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Abstract: Antimicrobial materials are widely used for inhibition of microorganisms in the environment.
It has been established that bacterial growth can be restrained by silver nanoparticles. Combining
these with other antimicrobial agents, such as ZnO, may increase the antimicrobial activity and
the use of carrier substrate makes the material easier to handle. In the paper, we present an
antimicrobial nanocomposite based on silver nanoparticles nucleated in general silicate nanostructure
ZnO·mSiO2. First, we prepared the silicate fine net nanostructure ZnO·mSiO2 with zinc content up to
30 wt% by precipitation of sodium water glass in zinc acetate solution. Silver nanoparticles were
then formed within the material by photoreduction of AgNO3 on photoactive ZnO. This resulted
into an Ag-ZnO·mSiO2 composite with silica gel-like morphology and the specific surface area of
250 m2/g. The composite, alongside with pure AgNO3 and clear ZnO·mSiO2, were successfully
tested for antimicrobial activity on both gram-positive and gram-negative bacterial strains and
yeast Candida albicans. With respect to the silver content, the minimal inhibition concentration of
Ag-ZnO·mSiO2 was worse than AgNO3 only for gram-negative strains. Moreover, we found a positive
synergistic antimicrobial effect between Ag and Zn agents. These properties create an efficient and
easily applicable antimicrobial material in the form of powder.
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1. Introduction

Microorganisms play an indispensable positive role in our environment [1,2], but there are
situations where they can endanger lives and therefore antibiotics and antifungals have been
invented. However, microorganisms acquire resistance to these substances over time and their
elimination becomes more difficult [3]. Recently the well-known silver nanoparticles (AgNPs) with
their antimicrobial properties became more and more popular again [4], as the silver had a far lower
tendency to induce resistance than some conventional antibiotics [5]. The inhibitory effect of silver is
based on several processes. It has been shown that silver destabilizes the bacterial membrane and
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increases its permeability, inactivates respiratory enzymes and proteins responsible for DNA replication,
and disrupts ion transport [6–10]. Although silver indiscriminately inhibits protein function, it exhibits
limited toxicity to mammalian cells [11]. Silver is broadly used to prevent the growth of microbes on
surfaces and within materials like in bacteriostatic and algaecide water filters [12] and in medical fields
such as wound dressing materials, implants, breath masks, in sterilization of medical devices and in
antimicrobial coatings [13–16].

AgNPs can be prepared by various methods like chemical [17–19] and sonochemical [20]
reduction, microwave synthesis [21], radiolysis and photolysis [22] or so called “green” biosynthesis
reduction [23–26]. But in general, wet synthesis from metal salts gives a good control about properties
of reduced metal particles while maintains low requirements for laboratory equipment [26–29].

The antimicrobial activity and usability of silver can be tuned by combining it with other materials
in the form of core-shell particles [30,31], or just by putting AgNPs into composite materials with
inertia matrix [32–34], antimicrobial graphene oxide [35–37] or by using magnetic substrate for
better subsequent separation [38,39]. The other thing concerning these composites, which should be
highlighted, is the possible synergistic effect between two or more antimicrobial agents. This effect
was found in Ag-TiO2 prepared by solvothermal method [40] and at the similar configuration, the
greater specific surface area of the material helps the antimicrobial activity as well [41]. Other studies
reported the use of photocatalytic activity of TiO2 for enhancing antimicrobial activity [42], or induction
of supportive photothermal effect on AgNPs [43]. The positive synergistic effect was also reported
for silver with several polymers [44–46] and medicaments [47,48] and in combination with other
transitional bare metals like Ag [49,50] and Zn, Co, Cd, Ni and Cu [51]. A preparation of AgNPs
within silica structure has been reported [52] and also precipitation of AgNPs on ZnO by photocatalysis
reduction [53]. The qualitative synergistic effect between these two agents was reported during the
wound healing process [54], however the quantitative antimicrobial and even antimicrobial synergistic
effect of the combination of Ag with ZnO in silica mesoporous structure has not been properly tested
yet. In this paper, we present a preparation of Ag-ZnO silicate composite with high specific surface
area and evaluation of its antimicrobial activity against four bacterial strains and one fungus.

