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Background: Clinical and epidemiological studies have suggested systemic lupus
erythematosus (SLE) and rheumatoid arthritis (RA) are comorbidities and common
genetic etiologies can partly explain such coexistence. However, shared genetic
determinations underlying the two diseases remain largely unknown.

Methods: Our analysis relied on summary statistics available from genome-wide
association studies of SLE (N = 23,210) and RA (N = 58,284). We first evaluated
the genetic correlation between RA and SLE through the linkage disequilibrium score
regression (LDSC). Then, we performed a multiple-tissue eQTL (expression quantitative
trait loci) weighted integrative analysis for each of the two diseases and aggregated
association evidence across these tissues via the recently proposed harmonic mean
P-value (HMP) combination strategy, which can produce a single well-calibrated
P-value for correlated test statistics. Afterwards, we conducted the pleiotropy-informed
association using conjunction conditional FDR (ccFDR) to identify potential pleiotropic
genes associated with both RA and SLE.

Results: We found there existed a significant positive genetic correlation (rg = 0.404,
P = 6.01E-10) via LDSC between RA and SLE. Based on the multiple-tissue eQTL
weighted integrative analysis and the HMP combination across various tissues, we
discovered 14 potential pleiotropic genes by ccFDR, among which four were likely
newly novel genes (i.e., INPP5B, OR5K2, RP11-2C24.5, and CTD-3105H18.4). The
SNP effect sizes of these pleiotropic genes were typically positively dependent, with an
average correlation of 0.579. Functionally, these genes were implicated in multiple auto-
immune relevant pathways such as inositol phosphate metabolic process, membrane
and glucagon signaling pathway.

Conclusion: This study reveals common genetic components between RA and SLE
and provides candidate associated loci for understanding of molecular mechanism
underlying the comorbidity of the two diseases.

Keywords: rheumatoid arthritis, systemic lupus erythematosus, harmonic mean P-value, conjunction conditional
false discover rate, pleiotropic genes
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INTRODUCTION

Rheumatoid arthritis (RA) and systemic lupus erythematosus
(SLE) are two frequent chronic rheumatic autoimmune diseases
(Suresh, 2004; Cojocaru et al., 2011; Hu et al., 2019; Barbeira
et al., 2020), with an incidence rate of 50 (Alamanos et al., 2006)
or 8.6 (Stojan and Petri, 2018) per 100,000/year for RA or SLE
in the United States, respectively, leading to growing disease
burden worldwide among different ethnic, racial and age groups.
Both RA and SLE have complicated etiologies, with genetic and
hormonal factors (e.g., sex hormones, Tedeschi et al., 2013),
environmental factors (e.g., cigarette smoking, Costenbader
et al,, 2004) and their interaction contributing to the onset
and pathological processes of the two diseases (Salaman, 2003).
Prior clinical and epidemiological studies have demonstrated that
RA and SLE have overlapping clinical symptoms and increased
familial aggregation (Alarcon-Segovia et al., 2005; Michou et al.,
2008; Icen et al., 2009; Zhernakova et al., 2013; Acosta-Herrera
et al., 2019; Ciccacci et al., 2019; James et al., 2019; Xiao et al.,
2020), implying common susceptible mechanism and shared
predisposition underlying two diseases.

One hypothesis to explain such comorbidity between RA
and SLE is the common genetic etiology among autoimmune
diseases (Cotsapas et al., 2011; Orozco et al, 2011; Suzuki
et al., 2016; Marquez et al., 2017; Acosta-Herrera et al., 2019;
Lehallier et al., 2019). Prior studies also provided evidence for
shared genetic architecture of RA and SLE. For example, RA
patients often have a higher incidence of HLA-DR4 genotype
(chr6) compared to healthy controls (Stastny, 1978); meanwhile,
correlation was well established between HLA class III (especially
6p21.3) and the susceptibility to develop SLE (Goldberg et al,
1976). Recently, genome-wide association studies (GWASs) have
greatly advanced our knowledge of polygenic etiology of RA
and SLE, and discovered a number of shared single nucleotide
polymorphisms (SNPs) associated with them (Supplementary
Table 1; Deng and Tsao, 2017; Okada et al., 2017). Examples of
such shared loci include rs7574865 in STAT4 (Remmers et al.,
2007), rs2230926 and rs10499194 in TNFAIP3 (Shimane et al.,
2010), rs2476601 in PTPN22 (Orozco et al., 2005), rs5754217
in UBE2I3 (Orozco et al, 2011), rs9603612 nearby COG6
(Marquez et al., 2017), as well as multiple loci in NAB1, KPNA4-
ARLI14, DGQK, LIMK1, and PRR12 (Acosta-Herrera et al., 2019).
Understanding these shared genetic determinants has significant
implication for identifying important biomarkers and possesses
the potential to develop novel therapeutic strategies for joint
prediction, prevention, and intervention of RA and SLE.

