRB and p53 are involved

in maintaining proliferative arrest (27). Rather than being

maladaptive, senescence in this context is thought to be anti-

oncogenic. Upregulation of oncogenes such as RAS and RAF

have been observed to induce senescence in several in vitro

models (28). However, senescence may also be playing an anti-

therapeutic role in the context of anti-cancer therapies. TKIs

such as gefitinib have also been observed to induce cellular
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senescence in malignant cells both in vitro and ex vivo (29). The

escape/evasion of EGFR inhibition poses a hard problem to

current TKI treatments targeting EGFR-mutant NSCLC.
Therapeutic strategies to enhance
Osimertinib response

Targeting senescence-like cell dormancy

A novel area of significant interest is targeting cancer cell

dormancy itself (24). An EGFR-mutant lung cancer cell line

exposed to EGFR/MEK inhibition in vitro through a

combination of osimertinib and trametinib (via a DMSO-

containing solution of 100 nM and 30 nM of the former and

latter agents respectively) induced awidespread apoptotic response.

A small proportion of cells were able to persist throughout this die-

off, independent of ERK signalling, by entering a stable dormant

state and were still detectable after fifteen weeks of treatment. After

drug washout, these dormant cells were observed to proliferate and

recolonize the wells within a matter of days. This reversible

dormant state shared several characteristics in common with

cellular senescence including senescence-associated beta-

galactosidase staining, flattened morphology typical of senescent

cells, and H3K9Me3-positive nuclear foci.

The establishment and maintenance of dormancy was found to

be closely associated with YAP/TEAD/Hippo activity as shown in

Figure 1. Dormant EGFR-mutant NSCLC cells expressed significant
FIGURE 1

Cell signalling pathways implicated in EGFR-mutant non-small-cell lung cancer including downstream signalling of EGFR receptor via the PI3K-
AKT pathway (green) and MAPK pathway (green) and the YAP/TEAD hippo signalling pathway downstream of Merlin/NF2. Both pathways
converge on the apoptosis pathway.
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enrichment of YAP/TEAD gene expression signature, which was

identified using RNA sequencing. Increased YAP activity and

decreased ERK1/2 activity was observed in a patient-derived

xenograft in vivo model from tumour tissue sampled from a

patient with EGFR-mutant NSCLC who had undergone partial

response following treatment with osimertinib and selumetinib

(24). This study went on to demonstrate that co-treatment of

EGFR-mutant NSCLC cell lines with osimertinib plus XAV939, a

tankyrase inhibitor that indirectly inhibits YAP signalling, reduced

both the abundance of dormant cells as well as the regrowth of cells

following washout. In three separate YAP1 knockout EGFR-mutant

NSCLC cell lines, cell dormancy following osimertinib exposure was

completely abolished. Co-targeting cell dormancy in combination

with EGFR/MEK inhibition as a means of bypassing apoptosis

evasion is a promising direction for future therapeutics. This could

be accomplished in several ways. For instance, YAP inhibition may

be accomplished by direct inhibitors such as MFF, or indirect

inhibitors such as the tankyrase inhibitor XAV939. As well, the

most effective timing of YAP inhibition will need to be established.

YAP inhibitors used upfront in conjunction with EGFR/MEK

inhibitors may exhibit different efficacy or toxicity compared to

treating with EGFR/MEK inhibitors first and adding YAP

inhibitors later when dormancy has been established.
Targeting apoptosis

If TKI escape/evasion is occurring through the attenuation

of the upstream, pro-apoptotic proteins such as BMF and BIM,

then direct co-stimulation of apoptotic effectors may potentiate

TKI treatments. Venetoclax is a selective and potent inhibitor of

BCL-2 that binds to the BH3 domain of BCL-2 and disrupts its

ability to interact with the pro-apoptotic protein BIM, thereby

inducing apoptosis (30). As a monotherapy, venetoclax has been

found to inhibit the growth of high BCL-2-expressing small cell

lung cancer in vitro (30). Similar pre-clinical work has shown

BH3-mimetics targeting BCL-XL and BCL-2 are also effective

agents against pleural mesothelioma (31). Perhaps most

interesting, the combination of pro-apoptotic BH3-mimetics

with additional anti-cancer agents has been observed to

produce synergistic anti-tumour effects in several studies.

