
Published online 17 May 2022 Nucleic Acids Research, 2022, Vol. 50, Web Server issue W145–W151
https://doi.org/10.1093/nar/gkac378

CalFitter 2.0: Leveraging the power of singular value
decomposition to analyse protein thermostability
Antonin Kunka1,2,†, David Lacko3,†, Jan Stourac 1,2, Jiri Damborsky 1,2, Zbynek Prokop1,2,*

and Stanislav Mazurenko 1,2,*

1Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk
University, Brno, Czech Republic, 2International Centre for Clinical Research, St. Anne’s University Hospital
Brno, Brno, Czech Republic and 3Faculty of Information Technology, Brno University of Technology, Brno, Czech
Republic

Received March 23, 2022; Revised April 20, 2022; Editorial Decision April 29, 2022; Accepted May 14, 2022

ABSTRACT

The importance of the quantitative description of
protein unfolding and aggregation for the rational
design of stability or understanding the molecular
basis of protein misfolding diseases is well estab-
lished. Protein thermostability is typically assessed
by calorimetric or spectroscopic techniques that
monitor different complementary signals during un-
folding. The CalFitter webserver has already proved
integral to deriving invaluable energy parameters by
global data analysis. Here, we introduce CalFitter 2.0,
which newly incorporates singular value decompo-
sition (SVD) of multi-wavelength spectral datasets
into the global fitting pipeline. Processed time- or
temperature-evolved SVD components can now be
fitted together with other experimental data types.
Moreover, deconvoluted basis spectra provide spec-
tral fingerprints of relevant macrostates populated
during unfolding, which greatly enriches the infor-
mation gains of the CalFitter output. The SVD analy-
sis is fully automated in a highly interactive module,
providing access to the results to users without any
prior knowledge of the underlying mathematics. Ad-
ditionally, a novel data uploading wizard has been
implemented to facilitate rapid and easy uploading
of multiple datasets. Together, the newly introduced
changes significantly improve the user experience,
making this software a unique, robust, and interac-
tive platform for the analysis of protein thermal de-
naturation data. The webserver is freely accessible
at https://loschmidt.chemi.muni.cz/calfitter.

GRAPHICAL ABSTRACT

INTRODUCTION

The thermal stability of proteins is imperative for their cor-
rect biological function, and its disruption often has devas-
tating effects on the host organism. Protein instability leads
to misfolding and aggregation that are associated with many
severe human diseases, such as Alzheimer’s, Parkinson’s or
Amyotrophic Lateral Sclerosis (1), and that gravely limit the
efficient application of proteins in biotechnological, phar-
maceutical, and other industries (2). Our general knowledge
of the key structural and energetic basis of protein stabil-
ity originates predominantly from the mutational unfolding
studies (3,4). Although the framework for the proper analy-
sis of thermodynamic and kinetic stability of proteins has a
long history (5,6), experimental output from many stabiliza-
tion studies is often limited to only a few empirical param-
eters, e.g. apparent melting temperatures (7). Considering
the significant advancement in high-throughput biophysical
techniques and a growing number of data-driven machine
learning tools for protein stability prediction (8), the need
for a robust, easy-to-use, and freely available platform for
analysis of protein thermal denaturation data is therefore
pressing.