However, the causal genes and pathways of RA and SLE
remain largely unknown because, like many other diseases/traits
(Manolio et al.,, 2009; Orozco et al., 2010), RA- or SLE-
associated SNPs identified by GWASs explain only a very small
fraction of phenotypic variance of RA or SLE (Julia Cano, 2011;

Abbreviations: 1000G, 1000 genomes project phase III; 95% CIs, 95% confidence
intervals; ccFDR, conjunction conditional FDR; eQTL, expression quantitative
trait locus; FLSs, fibroblast-like synoviocytes; GTEx, genotype-tissue expression;
GWAS, genome-wide association study; HMP, harmonic mean P-value; LDSC,
linkage disequilibrium score regression; RA, rheumatoid arthritis; SLE, systemic
lupus erythematosus.

Chen etal., 2017), suggesting that a large number of genetic
variants with small to modest effect sizes (but still important)
have yet not been discovered and that more pleiotropic genes
would be discovered if increasing sample sizes (Wang et al., 2005;
Tam et al,, 2019). But increasing sample size is generally not
feasible since recruiting and genotyping additional participants
are expensive and time consuming. In addition, analyzing RA and
SLE jointly with individual-level dataset is also difficult because
of privacy concerns on data sharing (Pasaniuc and Price, 2016).
Instead, summary statistics from large scale GWASs of RA and
SLE are freely accessible (Okada et al., 2014; Bentham et al., 2015).

Therefore, a promising way is to apply genetic computational
methods that efficiently analyze information contained in the
existing pool of available GWAS summary statistics of RA and
SLE for unveiling shared genetic contributors with pleiotropic
effects more comprehensively. However, few of such studies
on common genetic backgrounds of RA and SLE have been
undertaken so far. To fill this literature gap, relying on summary
statistics obtained from GWASs for SLE (N = 23,210) and RA
(N = 58,284) (Okada et al., 2014; Bentham et al., 2015), in the
present work we first evaluated the genetic correlation between
the two diseases with cross-disease linkage disequilibrium score
regression (LDSC) to quantify the extent of common genetic
basis to which they share (Bulik-Sullivan et al., 2015). Next, we
conducted an multiple-tissue eQTL (expression quantitative trait
loci) weighted integrative analysis to aggregate the evidence of
SNP-level associations into an integrative association at the gene
level and then applied the recently proposed harmonic mean P-
value (HMP) combination strategy (Wilson, 2019a) to combine
a set of correlated P-values across various tissues into a single
well-calibrated P-value. We further preformed the pleiotropy-
informed association method using conditional false discovery
rate (cFDR) (Andreassen et al., 2013; Smeland et al., 2020) to
detect potentially pleiotropic genes. In total, we identified 14
genes that were associated with both RA and SLE, with four of
them being likely newly novel pleiotropic genes. The flowchart of
our data analysis is demonstrated in Figure 1.

MATERIALS AND METHODS
GWAS Dataset for RA and SLE

We downloaded summary statistics (e.g., effect allele, effect size
and P-value) of RA and SLE from public portal. Specifically,
the GWAS of RA included 58,284 (14,361 cases and 43,923
controls) European individuals and 6,446,682 SNPs (Okada et al.,
2014), while the GWAS of SLE included 23,210 (7,219 cases and
15,991 controls) individuals of European descent (Bentham et al.,
2015) and 7,915,251 SNPs. Based on these summary statistics, we
attempted to explore genetic overlap between RA and SLE at the
gene level using novel statistical genetics approaches.

