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Abstract

Motivation: Fast and accurate prediction of protein–ligand binding structures is indispensable for

structure-based drug design and accurate estimation of binding free energy of drug candidate mol-

ecules in drug discovery. Recently, accurate pose prediction methods based on short Molecular

Dynamics (MD) simulations, such as MM-PBSA and MM-GBSA, among generated docking poses

have been used. Since molecular structures obtained from MD simulation depend on the initial con-

dition, taking the average over different initial conditions leads to better accuracy. Prediction accur-

acy of protein–ligand binding poses can be improved with multiple runs at different initial velocity.

Results: This paper shows that a machine learning method, called Best Arm Identification, can opti-

mally control the number of MD runs for each binding pose. It allows us to identify a correct bind-

ing pose with a minimum number of total runs. Our experiment using three proteins and eight

inhibitors showed that the computational cost can be reduced substantially without sacrificing ac-

curacy. This method can be applied for controlling all kinds of molecular simulations to obtain best

results under restricted computational resources.

Availability and implementation: Code and data are available on GitHub at https://github.com/tsu

dalab/bpbi.

Contact: terayama@cbms.k.u-tokyo.ac.jp or tsuda@k.u-tokyo.ac.jp

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Structure-based drug discovery is becoming an essential tool for assist-

ing fast and cost-efficient lead discovery and optimization (Lionta

et al., 2014). Fast and accurate prediction of protein–ligand binding

structure is an indispensable process for structure-based drug design,

especially when binding structure has not been resolved by X-ray or

NMR. In addition, accurate prediction of binding structure enables us

to estimate binding free energy DGbind with high accuracy using

existing methods such as Linear Interaction Energy (Åqvist et al.,

1994), Molecular Mechanics/Poisson–Boltzmann Surface Area (MM-

PBSA) (Kollman et al., 2000; Srinivasan et al., 1998), Molecular

Mechanics/Generalized Born Surface Area (MM-GBSA) (Onufriev

et al., 2000) or Massively Parallel Computation of Absolute binding

Free Energy with well-Equilibrated states (Fujitani et al., 2009).

Docking programs are often used as scoring function for binding pose

prediction, but their accuracy is still low (Hou et al., 2011; Lavecchia
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and Di Giovanni, 2013). Recently, MM-PBSA-based binding pose

prediction methods have also been proposed, in which Molecular

Dynamics (MD) and MM-PBSA calculations are performed to esti-

mate DGbinds on generated docking poses and accurately identify the

best ones (Hou et al., 2011; Thompson et al., 2008). A number of

methods for binding pose prediction and binding free energy estima-

tion based on MD calculation have been proposed (Colizzi et al.,

2010; Okimoto et al., 2009; Proctor et al., 2012).

However, binding pose prediction based on the MM-PBSA

method is computationally expensive: in order to improve accuracy,

MD simulation and MM-PBSA calculation (MD and MM-PBSA

run) must be repeated and averaged over multiple initialization con-

ditions, for each pose candidate (Berhanu and Hansmann, 2013;

Genheden and Ryde, 2010; Mikulskis et al., 2012; Sadiq et al.,

2010). This approach incurs a huge computational cost, as existing

studies use the same number of initial conditions for all poses (uni-

form sampling) and unnecessary calculation is performed for un-

promising pose candidates. Figure 1A shows the pose prediction

with MD and MM-PBSA through uniform sampling.

The recently introduced Best Arm Identification (BAI) problem

consists of optimizing the allocation of limited resources to find the

best slot out of many slots. In this problem, we select a slot, called

arm, and get a reward according to a probability distribution

associated with it. These probability distributions are not known to

us. The purpose of the problem is to minimize the total number of se-

lections and reward-getting processes to find the best arm. A number

of effective algorithms to achieve this purpose have been proposed

(Audibert and Bubeck, 2010; Bubeck et al., 2009; Gabillon et al.,

2012).

The BAI problem has attracted attention in the field of machine

learning (Auer et al., 2002; Bubeck et al., 2009) and has been

applied to various fields such as the design of clinical trials (Villar

et al., 2015), recommendation systems of news and goods (Li et al.,

2010) and the game of Go (Coulom, 2006; Silver et al., 2016). In

this paper, we propose an effective pose prediction method using a

BAI algorithm. Using such an algorithm to optimally control MD

and MM-PBSA runs, we can reduce the total number of MD and

MM-PBSA runs compared to the total number of runs with uniform

sampling, as seen in Figure 1.