2. Materials and Methods

The chemicals used were sodium water glass with the modulus = 3 (the molar ration between
SiO2 and Na2O,) from the company Vodní sklo a.s. 110 00 Praha, Czech Republic; zinc acetate
dihydrate (Zn(CH3COO)2·2H2O) and silver nitrate (AgNO3, 99.8%) were purchased from PENTA s.r.o.
102 00 Praha, Czech Republic. All chemicals used in this study were of analytical grade and were used
as received without further purification. For all the preparation of solutions, deionized water was used.

In the synthesis, we used two crucial devices that should be mentioned: (a) a self-constructed
ultrasonic reactor surrounded by 16 Langevin transducers with maximum acoustic output of 2 kW
(power density of 1 kW·dm−3) [55] and (b) a patented technology of controlled vacuum freeze-drying
technique for preparation of non-agglomerated nanostructures [56].

The creation of final antimicrobial material consisted in two steps. In the first step, we prepared
the silicate nanostructure substrate by gelation of sodium water glass with m = 3 and a concentration
of 15 wt% that was very quickly added to a vigorously stirred (1000 rpm) water solution of zinc acetate
that was in stoichiometric excess, and was homogenized by sonification in an ultrasonic reactor for
20 min. In the following precipitation reaction

Na2O·mSiO2 + Zn(CH3COO)2→ ZnO·mSiO2 + 2CH3COONa (1)

a fine silicate net nanostructure with a zinc content of up to 30 wt% for m = 3 was created, dependent
on the used modulus of water glass (Table 1). The morphology of the substrate is like silica gel and
the specific surface area of this material reaches values of about 350 m2

·g−1. The resulting silicate net
nanostructure was then three-times washed with demineralized water, dispersed in a volume of water
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at a 1:1 W/W ratio and sonicated under intense stirring of 1000 rpm for 10 min. The dispersion was then
rapidly frozen and subjected to vacuum freeze-drying. The residual water was eliminated by heating
at 200 ◦C for 60 min. The resulting material from the first step was zinc oxide silicate ZnO·mSiO2 with
a specific surface area typically above 300 m2

·g−1 with photocatalytic properties that had been already
tested and published [57].

Table 1. Dependence of the silicate composition on the chosen modulus “m”. With lower modulus, the
zinc content was increasing. The modulus used in the experiment is in bold.

m = 3 m = 2.5 m = 2 m = 1.5

ZnO·3SiO2 2ZnO·5SiO2 ZnO·2SiO2 2ZnO·3SiO2

The second step was a limited heterogeneous nucleation of Ag within the porous ZnO·mSiO2

substrate. The dried silicate material ZnO·mSiO2 was put into the aqueous solution of AgNO3

(c = 0.5 mol·dm−3) and homogenized by stirring (100 rpm) for 20 min, so that the molecules of AgNO3

could sufficiently fill its pores. The solids were then filtered from the dispersion, rapidly frozen and
subjected to vacuum freeze-drying. Dried matter was then put into a volume of 200 mL water and
under vigorous stirring exposed to 200 nm 10 W UV light irradiation for 100 min. The photocatalytic
reduction of AgNO3 within limited volumes of the substrate net caused nucleation and growth of Ag
nanoparticles that had high surface curvature and low surface energy, which increased the effectiveness
of dissociation of silver ions into the environment (Figure 1.).
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Figure 1. Photoreduction of AgNO3 on the surface of photocatalytic ZnO within the pore of the
silicate substrate ZnO·mSiO2. The 200-nm UV light induced an electron-hole charges separation within
photocatalytic ZnO. The AgNO3 was decomposed and Ag+1 reduced to metallic Ag0 on the surface
of ZnO. The limited amount of AgNO3 within pores of the substrate then caused limited growth of
Ag particles.