Estimation of Cross-Disease Genetic

Correlation

We first applied cross-disease LDSC to assess the genetic
correlation r, between RA and SLE (Bulik-Sullivan et al,
2015). The software of LDSC (version v1.0.1) was available
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GWAS summary data for SLE (7.9

million SNPs and 23,210 samples)

Tissue 1
eQTL

€QTL; eQTL; eQTLs...

+
GWAS
SNP; SNP, SNPs...

P value from tissue 1

GWAS summary data and quality control

quality control

FIGURE 1 | Flowchart of data preparation and analysis for RA and SLE. First, two sets of summary statistics were included for the two diseases; a series of quality
control procedures were implemented and the genetic correlation between RA and SLE was evaluated using LDSC. Next, a multiple-tissue eQTL weighted
integrative analysis was performed to aggregate association signals at the SNP level into the gene level, following by the HMP combination across tissues. Finally,
cFDR was carried out to identify associated genes with pleiotropic effects. In the analysis, the LD was estimated with genotypes of the 1000 Genomes Project.

GWAS summary data for RA (6.4
million SNPs and 58,284samples)

SLE: 5,462,109 SNPs
RA: 4,708,829 SNPs
overlapped: 4,098,768 SNPs

+
GWAS

SNP; SNP; SNPs...
+
N4
\0"/

N P value from tissue K
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at https://github.com/bulik/ldsc and implemented with default
parameter settings. Following prior studies (Bulik-Sullivan et al.,
2015), we performed stringent quality control before the LDSC
analysis: (i) removed non-biallelic SNPs and those with strand-
ambiguous alleles; (ii) excluded duplicated SNPs and those
having no rs labels; (iii) excluded SNPs that were located within
two special genetic regions including major histocompatibility
complex (chr6: 28.5-33.3 Mb) (Bulik-Sullivan et al., 2015) and
chr8: 7.2-12.5 Mb (Price et al., 2008) due to their complicated LD
structure; (iv) kept SNPs that were included in the 1000 Genomes
Project phase III (1000G); (v) removed SNPs whose allele did not
match that in the 1000G.

The LD scores were computed using genotypes of 4,098,768
common SNPs (minor allele frequency > 0.01 and the
P-value of Hardy Weinberg equilibrium test > 1E-5) with a
10 Mb window on 503 European individuals in the 1000G
(Consortium, 2015); and then regressed them on the product

of Z score statistics of RA and SLE. The regression slope of
LDSC provides an unbiased estimate for r, even when the
samples are overlapped between the two GWASs of diseases
(Bulik-Sullivan et al., 2015).

Association Analysis by Integrating eQTL
and GWAS Summary Statistics

Unlike prior studies which explored genetic overlap at the
independent SNP level by using a pruning procedure (Lv et al.,
2017; Peng et al., 2017; Hu et al., 2018a,b), we attempted to study
common genetic component between RA and SLE at the gene
level because gene is a more meaningful biological unit related to
complex diseases compared with SNP. To do so, we performed
the multiple-tissue eQTL weighted integrative analysis for a set of
cis-SNPs located within a gene and produced a single P-value for
the evidence of the significance of that gene (Gusev et al., 2016;
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Xu et al., 2017; Guo and Wu, 2018; Wu and Pan, 2018; Xue et al,,
2020; Zhang et al., 2020). Specifically, for each tissue in turn and
a set of predefined cis-SNPs of a gene of focus, we have:

2
Xi = ((szT )/\/ WiRw! ) (1)

where Z = (Zy, ..., Z,) is an m-vector of the Z score for
cis-SNPs obtained from summary statistics, with m being the
number of cis-SNPs and varying gene by gene across the whole
genome; wy is an m-vector of cis-SNP weights yielded from the
k™ tissue of GTEx; R is the unknown LD among cis-SNPs and
can be approximately estimated from reference panels such as the
1000G (Consortium, 2015). We performed our eQTL-weighted
integrative analysis using the metaXcan software (Barbeira et al,,
2018). For each gene its cis-SNPs were previously annotated by
the authors of metaXcan and the eQTL weights were also in
prior trained using the elastic net model with genotypes and gene
expressions in tissues from the GTEx Project (GTEx Consortium,
2015). We downloaded tissue-specific eQTL weights from http:
/Ipredictdb.org/ and run the integrative analysis in terms of the
guideline of metaXcan (Barbeira et al., 2018).