To show the effectiveness of the proposed method, we conducted

a pose prediction experiment, using the MD and MM-PBSA

methods, on a dataset consisting of three proteins, cyclin-dependent

kinase 2 (CDK2), heat shock protein 90 alpha (HSP90A) and coagu-

lation factor X (FA10), and eight inhibitors. We prepared 20 bind-

ing poses that included one or more ‘correct’ poses for each

complex. We then investigated how much of a computational cost

reduction can be obtained on runs of MD and MM-PBSA, using our

proposed method, compared with the widely used uniform sampling

approach (where the same number of MD and MM-PBSA runs is

performed for each pose).

The number of MM-PBSA runs was reduced by a factor of 1.76–

6.67 compared to uniform sampling, with a success probability of

correct pose identification fixed to 95%. In particular, in cases

where pose prediction was difficult due to the small difference be-

tween correct and incorrect poses, DGbind, the cost reduction was

even greater. This result illustrates the ability of BAI algorithms to

avoid unpromising poses at an early stage and concentrate computa-

tion resources on promising poses instead.

2 Materials and methods

2.1 Binding pose prediction and BAI
In order to predict binding poses, we need to estimate and compare

the binding free energies, DGbinds, of each generated pose, as shown

in Figure 1. An accurate value of DGbind for a pose can be obtained

by performing MD and MM-PBSA runs with multiple initial veloc-

ities. Uniform sampling, in which the same number of runs with dif-

ferent initial conditions is conducted, is the current standard method

to obtain the best results (Berman et al., 2000; Genheden and Ryde,

2010; Mikulskis et al., 2012; Sadiq et al., 2010), however it comes

with enormous calculation costs (Fig. 1A).

We propose an effective pose prediction method that controls

runs based on BAI. The BAI problem was formulated by Bubeck

et al. (2009) in the field of machine learning. Figure 2A shows a

flowchart of the BAI algorithm in general settings. The purpose of

the BAI algorithm is to optimize allocation of limited resources to

find the best slot (arm). At a first step, a forecaster pulls each arm

once and observes a sample drawn from the reward distribution of

the arm (Initialization). He repeatedly selects an arm according to

the ‘scores’ of the arms (Selection) and get a reward of the arm,

until the budget runs out (Pull). The selection way of arms and the

definition of ‘score’ depends on exploration algorithms. Finally, he

selects the seemingly best arm from the reward of each arm (Final

Selection). Since he does not know the reward distributions, he

needs to explore entire arms and exploits the seemingly most

A

B

Fig. 1. Pose prediction using uniform sampling (A) and BAI (B) algorithms.

The purpose of pose prediction is to select the best (minimum DG20vel: ) pose

among N prepared docking poses. Using uniform sampling, the same num-

ber (k) of MD and MM-PBSA runs with different initial velocities is performed,

resulting in a total of k�N runs. On the other hand, the total number of runs

can be reduced by optimally controlling runs using a BAI algorithm (B) (Color

version of this figure is available at Bioinformatics online.)
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rewarding arms, avoiding the seemingly bad rewarding arms. A

number of effective algorithms for the BAI problem have been pro-

posed in some settings, and theoretical analysis has been also con-

ducted (Audibert and Bubeck, 2010; Bubeck et al., 2009; Gabillon

et al., 2012; Kaufmann and Kalyanakrishnan, 2013).

The problem of binding pose prediction can be regarded as a BAI

problem as shown in Figure 2B by considering an arm as a binding

pose, pulling an arm as calculation of �DGbind by MD and MM-

PBSA, and a reward as an estimate �DGbind. [In this study, we mul-

tiplied MM-PBSA estimates by�1 before applying BAI algorithms.

This is because BAI algorithms output the best (maximum) arm,

whereas the binding pose that has smallest binding energy should be

explored.] BAI algorithms can reduce the total number of MD and

MM-PBSA runs because they optimally control the number of runs

for each pose to identify the binding pose.

2.1.1 BAI algorithms used in our experiment

We adopt four BAI algorithms for our experiments: (i) Upper

Confidence Bound algorithm with quantile factor parameter p

(UCB(p)) (Bubeck et al., 2009), (ii) Upper Confidence Bound

Exploration (UCB-E) (Audibert and Bubeck, 2010), (iii) Successive

Rejects (SR) (Audibert and Bubeck, 2010) and (iv) Unified Gap-

based Exploration (UGapE) (Gabillon et al., 2012). Their effective-

ness has been shown both theoretically and experimentally, and

implementation is relatively easy.