The material was qualitatively analysed by scanning electron microscopy (SEM) and the energy
disperse x-ray spectroscopy (EDX) at SEM FEI Quanta 650 FEG, 627 00 Brno, Czech Republic. The
wt% of Ag and Zn were determined by atomic absorption spectrometer with flame atomization (AAS)
Unicam 969, 6161 DA GELEEN, The Netherlands. Specific surface area was determined by dynamic
analysis of BET isotherm on the device Dynamic BET, the analysis was performed on Qsurf HORIBA
SA9601 10200 Praha, Czech Republic. To measure specific surface area—the powder material was
degassed for 5 h at 150 ◦C and then subjected to six-point analysis. X-ray powder diffraction patterns
were measured using a Bruker D8 Advance diffractometer (Bruker AXS, 664 84 Brno, Czech Republic).
Phase composition of the samples was evaluated using PDF 2 (Release 2011) database (International
Centre for Diffraction Data). The optical absorption of the powder solids was obtained by measuring
the respective UV-Vis DRS spectra with a Shimadzu UV-2600 (IRS-2600Plus, 190 00 Praha, Czech
Republic) spectrophotometer and a spectrometer FLS920 (Edinburgh Instrument Ltd, Kirkton Campus,
EH54 7DQ, United Kingdom) was used for registration of photoluminescence spectra.
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The bacterial and fungal strains E. coli CCM 3988, Pseudomonas aeruginosa CCM1960,
Streptococcus salivarius CCM4046, Staphylococcus aureus CCM4223 and Candida albicans CCM8186
were obtained from the Czech Collection of Microorganisms (Brno, Czech Republic). Sterile nutrient
broth (MPB 10 cm3) was inoculated with the bacterial strains and incubated overnight at 37 ◦C. Yeast
C. albicans was inoculated in the glucose peptone yeast extract medium (GPY 10 mL) at 28 ◦C. Microbial
suspensions were diluted with a sterile, 0.15 mol·cm−3 saline solution to reach a turbidity of McFarland
at scale 0.5, which corresponded to concentrations of 1.5 × 108 CFU·cm−3. Antimicrobial activities
were assessed using the standard dilution micromethod. Disposable microtitration plates were used
for the tests. The samples were diluted to concentrations from 1.5 to 53 mg·cm−3 with MPB or GPY
media. A volume of 100 µL of sample, 80 µL MPB or GPY and 20 µL of suspension of microorganism
was added to each well and the microtitration plates were incubated at 37 ◦C (bacteria) or 28 ◦C (yeast)
at continuous shaking for 24 h. After this incubation period the inoculum was transferred with the
help of the inoculate hedgehog to wells with 200 µL of MPB or GPY in new microtitration plates. The
minimum inhibitory concentration (MIC) was determined spectrophotometrically at a wavelength of
620 nm after 24 h of incubation at 37 ◦C or 28 ◦C. The MIC is defined as the lowest concentration of the
tested substance that inhibits the growth of the microbial strain [58–60].

3. Results

3.1. Scanning Electron Microscopy, Energy Disperse X-Ray Spectroscopy and Specific Surface Area Analysis

Backscattered electron images of ZnO·mSiO2 substrate (Figure 2a) and Ag-ZnO·mSiO2 (Figure 2b)
showed lamellar porous nanostructure for both materials. This morphology is characteristic for the
synthesis in the ultrasonic reactor and the subsequent vacuum freeze-drying mentioned in the previous
section. The second step of the preparation process filled a part of the substrate’s surface with reduced
silver and after the additional mechanical treatment the specific surface area of the material was
lowered from 350 m2

·g−1 (ZnO·mSiO2) to 250 m2
·g−1 (Ag-ZnO·mSiO2). The deployed silver can be

clearly seen as the brighter spots on the material´s surface in Figure 2b.
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Figure 2. Backscattered electron images of: (a) silicate substrate ZnO·mSiO2 and (b) final antimicrobial
material Ag-ZnO·mSiO2.