Venetoclax combined with osimertinib significantly enhances

apoptosis in EGFR-mutant NSCLC cells with acquired

osimertinib resistance (32). As well, a strong anti-tumour

effect was induced through the combination of ABT-737, a

BH3 mimetic which displaces the anti-apoptotic protein BCL-

XL, and cisplatin, was observed in a murine NSCLC model (33).

Similarly, navitoclax, a BCL-2 inhibitor, was found to work

synergistically with 5-fluorouracil in oesophageal cancer cells in

vitro (34). Potentiating apoptosis may be a reliable way of
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cancer regiments.
Trials

Intensifying TKI regimens

Various approaches are currently underway to address MRD

by combining EGFR TKIs with other therapeutic agents. One

such strategy is combining EGFR TKIs with platinum-

pemetrexed chemotherapy. The FLAURA2 study is currently

underway and attempts to answer this question of whether

osimertinib used in combination with chemotherapy would

deepen MRD in the first line setting and delay the

development of resistance (NCT04035486). The TAKUMI trial

randomised sixty-two patients who had developed T790M

resistance mutation after first line EGFR-TKI therapy to either

osimertinib with combination carboplatin-pemetrexed versus

osimertinib alone and found that there was no significance

difference in median PFS (35). In regards to safety, a meta-

analysis of combination chemotherapy with first-generation

TKIs found overall increased toxicities most notably

myelosuppression and gastrointestinal side effects (36). As

well, no specific pattern of toxicity leading to dose

modification or discontinuation was observed, although one

patient discontinued study treatments due to pneumonitis (37).

Co-targeting EGFR and MEK inhibition is a promising area

of research interest given pre-clinical trials have shown efficacy

compared to single agent alone. Osimertinib combined with a

MEK or ERK inhibitor enhanced apoptosis and prevented the

emergence of osimertinib resistance in vitro by enhancing

osimertinib-induced apoptosis, the prevention of ERK1/2

reactivation, and inhibited the emergence of resistance in

osimertinib-sensitive models known to acquire resistance via

both T790M-dependent and T790M-independent mechanisms

(38, 39). The clinical application of this has yielded mixed

results. There have been case studies showing combination

osimertinib and MEK inhibitor trametinib have led to an

increased response after progression with osimertinib (40, 41),

whilst in another study the sequential addition of a MEK

inhibitor trametinib in a patient population already pre-treated

with prior TKI therapy did not demonstrate efficacy highlighting

the importance of patient selection (42). The findings of a phase

II study evaluating the combination of osimertinib with MEK 1/

2 inhibitor selumetinib will undoubtably be informative as to the

in vivo efficacy of this combination (NCT03392246).

The strategy of TKI-immunotherapy combinations has been

largely limited by the lack of data on the clear benefit and the

high rates of toxicities namely interstitial lung disease.
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Combination osimertinib and durvalumab was associated with a

high incidence (38%) of interstitial lung disease (43), and in the

TATTON study; the same combination was shown to cause

significant toxicities with grade 3 or higher adverse events

reported in almost half of patients and interstitial lung disease

reported in 22% leading to early discontinuation (44).
Future perspectives

The current landscape of trials in the EGFR-mutant NSCLC

space primarily involves osimertinib in combination with agents

active against downstream pathways and acquired resistance

mechanisms as shown in Table 1. While fourth generation

EGFR-TKIs are in development to target the most commonly

seen emergent mutations C797S and C797X after third line

EGFR-TKI treatment, the authors speculate that these

approaches are reactionary and invariably other resistance

mechanisms will develop (NCT04862780), (NCT05153408),

(NCT05394831). Aurora kinase A activation, another acquired

resistance mechanism is shown to play a role in drug resistance to

EGFR-TKI treatment and is also the subject of early phase trials

involving the addition of Alisertib (NCT04085315)