To explain the details of these algorithms, we introduce standard

BAI notation (see overview in Fig. 3): Let A ¼ f1;2; . . . ;Kg be the set

of arms and n the number of rounds (or budget). For t ¼ 1; 2; . . . ; n, at

round t, the forecaster chooses an arm It in A and observes a reward.

A reward of an arm i is sampled from the reward distribution �i, which

is the unknown parameter for the forecaster. For each arm i and round

t, we denote by Ti tð Þ the number of times arm i was pulled from rounds

1 to t, and by Xi;1;Xi;2; . . . ;Xi;Ti tð Þ the sequence of associated rewards.

We define the empirical mean for arm i after s pulls bXi;s ¼ 1
s Rs

t¼1Xi;t.

After n rounds, the forecaster selects an arm, denoted by Jn.

The UCB(p) and UCB-E algorithms were proposed by Bubeck et al.

(2009) and Audibert and Bubeck (2010), respectively, based off the

UCB algorithm (Auer et al., 2002), which is practical and widely used

for the multi-armed bandit (MAB) problem. The MAB problem is a

problem to optimize allocation of limited resources based on existing

knowledge in order to maximize the cumulative sum of rewards ob-

tained by multiple slots (arms) (Agrawal and Goyal, 2012; Auer et al.,

2002; Robbins, 1952). The BAI problem is a variant of the MAB prob-

lem. Algorithms 1 and 2 show the UCB(p) and the UCB-E algorithms.

The basic idea of these algorithms is to select the most promising arm

Fig. 2. The basic idea for our framework. (A) A flowchart of the BAI algorithm in the general setting. The purpose is to find the best arm (slot) by repeating selec-

tion and reward acquisition within a limited budget. (B) The BAI algorithm applied to the binding pose prediction problem. We can reduce the total number of MD

and MM-PBSA runs to find the binding pose by efficient BAI algorithms (Color version of this figure is available at Bioinformatics online.)

Fig. 3. Problem formulation of BAI

Algorithm 1 UCB(p) algorithm.

Require: p>0 (exploration parameter), n (total number of

rounds)

1: for i 1; K do " Initialization

2: Pull arm i and get reward Xi;1

3: end for

4: for t Kþ 1; n do " Exploration loop

5: for i 1; K do " Calculate UCB(p) score Si of arm i

6: Si  bXi;Ti t�1ð Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p log t�1ð Þ

Ti t�1ð Þ

q
7: " Ti t � 1ð Þ: the number of times arm i was pulled

until t – 1

8: end for

9: Draw arm It 2 arg maxi2ASi and get reward XIt ;TIt t�1ð Þþ1

10: end for

11: return Jn 2 arg maxi2A
bXi;Ti nð Þ
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based on each score function. These algorithms approximately calcu-

late upper confidence bounds (UCBs) of arms according to some crite-

ria and select an arm based on the UCBs. When using these methods, it

is necessary to decide the total number of rounds (budget) n and the ex-

ploration parameters p and c beforehand. In general, when the value of

an exploration parameter is large, it is extensively searched and when

the value is small, a small number of candidates are intensively

searched. Users need to determine a proper value of the parameter to

find the best arm effectively without missing it.

Audibert et al. also proposed the SR algorithm (Algorithm 3),

which is an exploration parameter free algorithm. The basic idea of

SR is to reject unpromising arms and pull the remaining arms. SR has

the same number of phases as the number of arms and discards one

arm, which is seemingly bad per phase. The number of poses calcu-

lated in each phase k is determined by nk in Algorithm 3. The sum of

nk for k ¼ 1; 2; . . . ;K� 1 is less than or equal to n. We also imple-

mented UGapE algorithm (Algorithm 4), which outperformed exist-

ing algorithms including UCB-E in some settings (Gabillon et al.,

2012). UGapE was proposed as an algorithm to find the best m arms.

We fix m¼1 in this paper. In the selection process of UGapE, we first

find the ‘promising’ arm lt based on a confident interval bk t � 1ð Þ and

then select an arm among the arm lt and the ‘best’ one ut in the arms

except for lt. This algorithm also uses the exploration parameter a.

It is difficult to predict which algorithm is suitable for a given

problem in advance, because the effectiveness of exploration de-

pends on the distribution of rewards on the problem and exploration

parameters. We experimentally verify which algorithm is appropri-

ate for the binding pose prediction problem.