Because both the RA and SLE GWASs were analyzed with
pooled samples of male and female individuals; therefore, to
avoid the influence of gender heterogeneity in gene expressions
on association signals (Kassam et al., 2019; Lopes-Ramos et al.,
2020; Oliva et al., 2020), we removed six gender-specific tissues in
GTEx (i.e., breast mammary tissue, ovary, prostate, testis, uterus,
and vagina), leaving 42 various gender-combined GTEx tissues
for each disease (Supplementary Table 2). Moreover, due to
population stratification or cryptic relatedness or overcorrection
of test statistics (Cardon and Palmer, 2003; Freedman et al., 2004;
van den Berg et al., 2019), the empirical null distribution in
GWAS is sometimes inflated. To correct for such bias, following
prior work (Price et al., 2010), we divided Xi by the genomic
inflation factor () if it was greater than 1.05. We estimated \ as
the ratio between the observed median of xi and the expected
value of 0.456 (Devlin and Roeder, 1999; Dadd et al., 2009;
Zeng et al., 2015b). Then, the P-value was easily calculated as
the corrected test statistics asymptotically follow a chi-squared
distribution with one degree of freedom (Gusev et al., 2016; Xu
et al,, 2017; Guo and Wu, 2018; Wu and Pan, 2018; Xue et al,,
2020; Zhang et al., 2020). Afterwards, we obtained a set of various
P-values (Pg, k=1, 2, ..., 42) for every gene across these tissues,
with each representing the association significance of the gene
associated with RA or SLE after integrating eQTLs.

To aggregate individual association evidence across tissues,
we further applied the HMP combination method to generate a
single well-calibrated P-value (Wilson, 2019a):

P = log T 874, — T=1 P,
/1/fo (XI og T+ 0.874, z)dx, / ;wk/ 3

2
where wj represents the non-negative weight for each Py
with SK =1 and assume that wy is independent of Py; f;
=1 =
denotes the Landau distribution probability density function.
Note that, individual Pys often exhibited non-negligible positive

dependence because they were implemented for the same gene
following the similar logic (see below), existing methods such
as the minimum P-value method (Conneely and Boehnke, 2007;
Sun and Lin, 2020) and Fisher’s combination (Fisher, 1934), are
either computationally intensive or rather difficult to implement
because of the requirement of sampling-based algorithms for
the valid null distribution or the unavailability of correlation
structure (Ballard et al., 2010; Liu and Xie, 2019a,b; Zhang
et al., 2019; Sun and Lin, 2020), especially when only summary-
level datasets were available (Pasaniuc and Price, 2016). The
advantage of HMP used here is that it has been theoretically
demonstrated that the complicated positive dependency among
P-values has little influence on the final pooled P-value (Wilson,
2019a). Thatis, T in the Eq. (2) still follows a Landau distribution
asymptotically regardless of the correlation structure among
these P-values. Consequently, we can yield the P-value for the
test statistic T based on the right tail area of the Landau
distribution as shown in (2). It has been also proven that under
regularity conditions for the generalized central limit theorem the
combined P-value by HMP is robust against the number of tests
K and the selected weights (Wilson, 2019a). We implemented
HMP with equal weights through the harmonic mean p package
(version 3.0) in R (Wilson, 2019b). Using the HMP procedure, we
generated two sets of P-values in the eQTL weighted gene-based
association analyses of RA and SLE.