EDX analysis of the ZnO·mSiO2 substrate (Figure 3a) showed the expected presence of silicon,
oxygen and zinc, while EDX in Figure 3b for Ag-ZnO·mSiO2 also shows the reduced Ag. The AAS
determined the Ag content in the substrate to be 0.27 wt% and the Zn content in both materials reached
28.1 wt%.
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material Ag-ZnO·mSiO2. Unlabelled peaks have origin in supportive aluminium pad with carbon tape.

3.2. Optical Analysis

The UV-Vis absorption spectra of samples are depicted in Figure 4a and the corresponding Tauc
plots for optical bandgap estimation in Figure 4b. The optical absorption was affected mainly by
photocatalytic ZnO in both samples. The deposition of silver in the second step of the preparation then
caused a slight blue shift from 3.25 eV to 3.31 eV in the optical bandgap.
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Figure 4. (a) UV-Vis absorption spectra and (b) Tauc plots with estimated band gap values of
Ag-ZnO·mSiO2 and ZnO·mSiO2 substrate.

Photoluminescence excitation spectra of both of materials (Figure 5, solid lines) confirmed the
existence of optical bandgap under 380 nm. Emission spectra then indicated the blue shift in the UV
region for the Ag-ZnO·mSiO2 and both materials had a high emission in the visible region which
related to structural defects in ZnO lattice, namely oxygen vacancies and zinc interstitials. The emission
of Ag-ZnO·mSiO2 in this region was due to the silver shifted more to the longer wavelengths which
indicated that silver created other electron states within ZnO and clearly decreased the amount of
radiative recombination at higher energies and thus the amount of useful reductive electrons. The
optical shifts might have origin at the partial doping of Ag at the diffusion zone in the Schottky junction
on the surface of nanocrystalline ZnO.
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Figure 5. Photoluminescence spectroscopy of antimicrobial material Ag-ZnO·mSiO2 and ZnO·mSiO2

substrate. The solid lines are the excitation (Ex) spectra and dashed lines the emission (Em) spectra.

The XRD analysis in Figure 6 showed the composition of the final Ag-ZnO·mSiO2 material. All
peaks were in good agreement with the powder diffraction file (PDF) of Ag and ZnO (PFD 03-065-3411
and PDF 03-065-2871). The only detected peaks for FCC Ag were (100) and (111) planes due to a low
Ag concentration in the specimen. According to XRD analysis, the prepared material was a ZnO with
many structural defects (broad peaks), some nanocrystalline ZnO (narrow peaks) and metallic Ag—all
in the amorphous silicate SiO2 matrix, which obviously did not exhibit any diffraction pattern.
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Figure 6. XRD pattern of antimicrobial material Ag-ZnO·mSiO2. The main top pattern is decomposed
to ZnO with structural defects (blue), nanocrystalline ZnO (black) and Ag (green).

3.3. Antimicrobial Activity of Materials

Tests were performed as described in the previous section with five microbial strains at a
concentration of the antimicrobial agent of up to 53 mg·cm−3. The tested materials were molecular
AgNO3, ZnO·mSiO2 substrate and Ag-ZnO·mSiO2 composite for the antimicrobial testing of Ag, Zn
and their combination. We chose pure source of Ag+ ions, the AgNO3, as a reference instead of
colloidal Ag. The concentration equilibrium between Ag nanoparticles and Ag+ strongly depends on
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nanoparticle´s size [61], so we would need equivalent distribution of Ag nanoparticles like we have in
our specimen for objective comparison. In the case of AgNO3 as a standard, we can compare more
materials in the future without the need of dealing with various sizes of Ag nanoparticles.

Results from MIC tests are summarized in Table 2. The smallest MIC for all microbial strains was
reached for the AgNO3. A higher MIC was detected with the composite Ag-ZnO·mSiO2 followed by
the substrate ZnO·mSiO2 that represented the antimicrobial activity of zinc in the composite and that
did not have MIC in the measurement range for Candida albicans. Results above only represent the
needed material for antimicrobial inhibition and should not be directly compared without context.
We will further provide calculations of the necessary partial MICs for the antimicrobial Ag that will
allow us to objectively compare these materials. Furthermore, thanks to the calculated partial MIC, we
evaluated also a possible antimicrobial synergistic effect between Ag and Zn. All recalculated MICs
are directly proportional to wt% of the antimicrobial agent in the material.