2.1.2 Automatic estimation of exploration parameters

One practical issue with the algorithms covered in this paper is the selec-

tion of exploration parameters that affect the effectiveness of exploration

and are needed to be determined by users. We employ automatic adjust-

ment methods for the free parameters c and a in UCB-E and UGapE, as

stated by Audibert and Bubeck (2010) and Gabillon et al. (2011).

For these two algorithms with reward distributions over [0, 1],

the bounds of probability of error en, i.e. the probability that the fi-

nally selected arm Jn is not the best one with round n, have been

proved as follows:

en � 2nK exp �n� K

18Hc

� �
(1)

for UCB-E and

en � 2nK exp �n� K

2Ha

� �
(2)

for UGapE where

c ¼ 25

36

n� K

Hc
and a ¼ n� K

4Ha
: (3)

The variables Hc and Ha, called complexities of a problem, are cal-

culated by using the reward distribution �1; �2; . . . ; �K. However,

such distribution is unknown in advance. As automatic parameter

tuning methods (UCB-E auto and UGapE auto), we calculate suit-

able estimates bHc and bHa of Hc and Ha from observations at each

round t and select an arm using the estimates. We show the details

of these methods in Supplementary Methods.

2.2 Preparation of docking poses
It is necessary to prepare the correct (stable) binding pose of a pro-

tein and a ligand to calculate the binding free energy between them.

Algorithm 2 UCB-E algorithm.

Require: c>0 (exploration parameter), n (total number of

rounds)

1: for i 1; K do " Initialization

2: Pull arm i and get reward Xi;1

3: end for

4: for t Kþ 1; n do " Exploration loop

5: for i 1; K do " Calculate UCB-E score Si of arm i

6: Si  bXi;Ti t�1ð Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffi

c
Ti t�1ð Þ

q
7: end for

8: Draw arm It 2 arg maxi2A Si and get reward XIt ;TIt t�1ð Þþ1

9: end for

10: return Jn 2 arg maxi2A
bXi;Ti nð Þ

Algorithm 3 SR algorithm. Let A1 ¼ f1; . . . ;Kg; log Kð Þ ¼ 1
2

þRK
i¼2

1
i ; n0 ¼ 0 and for k 2 f1; . . . ;K� 1g; nk ¼ d 1

log Kð Þ
n�K

Kþ1�ke.

Require: n (total number of rounds)

1: for k 1; K� 1 do " Exploration loop

2: for i 2 Ak do " Pull arms in Ak

3: Pull arm i for nk � nk�1 rounds and get rewards

4: end for

5: Akþ1  Akn arg mini2Ak

bXi;nk
" Reject minimal arm

in Ak

6: end for

7: return Jn 2 Ak " Jn is the unique element of Ak

Algorithm 4 UGapE algorithm. bk t � 1ð Þ is a confidence interval,

and Uk tð Þ and Lk tð Þ are high-probability upper and lower bounds.

For arm k 2 A and round t, Uk tð Þ ¼ bXk;Tk t�1ð Þ þ bk t � 1ð Þ; Lk

tð Þ ¼ bXk;Tk t�1ð Þ � bk t � 1ð Þ and bk t � 1ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

a
Tk t�1ð Þ

q
.

Require: a>0 (exploration parameter), n (total number of

rounds)

1: for i 1; K do " Initialization

2: Pull arm i and get reward Xi;1

3: end for

4: for t Kþ 1; n do " Exploration loop

5: for k 1; K do " Calculate score Sk of arm k

6: Sk ¼ maxi6¼kUi tð Þ � Lk tð Þ
7: end for

8: lt 2 arg mink2A Sk

9: ut 2 arg maxj2Anlt Uj tð Þ " ut: the best possible arm

left outside lt
10: Draw arm It 2 arg maxk2flt ;utg bk t � 1ð Þ and get re-

ward XIt ;TIt t�1ð Þþ1

11: end for

12: return Jn 2 arg maxi2A
bXi;Ti nð Þ
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In this paper, we consider that a pose is correct if the root mean

square deviation (RMSD) of the binding pose is <2.0 Å from the ex-

perimentally observed conformation. This criteria is widely used in

binding pose prediction (Cheng et al., 2009; Hou et al., 2011;

Thompson et al., 2008).

We prepared 20 docking poses for each protein–ligand complex,

which consists of three proteins, CDK2, HSP20A and FA10 and eight

ligands (see Supplementary Methods for details and Supplementary

Material). The basic information of the dataset is listed in Table 1.