To address this, we have previously developed the Cal-
Fitter webserver (9), which enables a global analysis of
temperature-induced protein unfolding data measured with
commonly used biophysical techniques, including differ-
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ential scanning calorimetry (DSC), fluorescence, circular
dichroism (CD), Fourier-transform infrared (FTIR) spec-
troscopies, and temperature jumps. The software integrates
thirteen unique unfolding models, involving a various num-
ber of defined macrostates and different combinations of
reversible or irreversible transitions between them. CalFit-
ter 1.0 compiles the conventionally used reversible models
as well as more complex partially or fully irreversible mod-
els collected from more recent literature (6,10). The former
analyse the data based on the principles of equilibrium ther-
modynamics, whereas the latter treat the data from temper-
ature scanning experiments as a dynamic process under ki-
netic control, sensitive to a particular scan rate, and inte-
grate the equations describing the fractions of states numer-
ically. The detailed mathematical description of these mod-
els can be found in the original publications (9,11). Experi-
mental data can be interactively modelled based on the de-
fined parameters, which allows users to easily test the va-
lidity of the selected model and make verifiable quantita-
tive predictions about protein unfolding behavior. The out-
put of the analysis is provided in an easily processible for-
mat, as physically relevant energy parameters derived based
on the Eyring formalism of the transition state theory, e.g.
Gibbs free energy differences (�G), which are being actively
used as training data for recent machine learning stabil-
ity predictors (12,13). To our best knowledge, it is the only
tool that allows simultaneous fitting of data from tempera-
ture scanning experiments together with unfolding kinetics.
The recent examples of CalFitter use include decoding the
mechanism of domain-swapping of computationally stabi-
lized haloalkane dehalogenase (14), explaining the kinetic
stability of cold adapted subtilase (15), elucidating the ag-
gregation propensity of polyketide cyclase (16), or study of
dihydrofolate reductase evolution (17).

While CalFitter 1.0 has proved integral to the global data
analysis of a wide range of experimental signals, recent
technological advancements in massive data collection of-
fer new opportunities for analysis yet to be fully exploited
in the pipeline. Spectroscopic techniques are conveniently
used to monitor protein unfolding due to their low sample
requirements, moderate to high-throughput, and rich infor-
mational output. Earlier measurements were limited to an
intensity change at a single wavelength (e.g. CD ellipticity)
or the wavelength of the maximum intensity (fluorescence).
However, such simple signals provide an incomplete picture
of the unfolding process and are prone to misinterpretation
(18). In contrast, recent technologies enable monitoring the
entire protein spectra, which directly report on the local and
global conformational changes during the unfolding. Yet
this tremendous informational potential has not been fully
exploited as it was not accompanied by the development of
a suitable analytical toolbox for researchers without the ad-
vanced data analysis background.

In this work, we present a major update of the origi-
nal CalFitter that addresses the current needs of the field
in complete spectral data analysis using singular value de-
composition (SVD). SVD is a powerful mathematical tool
for data dimensionality reduction and has been exploited in
several mechanistic studies of protein folding and unfold-
ing using time-resolved fluorescence (19), small angle X-ray
scattering (20–22), FTIR (23) and other advanced biophys-

ical techniques (24,25). It is widely used for the detection of
potential (un)folding intermediates due to its ability to ex-
tract spectral fingerprints of the protein states contributing
to the overall signal (26–31). CalFitter 2.0 newly features
(i) an easy upload of protein spectra recorded as a function
of temperature (scanning experiments), time (kinetics), or
other parameters (e.g. denaturant concentration, pH), (ii)
the automated SVD analysis of these spectra, (iii) the inter-
active interface for dynamic visualization of the results and
data pre-processing, (iv) the readily available export of the
results in the excel format and (v) the global fitting of the
SVD components from temperature scanning and unfold-
ing kinetics experiments along with other signals, e.g. from
DSC. The addition of the SVD analysis to the CalFitter
pipeline greatly enhances the informational output of the
software by providing spectral fingerprints of the relevant
macrostates populated during protein unfolding. Addition-
ally, based on the users’ feedback, we have completely re-
worked the data uploading procedure to accommodate var-
ious input file formats. The newly introduced changes sig-
nificantly expand the applicability of the CalFitter 2.0 and
make it a unique platform for global analysis of protein de-
naturation experiments.