Table 2. MIC (mg·cm−3) for materials tested on various microbial strains of gram-positive (G+) and
gram-negative (G−) bacteria. Values without deviation had the same MIC in all three tests. N/A means
that MIC was not found in the measured range.

Microbial Strains
MIC (mg·cm−3)

AgNO3 Ag-ZnO·mSiO2 ZnO·mSiO2

E. coli (G−) 0.005 2.9 ± 0.1 10.6
Pseudomonas aeruginosa (G−) 0.005 3.9 ± 1.4 26.5
Streptococcus salivarius (G+) 0.16 5.9 ± 1.3 21.2 ± 2.7
Staphylococcus aureus (G+) 0.16 5.9 ± 0.1 21.2

Candida albicans 0.16 23.5 ± 0.5 N/A

Table 3 shows the values for the calculated partial MIC related to the Ag content using the
mean values from Table 2. Those partial MICs showed us the actual concentration of Ag present in
the test solution so that we could use them to objectively compare the antimicrobial activity of the
composite with respect to the truly needed Ag. The Ag-ZnO·mSiO2 exhibited the best results for
Streptococcus salivarius and Staphylococcus aureus where the antimicrobial activity was five times better
than the pure AgNO3. On the other hand, our material was the least effective on Escherichia coli and
Pseudomonas aeruginosa where it showed approximately 2.4 and 3.3 times lower activity than AgNO3.
Both materials were the least efficient on Candida albicans but, in comparison, we needed only 60% of
Ag in the case of Ag-ZnO·mSiO2 composite.

Table 3. Partial MIC of Ag (mg·cm−3) with respect to the Ag content in the material and their
corresponding concentration ratios. All values have been subsequently rounded.

Microbial Strains AgNO3 (cAg
0 ) Ag−ZnO·mSiO2 (cAg) Ratio

E. coli (G−) 0.003 0.008 2.4
Pseudomonas aeruginosa (G−) 0.003 0.010 3.3
Streptococcus salivarius (G+) 0.102 0.016 0.2
Staphylococcus aureus (G+) 0.102 0.016 0.2

Candida albicans 0.102 0.063 0.6

3.4. Calculation of Synergistic Effect between Ag and Zn in Ag-ZnO·mSiO2 Composite

The positive synergistic effect of two materials is interesting, because in the end we need smaller
quantities of both materials in their combination compared to a situation when they are separated.
Using the measured MIC data (Table 2) we could determine partial MIC for Ag (cAg

0 ) and Zn (cZn
0 ) by
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using the mean values of AgNO3 and ZnO·mSiO2 respectively, and partial MICs for Ag (cAg) and Zn
(cZn) acting together in the Ag-ZnO·mSiO2 composite.

Synergistic effect =
mAg+Zn

mAg
0 + mZn

0

=
2V
(
cAg + cZn

)
VcAg

0 + VcZn
0

=
2
(
cAg + cZn

)
cAg

0 + cZn
0

(2)

The calculation of the synergistic effect (2) follows this simple thesis that is schematically depicted
in the Figure 7: what is the needed effective mass of Ag and Zn (mAg+Zn) in the composite and what is
the needed effective mass of separated Ag (mAg

0 ) and Zn (mZn
0 ) in the same volume? Their ratio gives

us the synergistic effect and when we subtract it from 1 and multiply by 100, we will get the material
savings by using the composite as a percentage. Calculated values are then summarized in Table 4.
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Table 4. Calculated partial MIC (mg·cm−3) as described in the text and the corresponding synergistic
effect in a form of material savings. The Candida albicans is not listed, because Zn was inactive in the
measured range and the corresponding synergistic effect could not be calculated.