We show the RMSDs and the docking scores of the prepared docking

poses for each of all the compounds in Supplementary Tables S1 and

S2. In our dataset, one to three correct poses (<2.0 Å) are included in

each pose set.

2.3 MD simulations of protein–ligand complexes
In molecular mechanics (MM) minimization and MD simulations,

the Amber99SB-ILDN force field (Lindorff-Larsen et al., 2010) was

used for proteins and the general AMBER force field (Wang et al.,

2004) was used for ligands. The TIP3P water model (Jorgensen

et al., 1983) was used for water molecules. Water molecules

were placed around the complex model with an encompassing dis-

tance of 8 Å, including roughly 13 000 water molecules. Charge-

neutralization ions were added to neutralize the system.

All MD simulations were carried out in periodic boundary con-

ditions using the GROMACS 4 program (Hess et al., 2008) on the

K-computer (RIKEN, Japan). Energy was first minimized for the ini-

tial configuration using the steepest descent method, then the

Particle Mesh Ewald method (Darden et al., 1993) was used to cal-

culate the long-range electrostatic interactions. Hydrogen atoms are

constrained using the LINCS (Hess, 2008) algorithm. After mini-

mization, the system was equilibrated for 100 ps under constant vol-

ume (NVT) and run for 100 ps under constant pressure and

temperature (NPT) with positional restraints on protein heavy

atoms and ligand atoms. Initial velocities were assigned from a

Maxwell distribution at 298 K. Then a 1 ns production run was con-

ducted under the NPT condition without positional restraints. In

this procedure, the temperature was maintained at 298 K and the

pressure was maintained at 1 atm.

Twenty sets of 1 ns production runs were performed with differ-

ent initial velocities for each docking pose. The total simulation time

was 3.2 ls (1 ns�20 runs with different velocities�20 poses�8

complexes). All MD runs were carried out with time steps of 2 fs

and snapshots for the MM-PBSA analysis were taken every 10 ps.

2.4 MM-PBSA calculations
In the MM-PBSA method, the total free energy G of a biomolecular

system is expressed as follows (Kollman et al., 2000):

G ¼ EMM þGPB þGSA � TSsolute (4)

EMM ¼ Eint þ Eel þ Evdw (5)

where EMM is MM energy term consisting of internal Eint (from

bonds, angles and dihedral angles), non-bonded electrostatic Eel and

van der Waals Evdw energies. The polar and non-polar contributions

to the solvation free energies are expressed as a continuum solvent

Poisson–Boltzmann (PB) model and a solvent-accessible surface area

(SASA)-dependent non-polar solvation term, respectively. The last

term in (4) is the absolute temperature T multiplied by the entropy

S. The binding free energy DGbind is expressed as follows:

DGbind ¼ Gcomplex � Gprotein þGligand

� �
: (6)

To calculate the binding free energy, the typical procedure is to aver-

age DGbind in a set of conformation ensembles of the given complex

structure taken from MD simulations (Hou et al., 2010; Kollman

et al., 2000). In this study, conformation ensembles in 1 ns MD pro-

duction were used, as it was suggested that MM-PBSA calculation

based on short (�1 ns) MD simulations is appropriate for DGbind

prediction and pose rescoring (Hou et al., 2010, 2011; Xu et al.,

2013).

MM-PBSA calculations were carried out using the MMPBSA.py

module (Miller III et al., 2012) in the Amber12 package (Case et al.,

2012). In the calculation, we used the single-trajectory protocol,

which is much faster than the original separate-trajectory protocol

(Hou and Yu, 2007).

The snapshots for MM-PBSA calculations were taken every

10 ps over the last 500 ps period in each MD production run, result-

ing in a total of 50 snapshots per MD run. The DGbind estimate for

each MD run was calculated by averaging the 50 MM-PBSA esti-

mates for the snapshots. The non-polar solvation free energy (GSA)

was determined by the SASA using equation:

GSA ¼ cSASAþ b (7)

where the surface tension c and the offset b were set to the standard

values of 0.00542 kcal mol�1 Å–2 and 0.92 kcal/mol, respectively. It

has been suggested many times that the change of conformation en-

tropy TSsolute term can be omitted in pose prediction as it does not

always improve the prediction results (Hou et al., 2010, 2011;

Kumari et al., 2014; Yang et al., 2011), and therefore, in light of its

high computational cost, this term was not considered here.