NOVEL FEATURES

The original CalFitter has been described elsewhere (9), and
its schematic overview, together with the novel functions in-
troduced to the new version, are shown in Figure 1. The
main feature of CalFitter 2.0 is the new SVD analysis mod-
ule that is used as a data pre-processing step prior to the
global fitting or as an independent tool for SVD analysis
of virtually any multi-wavelength datasets. Another criti-
cal feature is a completely reworked uploading wizard sup-
porting various input data formats and uploads from mul-
tiple files. Its interactive interface allows the quick and in-
tuitive selection, labelling, visualization, and pre-processing
of the input datasets. We provide a detailed description of
the uploading wizard in the help section of the webserver
https://loschmidt.chemi.muni.cz/calfitter/?action=help.

SVD ANALYSIS

The input to the singular value decomposition consists of
multi-wavelength data organized in a rectangular m × n ma-
trix in which the m rows represent the wavelengths, and the
n columns represent the experimental points, e.g. spectra at
different times or temperatures. The SVD is a factorization
of the original matrix to three matrices in the form of U�VT

(Figure 1), where the columns of the U are the left singular
vectors (basis spectra), � contains singular values (compo-
nent amplitudes) on its diagonal, and the rows of the VT

are the right singular vectors (time or temperature compo-
nents). The detailed mathematical description of the algo-
rithm procedure, together with the results of its thorough
validation, can be found in the Supplementary Data (Table
S1). CalFitter 2.0 performs the SVD automatically upon the
data upload and displays the results in an interactive inter-
face (Figure 2).

The graphical representation of the SVD results is dis-
played on the right side of the interface (section 4 in Fig-
ure 2). The first ten normalized singular values are shown

https://loschmidt.chemi.muni.cz/calfitter/?action=help
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Figure 1. Overview of CalFitter workflow and newly introduced features. The features implemented into the original version 1.0 are shown in grey, while
the novel features introduced into the version 2.0 are depicted in green. The details of individual steps and procedures are provided in the text or can be
found in the original publication (9).

in the bar graph. While their total number corresponds to
the number of wavelengths or experimental points of the
original dataset (whichever is lower, i.e. min{m,n}), gener-
ally fewer than ten components are sufficient to confidently
reconstruct the original data. The numbers in the bar graph
translate to the variation within the dataset that is explained
by the respective component (>98% of data variation is suf-
ficiently explained by the first two components in the ex-
ample in Figure 2). The determination of the correct num-
ber of significant components for further analysis must be
done with great care so that they truly represent all impor-
tant features of the original dataset. Usually, the visual in-
spection of the shape of the basis spectra and regular pat-
terns of the SVD components is the most robust yet sub-
jective criterion. Alternatively, one can apply a cumulative
threshold for the explained variation in the data (e.g. 98%)
and keep only the components that are above it. Several
statistical measures can also aid in the decision. The au-
tocorrelations of each component basis spectrum and am-
plitude vector have been shown to provide practical guid-
ance in determining whether a particular component cap-
tures the meaningful signal or noise in the data (32,33). To
aid the users in the selection, CalFitter 2.0 marks the com-
ponents whose autocorrelation coefficients are above the
0.8 threshold by an asterisk in the Singular values graph.

Their exact values for each component are provided in the
export Excel file, and a detailed description of how these
values are calculated can be found in the Supplementary
Data. In general, the explained variation and the auto-
correlation methods can be applied when a more rigor-
ous quantitative assessment of the SVD results needs to be
carried out. However, the visual inspection of the compo-
nents and their singular values usually suffices to make the
decision.