(NCT04479306) (NCT05017025). Other early phase trials are

evaluating inhibit ion of the downstream signall ing

pathway PI3K/mTOR with sapanisertib (NCT04479306) and

MET inhibition with bispecific antibody Amivantamab

(NCT02609776) (NCT04965090).
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Relatively few trials are underway that directly address MRD

and the evasion of apoptosis. This may be owing to the novelty of

the proposed mechanisms involved, as well as the paucity of

literature demonstrating a clear role for apoptosis-targeting

agents in lung cancer. To date, the phase II study of

combination osimertinib with MEK1/2 inhibitor selumetinib

(NCT03392246) is the only trial currently underway that is

evaluating whether this combination may prevent the emergence

of acquired resistance.
Conclusions

EGFR-TKI therapy remains the mainstay of first-line

treatment for EGFR-mutant NSCLC however this rarely leads

to cure as acquired resistance invariably develops. The

understanding of the MRD state that develops after initial

exposure to EGFR-TKIs such as YAP/TEAD provide an

insight into how tumour cells escape from initial apoptosis.

The pre-clinical success of osimertinib and XAV939

demonstrates a promising alternative of targeting multiple

pathways proactively in the first line setting to deepen MRD that

may circumvent the development of drug resistance and prove to be

beneficial than targeting the acquired resistance pathways that

develop post osimertinib exposure. Further trials are required to

develop amore effective treatment strategy and evaluate the efficacy

and safety of upfront combination or sequential targeted

therapies. The ongoing discovery of more targetable resistance
TABLE 1 Currently recruiting EGFR mutation non-small-cell lung cancer trials.

Agent Study Phase Target

Amivantamab NCT02609776 (CHRYSALIS) Phase I Human bispecific EGFR-cMET antibody

Osimertinib + Nectiumumab NCT02496663 Phase I Human IgG1 monoclonal antibody

Osimertinib + Selumetinib NCT03392246 Phase II MEK1/2 inhibitor

Dacomitinib NCT03755102 Phase I EGFR inhibitor

Osimertinib + Dacomitinib NCT03810807 Phase I EGFR inhibitor

Osimertinib + Telaglenastat NCT03831932 Phase I Glutaminase inhibitor

Osimertinib + Telaglenastat NCT03831932 Phase Ib Glutaminase inhibitor

Osimertinib + Alisertib NCT04085315 Phase I Aurora Kinase A inhibitor

Osimertinib+ Alisertib + Sapanisertib NCT04479306 Phase Ib Aurora Kinase A + mTORC1/2 inhibitor

Osimertinib+ Quaratusugene Ozeplasmid NCT04486833 Phase I TUSC2 TSG inhibitor

Osimertinib + MRX-2843 NCT04762199 Phase Ib MERTK/FLT3 inhibitor

Osimertinib + Tegavivint NCT04780568 Phase Ib TBL1 inhibitor

BLU-945 NCT04862780 (SYMPHONY) Phase I/II 4Gen EGFR against C797S

Lazertinib + Amivantamab NCT04965090 Phase II 3rd gen EGFR + EGFR-MET bispecific Ab

Befotertinib + Icotinib NCT05007938 Phase II EGFR inhibitor

Osimertinib + LY3295668 NCT05017025 Phase Ib/II Aurora Kinase A inhibitor

BLU-701 NCT05153408 (HARMONY) Phase I/II 4Gen EGFR inhibitor against C797S

JIN-A02 NCT05394831 Phase I/II 4Gen EGFR inhibitor against C797X
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mechanisms are likely to continue to reshape the future treatment

of EGFR-mutant NSCLC. However, a strategy which involves

optimal EGFR inhibition and eliminating these MRD cells which

have senescent properties, is potentially the key to unlocking the

‘holy grail’ of cure in this disease.
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