2.5 Calculated DGbind distributions of the prepared

poses
For the generated conformation ensembles in the MD productions,

we calculated DGbinds according to the above MM-PBSA calculation

procedure. For each pose, we calculated the average (DG20vel: ) and

SD of the 20 DGbind. Calculated DG20vel: and SDs of DGbind are

listed in Supplementary Tables S1 and S2. In our dataset, the

DG20vel: identified correct binding poses in each complex, whereas

Table 1. Basic information of the eight complexes in the test set

Protein PDB code Ligand ID Molecular weight No. of poses Correct poses Average RMSD (Å)

CDK2 2R3J SCJ 380.2 20 1 7.81

CDK2 1OI9 N20 339.4 20 1 5.67

CDK2 1KE6 LS2 401.5 20 3 6.49

CDK2 3DDQ RRC 354.5 20 3 7.14

FA10 2WYG 461 472.0 20 3 4.98

FA10 2J94 G15 489.0 20 2 5.66

HS90A 2VCI 2GJ 465.5 20 1 6.61

HS90A 3VHD VHE 385.5 20 1 6.25
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only two correct poses (2WYG-461 and 2J94-G15) were identified

by the docking score. Figure 4 shows the distributions of calculated

DGbinds for all binding poses for eight compounds. The DGbind val-

ues of correct binding poses (red) are comparatively smaller than

those of incorrect poses (blue). Note that some DGbind values for in-

correct poses are smaller than for correct poses.

We show the details of tool information and their parameters for

the docking pose preparations, MD simulations and MM-PBSA cal-

culations in Supplementary Table S3.

3 Results and discussion

To show the effectiveness of the proposed method, we performed a

pose prediction experiment on our dataset. In the experiment, a

pose prediction trial is a process to choose a pose from 20 pose can-

didates by calculating DGbind values with MD and MM-PBSA for

each pose. In the pose prediction trials, the number of MD and

MM-PBSA runs of each pose is controlled by different allocation al-

gorithms: uniform sampling (baseline method), UCB(p), UCB-E

(auto), SR and UGapE (auto) (see Section 2 for more details). Note

that a pose prediction trial may succeed, i.e. the pose chosen by the

trial is a correct pose, or fail while using the same algorithm due to

variations of DGbind depending on the initial velocity distribution in

MD, as shown in Figure 4.

Figure 5 illustrates the reductions of MD and MM-PBSA runs in

a pose prediction trial for 3DDQ-RRC and 2VCI-2GJ. The reduc-

tion results of the other compounds are shown in Supplementary

Figure S1. Here, we first performed a pose prediction trial using uni-

form sampling (k¼10). Green bars show the number of runs per

pose. The total number of runs was 200 (10�20 poses). Blue, pur-

ple, red and orange bars show the number of runs per pose using

UGapE auto, UCB-E auto, SR and UCB(p) (p¼4). Total runs of

UGapE auto, UCB-E auto and UCB(p) were 50, and those of SR was

75. Black lines are the averaged binding free energies (DG20vel: ) in

Supplementary Tables S1 and S2. As shown in Figure 5, the compu-

tational resources for the BAI algorithms are concentrated on small

DG20vel: poses. And the total numbers of runs using the BAI algo-

rithms are reduced from 200 (10�20 poses) runs using uniform

sampling to 50 and 75 without reducing the number of runs for

promising poses, which have small DG20vel: values. In all the trials in

Figure 5, correct poses were successfully chosen. However, such tri-

als do not always succeed due to the large fluctuations of DGbind

(see Fig. 4).

To evaluate the performance of the BAI algorithms, we estimated

the probability of correct pose prediction, i.e. the probability that an

algorithm selects the correct pose among pose candidates under

fixed parameters. For a given allocation algorithm and total number

of runs, we repeated pose prediction trials and calculated the ratio

of succeeded trials to total trials. Instead of actually performing the

MD and MM-PBSA runs, we estimated the probability by sampling

without replacement a binding free energy DGbind from the energies

calculated in Sections 2.3–2.5 and shown in Figure 4. (When all the

calculated binding free energies DGbinds of a pose were used up,

pose selection was done from the remaining poses except for

the pose.) We show the result of probability of correct pose predic-

tion using uniform sampling (baseline) for all the complexes in

Supplementary Figure S2. Figure 6 shows the probabilities of correct

pose prediction using BAI algorithms (UGapE auto, UCB-E auto, SR

and UCB(p) (p¼4)) increasing the total number of MD and MM-

PBSA runs. For all the algorithms, the probabilities rose with

increasing the number of total runs. For all the compounds, the total

numbers of MD and MM-PBSA runs using BAI algorithms were

reduced without sacrificing the probability of correct pose predic-

tion. We summarized the total number of MD and MM-PBSA runs

Fig. 4. The distributions of calculated DGbinds for all poses in eight compounds. Twenty DGbind values are calculated for each pose. Red poses are the correct bind-