Basis spectra (wavelength loadings) are depicted in the
middle panel of section 4 in Figure 2. Typically, only the
first few of them correspond to the meaningful signal com-
ponents, while the others represent the experimental noise
(Figures S1 and S3). The number of components to display
and use in the original data reconstruction and subsequent
global data analysis can be changed in the settings section
(section 3 in Figure 2). The unique feature of CalFitter 2.0
is the possibility to assign the basis spectrum of the first
component to that of a known protein state (typically native
state, but others can be used) by uploading its spectrum as
a reference. This increases the interpretability and biologi-
cal relevance of the SVD results by providing spectral fin-
gerprints of other relevant protein species populated during
unfolding. The SVD is automatically recalculated when the
reference spectrum is uploaded.
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Figure 2. Interactive CalFitter 2.0 SVD analysis interface. The interface sections include (1) raw data visualization, (2) spectral reconstruction, (3) exper-
imental parameter specification and data range settings, (4) SVD analysis results graphs and (5) export and upload options. The example data depict the
thermal denaturation of the haloalkane dehalogenase DhaA (UniProt ID: P0A3G2), measured by following the changes in intrinsic protein fluorescence
at the heating rate of 1◦C/min. The asterisks in the Singular values plot indicate that the first three components have the autocorrelations of both the
wavelength loadings and amplitude vectors above 0.8.

Finally, the changes of the component amplitudes with
time (Kinetics SVD) or temperature (Spectroscopy SVD)
are shown in the bottom right graph. These progress curves
report on the evolution of the components throughout the
course of the experiment and can be subjected to the sub-
sequent global analysis of denaturation experiments. These
curves are fully integrated into the workflow of CalFitter
1.0, i.e. they are modelled and fitted analogously and along-
side the other two-dimensional signals such as calorime-
try, spectroscopy, and kinetics (see Global Fitting of SVD
Datasets).

The SVD analysis is fully automated in CalFitter 2.0, and
all graphs dynamically change in response to the changes in
parameter settings or dataset range. Spectral reconstruction
of the raw data based on the selected number of components
can be investigated by moving the slider below the raw data
display on the left-hand side of the interface (section 2 in
Figure 2). Export of the SVD results to an excel file is read-

ily available. In principle, the SVD module can be used to
analyse any type of multi-wavelength data regardless of the
dynamic component (e.g. pH, denaturant, salts). However,
the use of the SVD components in subsequent global fitting
is restricted to the time- or temperature-dependent multi-
wavelength spectral datasets collected at fixed temperatures
or scan rates, respectively.

GLOBAL FITTING OF SVD DATASETS

The global analysis interface and general procedure of Cal-
Fitter have not changed significantly since the first version,
and their description is provided in the original publication
(9). The Data pre-treatment panel of the global analysis in-
terface has been newly expanded by two additional tabs de-
voted to Spectroscopy SVD and Kinetics SVD datasets. The
data treatment options are identical to the corresponding
non-SVD data types, i.e. specification of temperature range
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and normalization is possible for spectroscopy data, and
collation and endpoint selection for kinetics data. The SVD
components available for fitting are restricted to those se-
lected during the SVD analysis. We recommend that only
the non-noise SVD components are used for the global
analysis to avoid overfitting. These are fitted similarly to
other spectroscopic signals using a weighting procedure
based on the number of points to ensure the balanced con-
tribution of datasets to the penalty function of the fitting
procedure (9).

The SVD output is a more accurate and unbiased repre-
sentation of the original dataset compared to the conven-
tional two-dimensional signals, e.g. using intensity change
at fixed wavelengths or the area under the spectrum. The
SVD preserves the informational content of the raw data
while reducing its dimensionality. In contrast, the selection
of an appropriate 2D signal reflecting the spectral changes
during denaturation is made empirically, typically by com-
paring differences between spectra of the native and dena-
tured states. As a result, these signals are often insensitive to
potential intermediates that can be only scarcely populated
during unfolding. For example, in Figure 3, we show the
analysis of the unfolding of haloalkane dehalogenase DhaA
monitored by fluorescence spectroscopy. The denaturation
curves constructed from the conventionally used signals re-
porting on the redshift of the fluorescence maximum (the
ratio of intensities at 350 nm and 350 nm, barycentric mean
– BCM), or overall intensity (the area under the spectrum)
both show a single transition with the overlapping midpoint
temperature around 50◦C, which can be fitted into a simple
two-state unfolding model (Figure S4A). However, the SVD
of the raw data results in three significant components, in-
dicating the presence of an intermediate state. A closer in-
spection reveals that while the first two components reflect
the changes captured by the two-dimensional signals, the
third component, albeit less significant in explained vari-
ance (∼0.2%), has the autocorrelations above 0.8 and shows
two distinct transitions. In fact, all the three components fit
well to the models involving an intermediate state (Figures
S4B, C). Since the singular value of the third component is
low, we confirmed the presence of the intermediate by an
additional measurement using another experimental tech-
nique. In our model case, DSC thermograms consisted of
two transitions and were fitted alongside the SVD compo-
nents to the three-state partially unfolding model (Figure
S5).