Pleiotropy-Informed Method Identifying
Shared Genes Between RA and SLE

Finally, to leverage the pleiotropic information shared between
RA and SLE to efficiently identify gene association signals, we
utilized the cFDR method (Andreassen et al., 2013, 2014; Smeland
et al., 2020) which extended the unconditional FDR (Benjamini
and Hochberg, 1995) from an empirical Bayes perspective. The
cFDR measures the probability of the association of the principal
disease (e.g., RA) conditioned on the strength of association with
the conditional disease (e.g., SLE):

cEDR(p; | pj) = Prob(H) | pi < pi, P; < pj) 3)

where p; and p; are the observed HMP adjusted P-values of a
particular gene of the principal disease (denoted by i) and the
conditional disease (denoted by j), respectively; Hi denotes the
null hypothesis that there does not exist association between the
gene and the principal disease. As the principal and conditional
positions of the two diseases in cFDR are exchangeable, cFDR (pj]
pi) is defined in a similar manner. Moreover, the conjunction
conditional false discovery rate (ccFDR) is applied to identify
genes with pleiotropic effect:

ccFDR = max{cFDR(p; | pj), cFDR(p; | pi)} (4)

which is defined as the probability that a given gene has a
false positive association with both the principal and conditional
diseases, and provides an indicator for pleiotropy (Andreassen
et al., 2013; Smeland et al., 2020).
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RESULTS

Estimated Genetic Correlation Between

RA and SLE

After quality control, a total of 4,708,829 and 5,462,109
genetic variants were reserved for RA and SLE, respectively.
The genome-wide SNP-based heritability is estimated to be
11.8% (se 1.3%) for RA and 30.1% (se = 3.1%) for SLE
with LDSC. Next, using cross-disease LDSC with 4,098,768
common SNPs, we observe that there exists a significantly
positive genetic correlation between the two types of diseases
(rg 0.404, P 6.01E-10), providing statistical evidence
supporting overlapped genetic foundation between RA and SLE.
Opverall, through the above genetic correlation analysis we reveal
RA and SLE are genetically similar and share moderate to high
overlap in genetic etiology. Therefore, it is worthy of further
investigation into common genetic mechanisms through novel
pleiotropy-informed statistical tools.

Associated Genes Identified by cFDR

In our gene-based association analysis, we assigned a set of
genetic variants to predefined genes and obtained a total of
23,833 and 23,813 genes for RA or SLE, respectively. By
integrating eQTLs and summary statistics, we generated ¥}
for each gene of both RA and SLE across all the tissues
and adjusted it if A > 1.05 (Supplementary Table 3). Then,
the P-values were yielded. Afterwards, we further performed
the HMP procedure to aggregate the P-values of each gene
across all the tissues into a single P-value for RA or SLE.
As mentioned before, these P-values from various tissues are
in highly positive correlation with each other (Supplementary
Figure 1), implying the failure if applying Fisher’s method which
instead requires mutually independent P-values from different

experiment tests (Fisher, 1934; Rice, 2010). The Manhattan plots
for RA and SLE are shown in Figures 2A,B, with some associated
genes highlighted.

According to the results of HMP, we conducted the ¢cFDR
analysis. In our analysis the Q-Q plot of RA conditional on the
nominal P-value of SLE illustrates the existence of enrichment
at different significance thresholds of SLE (Figure 2C). The
presence of leftward shift suggests that the proportion of true
associations for a given P-value of SLE would increase when
the analysis is limited to include more significant genes. On
the other hand, in terms of the Q-Q plot of SLE conditional
on the nominal P-value of RA (Figure 2D), we observe a
more pronounced separation in different curves, implying that
there exists a stronger enrichment for SLE given RA than that
for RA given SLE.

We further formally analyze the two diseases jointly using
cFDR and show the results of association signals in Table 1 and
Supplementary Tables 4, 5. Briefly, we identify 76 RA-associated
genes (Supplementary Table 4) and 33 SLE-associated genes
(cFDR < 0.05) (Supplementary Table 5). Among these genes,
59 RA-associated (e.g., CCBL2, SLC10A4, and PLEKHAI) and
19 SLE-associated genes (e.g., INPP5B, SKP1, and TMEMS80)
are not implied in the original GWASs of RA and SLE (Okada
et al, 2014; Bentham et al, 2015), and are likely newly
candidate associated genes for each disease. These findings also
confirm that our multiple-tissue eQTL weighted integrative gene-
based association analysis has higher power compared to the
conventional single SNP analysis, as shown in many prior studies
(Gusev et al., 2016; Xu et al., 2017; Guo and Wu, 2018; Wu and
Pan, 2018; Xue et al., 2020; Zhang et al., 2020).