ing poses (RMSD< 2.0 Å) and blue ones are incorrect. Horizontal lines represent within boxes the mean values and indicate the mean value and the first and last

quartile, while the ends of the whiskers show maximum and minimum values within 1.5 IQR (inter-quartile range: the distance between the first and last quartiles)

of the first and last quartiles (Color version of this figure is available at Bioinformatics online.)
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to reach the correct pose prediction probability of 95% for explor-

ation parameter free algorithms in Table 2. Table 3 shows the prob-

abilities of correct pose prediction with the total number of runs

fixed to 40, 60 and 100. From Table 2, the average numbers of runs

using UGapE auto and UCB-E auto were approximately reduced by

a factor of 3.5 compared to uniform sampling. The average proba-

bilities of correct pose prediction using UGapE auto and UCB-E

auto reached 90% with only 40 total runs, although the probability

of uniform sampling was 76% (Table 3).

In particular, when pose prediction is difficult due to a small dif-

ference in DG20vel: s between correct and incorrect poses, such as for

3DDQ-RRC and 2VCI-2GJ, computational cost using UGapE auto

can be greatly reduced by a factor of 5.00 and 6.67, respectively

(Fig. 6 and Table 2). For example, the difference of DG20vel: values

between pose 1 (�41.9 kcal/mol, correct) and pose 2 (�41.6 kcal/

mol, incorrect) of 2VCI-2GJ was 0.37 kcal/mol (Supplementary

Table S2), whereas the SDs of poses 1 and 2 were relatively large

(2.23 and 1.00 kcal/mol). When the difference is small, a large

Fig. 5. Reductions of MD and MM-PBSA runs per pose by BAI algorithms in a pose prediction trial. Green bars show the numbers of runs (k¼10) per pose by uniform

sampling in a pose prediction trial. Blue, purple, red and orange bars show the number of runs per pose using UGapE auto, UCB-E auto, SR and UCB(p) (p¼ 4). Black

lines are the averaged binding free energies (DG20vel: ). The total numbers of runs by BAI algorithms are reduced from 200 (10�20 poses) by uniform sampling to 50

and 75 without reducing the number of runs for promising poses, which have small DG20vel: values (Color version of this figure is available at Bioinformatics online.)

Fig. 6. The probabilities of correct pose prediction by the proposed methods and uniform sampling (baseline) at different numbers of MD and MM-PBSA runs for

eight complexes. The total numbers of MD and MM-PBSA runs (computational cost) were reduced using the BAI algorithms [UGapE auto, UCB-E auto, UCB(p)

p¼4 and SR] without sacrificing accuracy compared to uniform sampling (green). The probabilities of UGapE auto (blue) and UCB-E auto (purple), whose explor-

ation parameters were automatically adjusted, are higher than those of uniform sampling (green). Although UCB(p) showed almost the same high performance

as UGapE auto and UCB-E auto under the exploration parameter p¼ 4, the result varies depending on the parameter as shown in Supplementary Figure S3. The

result using SR (red) is a little worse than other BAI algorithms (Color version of this figure is available at Bioinformatics online.)
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number of runs for promising poses (e.g. poses 1 and 2 in 2VCI-2GJ)

is needed to explore the difference and predict a correct pose, leading

to unnecessary calculation of many unpromising poses (e.g. poses 3 to

20 in 2VCI-2GJ) under uniform sampling. On the other hand, BAI al-

gorithms avoid such unpromising poses at an early stage and compu-

tational resource can be concentrated on only promising poses,

leading to an even greater reduction in computational cost.

In order to assess the robustness of these algorithms, especially

for the exploration parameters p, c and a for UCB(p), UCB-E and

UGapE algorithms, we calculated the probabilities of correct pose

prediction by changing these parameters. Supplementary Figures

S3–S5 show the probability curves of correct pose predictions with

different parameters. From these results, the optimal value of an ex-

ploration parameter for each complex may change depending on its

DGbind distributions shown in Figure 4. In Supplementary Figures S3

and S4, the automatic parameter adjustment methods UCB-E auto

and UGapE auto are not necessarily the best result for all complexes.