Another major advantage of fitting SVD components
over the conventional two-dimensional signals is the abil-
ity to back-calculate the full spectra based on the modelled
parameters and compare them to the original data (Figure
S6). The reconstruction of the original spectra is carried
out by a linear product of the modelled SVD components
and the original SVD basis spectra. The visual comparison
of data reconstructed from the fitting of a different num-
ber of components, therefore, provides additional means
for model validation, identification of potential deviations
from the data, and evaluation criteria of potential data over-
fitting. In the example case study, the first two components
fit well to the two-state model, but the reconstructed spec-
tra deviate from the raw data (Figure S4A). Only the global
fit of all three components to the three-state model pro-

vides satisfactory spectral reconstruction (Figures S4B, C).
The detailed description of the global analysis of multiple
thermal denaturation experiments, including different SVD
datasets, is shown and discussed in detail in the Supplemen-
tary Data (Section Use case Figure S1–S6).

DATA INPUT AND OUTPUT

We have completely reworked the uploading procedure of
the non-SVD datasets based on user feedback to improve
its flexibility and user-friendliness. The software newly sup-
ports a variety of input formats, including Excel .xlsx files
with multiple spreadsheets and fewer requirements on the
data organisation. The new uploading wizard enables nu-
merous interactive data pre-treatment options, including
dataset visualisation, removal, column designation and pa-
rameter specification. Simultaneous upload and quick pro-
cessing of multiple SVD datasets from single or different
Excel files is also supported. At the same time, the input
procedure is backward-compatible, i.e. when the legacy data
format is recognised, the uploading wizard automatically
prefills all the parameters accordingly. Similarly, the results
of the SVD and global analyses can be easily exported
at different stages of the process. Output datasets are or-
ganized logically in multiple spreadsheets within a single
Excel .xlsx file. A detailed step-by-step description of the
uploading interfaces and exporting options is provided in
the help section of the webserver, which can be found at
https://loschmidt.chemi.muni.cz/calfitter/?action=help. Al-
together, all data manipulation steps have been significantly
improved to ensure fast and intuitive application of the Cal-
Fitter and promote its wider use in the scientific community.

CONCLUSIONS AND OUTLOOK

In summary, the main new features and improvements in-
troduced to CalFitter 2.0 include: (i) automated SVD of
multi-wavelength data in an interactive interface, (ii) global
fitting of time- and temperature-dependent SVD compo-
nents with other types of data from protein thermal de-
naturation experiments, (iii) spectral reconstruction of data
based on the modelled parameters, (iv) the option of up-
loading a reference spectrum of a known protein state in
the SVD analysis, (v) the improved data uploading proce-
dure from multiple data formats and (vi) the flexible and in-
tuitive uploading wizard with variety of data pre-treatment
options. The implementation of SVD into CalFitter 2.0
provides an extra resolution to its informational output.
We hope that this unique combination of the two com-
plex mathematical analyses, i.e. SVD and global fitting, in
the single, highly interactive, and freely available platform
greatly diminishes the expertise requirements for their rou-
tine application. CalFitter strives to be the gold standard for
the analysis of thermal denaturation experiments, providing
invaluable quantitative parameters of protein thermostabil-
ity, which are crucial for the development of efficient and
accurate protein engineering tools.