Pleiotropic Genes Identified by ccFDR
Across all these RA- and SLE-associated genes, 14 genes (i.e.,
pleiotropic genes) are commonly related to RA and SLE
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TABLE 1 | Potential pleiotropic genes associated with RA and SLE
identified by ccFDR.

Gene chr Position cFDRrs cFDRg g ccFDR
INPP5B 1 38,326,369-38,412,729  3.91E-16 5.64E-3 2.54E-2
OR5K2 3 98,216,448-98,217,496 1.42E-2 9.12E-4 4.63E-2
RP11- 16 30,832,389-30,833,431 1.86E-2 2.34E-16 3.72E-2
2C24.5

CTD- 19 12,490,560-12,494,501 1.37E-2  2.79E-4 4.45E-2
3105H18.4

MAGI3 1 113,933,371-114,228,545 1.81E-30 1.60E-2  1.60E-2
INPP1 2 191,208,196-191,236,391 7.07E-3  5.79E-5 4.24E-2
PDHB 3 58,413,357-58,419,584 2.51E-5 5.66E-4 6.60E-3
ITPR3 6 33,588,522-33,664,351  9.83E-27 4.60E-4 2.76E-3
CLIP2 7 73,703,803-73,820,273 4.88E-3  7.32E-5 3.09E-2
IRF5 7 128,577,666-128,590,089 5.45E-4 4.27E-11 2.72E-3
ICAM5 19 10,400,655-10,407,453 1.90E-3 1.57E-4 1.09E-2
TYK2 19 10,461,209-10,491,352 1.01E-6  2.57E-5 5.39E-4
CccDC116 22 21,987,007-21,991,616 1.06E-2 3.38E-16 3.18E-2
RP11- 17 39,927,742-39,939,601 414E-5 1.06E-4 2.17E-3
387H17.4

The first four may be newly pleiotropic genes, while the others were reported in
previous literature.

(ccFDR < 0.05) (Table 1), four of which (i.e., INPP5B, OR5K2,
RP11-2C24.5, and CTD-3105H18.4) are possibly new genes.
Interestingly, the SNP effect sizes of 12 out of 14 genes (except
PDHB and RP11-387H17.4) are highly positively correlated
between RA and SLE (Supplementary Figure 2), with an average
Pearson’s correlation r of 0.579. For example, the SNP effect sizes
of IRF5 have a maximal r of 0.862 (95% confidence intervals [Cls]
0.826-0.891), followed by INPPI (r = 0.825, 95%ClIs 0.792-0.853)
and TYK2 (r = 0.755, 95%CIs 0.701-0.799). This observation
indicates that the genetic effects of these pleiotropic genes on
the two diseases in general show a consistent direction. In
addition, we also calculated the genetic risk score (GRS) for
each pleiotropic gene (Supplementary Figure 3). The GRS is
generated as the product of SNP effect sizes of RA (or SLE)
and genotypes available from 503 European individuals of the
1000G (Consortium, 2015). We applied the GRS as an overall
measurement of the genetic effect for a given pleiotropic gene
on each disease. We observe that most of these pleiotropic genes
(except INPP5B and RPI11-2C24.5) have substantial different
average GRS on RA and SLE. For example, five (i.e., OR5K2,
INPPI1, PDHB, ITPR3, and ICAM5) show a higher overall genetic
effect on SLE, while the rest (i.e.,, CTD-3105H18.4, MAGI13,
CLIP2, INF5, TYK2, CCDCI116, and RP11-387H17.4) show a
higher overall genetic effect on RA. These GRS results provide
an insight into the magnitude of the genetic effects of these
pleiotropic genes on the two diseases.