However, these exploration parameter free algorithms are practical

because it is difficult to decide the optimal parameter among differ-

ent complexes and takes cost to search it by calculating the probabil-

ities using different parameters as shown in Supplementary Figures

S3–S5. Together with the results in Figure 6, it is suggested that

UGapE auto and UCBE auto algorithms are promising compared to

uniform sampling and the other BAI algorithms.

We believe that our framework based on BAI algorithms can be

widely used in various situations. The pose prediction results indi-

cate the effectiveness of our framework even when multiple correct

poses are present among pose candidates. In the experiment, the

number of binding poses is set to 20 and the number of correct poses

is set to 1, 2 or 3, but the proposed method is effective for any num-

ber. MD and MM-PBSA calculations were performed as described

in Section 2, excluding the entropy term, but even with this entropy

term, or with different parameters and methods of calculation, the

proposed method would still be applicable. Our framework can be

used for such binding pose prediction procedures.

4 Conclusions

In this study, we have proposed an efficient binding pose prediction

method based on BAI algorithms to estimate binding free energy be-

tween ligands and proteins. Our results on our test datasets showed that

the proposed method reduced the computational cost and improved

accuracies compared to uniform sampling, in particular for small differ-

ences in binding free energies between correct and incorrect poses.

While we did confirm the effectiveness of BAI algorithms with

the MM-PBSA method, we believe they could be just as effective at

controlling all kinds of molecular simulations and find the best re-

sults under limited computational resources. In future work, we

plan to improve the accuracy of correct pose prediction and binding

free energy estimation by considering non-uniform weighting across

MD and MM-PBSA runs. The distribution of binding modes and

binding free energies of a ligand and protein complex can be effect-

ively estimated by using such controlling algorithms. We would also

like to investigate methods using Bayesian optimization (Shahriari

et al., 2016) in order to search for optimal poses from many candi-

dates without limiting their number.
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Table 2. The number of MD and MM-PBSA runs to reach the correct pose prediction probability of 95% using exploration parameter free

algorithms

Algorithm 2R3J-SCJ 1OI9-N20 1KE6-LS2 3DDQ-RRC 2WYG-461 2J94-G15 2VCI-2GJ 3VHD-VHE Average

Uniform sampling 60 60 160 260 60 160 360 100 153

UGapE auto 24 (2.50) 26 (2.31) 75 (2.13) 52 (5.00) 29 (2.07) 57 (2.81) 54 (6.67) 28 (3.57) 43.1 (3.54)

UCB-E auto 24 (2.50) 26 (2.31) 53 (3.02) 60 (4.33) 34 (1.76) 51 (3.14) 81 (4.44) 28 (3.57) 44.6 (3.42)

SR 27 (2.22) 29 (2.07) 65 (2.46) 92 (2.83) 34 (1.76) 68 (2.35) 124 (2.90) 38 (2.63) 59.6 (2.56)

Note: The reduction effects obtained by dividing the numbers of runs of the BAI algorithms by the ones of uniform sampling are shown in parentheses.

The bold value indicates the result of the largest reduction effect in each complex.

Table 3. The probabilities (%) of correct pose prediction with the total number of runs fixed to 40, 60 and 100

Algorithm Total runs 2R3J-SCJ 1OI9-N20 1KE6-LS2 3DDQ-RRC 2WYG-461 2J94-G15 2VCI-2GJ 3VHD-VHE Average

Uniform sampling 40 93.9 88.9 76.5 62.6 94.2 61.5 53.1 77.5 76.0

UGapE auto 40 100 100 86.5 89.5 97.4 89.1 76.9 100 92.4

UCB-E auto 40 100 100 89.0 88.3 96.7 88.6 59.1 99.7 90.2

SR 40 99.9 99.3 86.2 79.9 96.6 81.9 63.6 96.9 88.0

Uniform sampling 60 98.7 95.5 81.6 69.9 96.6 71.5 57.7 90.1 82.7

UGapE auto 60 100 100 89.7 98.0 98.6 95.7 100 100 97.7

UCB-E auto 60 100 100 96.9 95.0 99.6 97.5 66.5 100 94.4

SR 60 100 100 93.4 85.5 98.8 90.8 67.6 99.4 91.9

Uniform sampling 100 100 99.5 89.7 78.7 99.9 83.8 63.2 97.2 89.0

UGapE auto 100 100 99.8 100 99.8 99.5 99.4 100 100 99.8

UCB-E auto 100 100 100 100 99.9 100 100 100 100 100

SR 100 100 100 99.9 96.7 100 99.9 84.1 100 97.6

The bold value indicates the highest probability in the same total runs.
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