In the future, we plan to introduce new algorithms for
automatic initialization of model parameter values based
on the input data, which will make the fitting procedure
much easier, especially for first-time users. Moreover, we in-

https://loschmidt.chemi.muni.cz/calfitter/?action=help
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Figure 3. Differences between global fitting of single wavelength datasets and SVD components. Left: Thermal unfolding of DhaA monitored by flu-
orescence spectroscopy at the 1◦C/min scan rate. Inset: The derivation of the conventional signals commonly used for representation of the changes in
fluorescence spectra during protein denaturation: the ratio of fluorescence intensities at 350 nm and 330 nm (I350/I330), the barycentric mean of the spectrum
(BCM, also referred to as the average emission wavelength), or integrated area of the spectrum. Middle: Comparison of the stability curves derived using
the normalized single variables, and the normalized amplitude changes of the first three SVD components calculated from the dataset (corresponding to
the SVD analysis shown in Figure 2). Right: The fraction of the states calculated from the global fit (blue lines in the middle panel) of the two-dimensional
variables and the SVD components to the two- and three-state unfolding models, respectively. N, native; I, intermediate; D, denatured.

tend to extend the analytical scope of CalFitter by introduc-
ing models involving temperature-induced concentration-
dependent aggregation and an entirely new module for anal-
ysis of chemical denaturation experiments. This will allow
users to analyse the effects of various protein perturbants
(e.g. solvents, additives, pH) on protein energetics in com-
bination with temperature and extract valuable thermody-
namic and kinetic parameters from multi-dimensional en-
ergy landscapes, which is particularly relevant for study-
ing complex phenomena, e.g. cold denaturation. Another
promising direction is an interactive model editor that will
enable users to schematically draw any unfolding scenario,
for which the software will automatically derive the under-
lying mathematical description and respective parameters.
These changes will make CalFitter the ultimate one-stop
shop for the analysis of protein stability.

DATA AVAILABILITY

CalFitter 2.0 is freely available at https://loschmidt.chemi.
muni.cz/calfitter/. The datasets used for the case study and
numerical validation are provided in the Supplementary
data.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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Prokop,Z. and Damborsky,J. (2018) CalFitter: a web server for
analysis of protein thermal denaturation data. Nucleic Acids Res., 46,
W344–W349.

10. Nemergut,M., Zoldak,G., Schaefer,J.V., Kast,F., Miskovsky,P.,
Plückthun,A. and Sedlak,E. (2017) Analysis of IgG kinetic stability
by differential scanning calorimetry, probe fluorescence and light
scattering: kinetic stability analysis of igG. Protein Sci., 26,
2229–2239.

11. Mazurenko,S., Kunka,A., Beerens,K., Johnson,C.M., Damborsky,J.
and Prokop,Z. (2017) Exploration of protein unfolding by modelling
calorimetry data from reheating. Sci. Rep., 7, 16321.

https://loschmidt.chemi.muni.cz/calfitter/
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkac378#supplementary-data


Nucleic Acids Research, 2022, Vol. 50, Web Server issue W151

12. Samaga,Y.B.L., Raghunathan,S. and Priyakumar,U.D. (2021)
SCONES: self-consistent neural network for protein stability
prediction upon mutation. J. Phys. Chem. B, 125, 10657–10671.

13. Marques,S.M., Planas-Iglesias,J. and Damborsky,J. (2021)
Web-based tools for computational enzyme design. Curr. Opin.
Struct. Biol., 69, 19–34.

14. Markova,K., Kunka,A., Chmelova,K., Havlasek,M., Babkova,P.,
Marques,S.M., Vasina,M., Planas-Iglesias,J., Chaloupkova,R.,
Bednar,D. et al. (2021) Computational enzyme stabilization can
affect folding energy landscapes and lead to catalytically enhanced
domain-swapped dimers. ACS Catalysis, 11, 12864–12885.
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