Microbial Strains cAg
0 cZn

0 cAg cZn Material Saving (%)

E. coli (G−) 0.003 2.979 0.008 0.809 45.20
Pseudomonas aeruginosa (G−) 0.003 7.447 0.010 1.090 70.45
Streptococcus salivarius (G+) 0.102 5.957 0.016 1.652 44.93
Staphylococcus aureus (G+) 0.102 5.957 0.016 1.652 44.93

Performed calculations of the synergistic effect between Ag and Zn antimicrobial agents in
Ag-ZnO·mSiO2 composite showed material savings of up to 70% for Pseudomonas Aeruginosa and
around 45% for other strains except for Candida Albicans, where the synergistic effect could not be
calculated due to the non-existent antimicrobial activity of Zn in this strain within the measured range
(Table 2).

4. Discussion

Antimicrobial MIC tests summarized in Table 2 showed that all materials acted best on G− E. coli
bacteria. Another G− multi-resistant bacteria, Pseudomonas aeruginosa, was also prone to materials
with Ag, but not much for Zn. It was more resilient than the G+ strains. G+ bacterial strains
Streptococcus salivarius and Staphylococcus aureus had almost the same MIC in all tests. The yeast
Candida albicans made an exception. Despite the fact that the MIC for AgNO3 was the same as for the
two G+ bacteria, the Ag-ZnO·mSiO2 composite performed much worse than on all bacterial strains
and ZnO·mSiO2 did not have MIC in the measured range as the Zn content did not even reached the
essential inhibitory amount [62].

When we compared the materials with respect to the wt% of the antimicrobial Ag (Table 3), we
found out that for G+ strains, the prepared Ag-ZnO·mSiO2 composite showed five times lower partial
MIC than the pure source of Ag+ ions, AgNO3. This is convenient as both strains are highly resistant
to antibiotics [3]. The contrast in efficiency of AgNO3 and Ag-ZnO·mSiO2 for G− and G+ bacteria was
probably related to their different cell wall structure. Due to the more complex structure and different
composition of the G− bacterial cell wall compared to G+, the nanocomposites were more adsorbed to
the surface of G− and deposited in the periplasmic space [63,64]. As a result, the inhibitory effect of Ag
from the nanocomposite may be lower than that induced by Ag+ ions from AgNO3.
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The calculations, taking to account partial MIC for Ag and Zn, showed a positive synergistic
effect between these two antimicrobial agents with all bacterial strains used. The best result was up to
almost 70.5% of the material saving for Pseudomonas aeruginosa, the other three had similar savings of
45%. As we used AgNO3 as a reference, these values of material savings could be taken as the lowest
estimate. Candida albicans did not show vulnerability to Zn in the MIC measured range and thus the
synergistic effect could not be evaluated.

Our material is not only interesting from the point of view of its antimicrobial activity, but also
from the perspective of its preparation. The described technique of light-induced reduction of Ag on
the surface of the photocatalyst has already been reported in literature [53]. But we proved that it
can be also done with more complex photocatalytic composites—especially those with a high specific
surface area, where we needed to nucleate the Ag on the surface of the substrate and where a common
chemical reduction would not be suitable. The high photoluminescence of the substrate in the visible
region (Figure 5, dashed) meant that photoexcited electrons were trapped in ZnO structural defects and
thus the photocatalytic reduction of the Ag acted at a high rate. Due to the fact, that the photocatalytic
reaction took place only at the surface of the photocatalyst, the metallic Ag nucleated exclusively within
the nanocrystalline ZnO·mSiO2 substrate. The high specific surface area of 250 m2

·g−1 then eased the
solvation of Zn and Ag, which induced an antimicrobial effect in the surrounding area. Although the
photoactivity of the material after the addition of Ag was negatively affected, we could still repeat
the second step of the preparation procedure, i.e., to additionally expose the material to AgNO3 and
further increase the amount of Ag in the material.

The Ag-ZnO·mSiO2 material is an antimicrobial powder that can be easily dispersed by sonification
to make possible another specific usage. Due to the fact, that the antimicrobial Ag and Zn are deposited
on, respective within the macroscopic and porous silicate structure, it is easy to separate the material
back from the dispersion. Moreover, according to our experience, it is feasible to deposit this material
onto nanofibers or fabric [65], where it could act as an antimicrobial layer in various types of filters.
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