The result of enrichment analysis shows that these pleiotropic
genes have marked enrichment patterns mainly in type I
interferon (IFN) signaling pathway, membrane, and inositol
phosphate metabolic process (Table 2). The IFN signaling
pathway plays a major role in activation of both innate and
adaptive immune systems that are related to RA (Wright et al,,
2015) and SLE (Bezalel et al., 2014). IRF5 and TYK2 are shown

TABLE 2 | Enriched pathways for potential pleiotropic genes of RA and SLE.

Pathway Genes P
Phosphatidylinositol INPP5B, INPP1, ITPR3 4.00E-3
signaling system

Inositol phosphate INPP5B, INPP1 2.20E-2
metabolic process

Membrane INPP5B, MAGI3, ITPR3, TYK2, ICAM5 2.40E-2
Type | interferon IRF5, TYK2 3.00E-2
signaling pathway

Inositol phosphate INPP5B, INPP1 7.00E-2
metabolism

Glucagon signaling ITPR3, PDHB 9.70E-2

pathway

to be involved in this pathway, in line with prior studies
(Acosta-Herrera et al., 2019) and supporting the validity of our
results. Some pleiotropic genes (e.g., INPP5B, MAGI3, ITPR3,
TYK2, and ICAMS5) are enriched in the biological process of
membrane fraction. MAGI3, as a novel membrane-associated
guanylate kinase, is also implicated in the Wnt/B-catenin
pathway, which induces promotion of regulatory T cell responses
(Norén et al, 2017) as well as immune tolerance and plays a
critical role in mucosal tolerance and suppression of chronic
autoimmune pathologies (Suryawanshi et al., 2016). INPP5B,
enriched in the pathway of inositol phosphate metabolic process
and membrane fraction, was recently reported to be associated
with membranes through an isoprenyl modification near the
C-terminus and regulated calcium signaling by inactivating
inositol phosphates (Nakatsu et al., 2015). Sustained calcium
signaling responses are prevalent in the immunological synapse
of T cells of SLE patients (Nicolaou et al., 2010). In addition,
the mobilization of calcium signaling may modulate the
functions of inflammatory and immunity genes in RA patients
(de Seabra Rodrigues Dias et al., 2017).

As another example, PDHB, enriched in the glucagon
signaling pathway, was discovered to be related to the promotion
of aerobic glucose metabolism together with oxidative stress
(Kanda et al., 2015). Up-regulation of glucose metabolism was
demonstrated to be associated with upon activation of immune
cells such as Fibroblast-like Synoviocytes (FLSs) (Garcia-
Carbonell et al., 2016). The involvement of FLSs in regulating the
pathogenesis of RA was highlighted in recent work (Meng and
Qiu, 2020), which supports the validity of our findings.

DISCUSSION

It has been widely observed that RA and SLE have common
pathological and clinical features (Manoussakis et al., 2004; Icen
et al.,, 2009; Orozco et al., 2011; Toro-Dominguez et al., 2014;
Mérquez et al.,, 2017; Acosta-Herrera et al.,, 2019), which are
partly attributable to common genetic foundation between the
two diseases. However, the genetic overlap underlying RA and
SLE remains elusive and a large proportion of genes related to
them are yet not discovered (Ramos et al.,, 2011). Large-scale
GWASs undertaken on RA and SLE offer an unprecedented
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opportunity to tackle this question. The objective of our study was
to gain insight into genetic mechanism linking between RA and
SLE using advanced bioinformatics approaches. By leveraging
publicly available GWAS summary statistics, we identified a
significant positive genetic correlation between RA and SLE,
indicating that genetic variants associated with the risk of SLE
would be also related to the risk of RA, or vice versa (Icen et al.,
2009; Toro-Dominguez et al., 2014).

By integrating eQTLs and combing association evidence
across tissues, our study ultimately discovered 14 potential
pleiotropy genes, and four of them (i.e., INPP5B, OR5K2, RP11-
2C24.5 and CTD-3105H18.4) were not directly reported in
previous literature, providing new insight into shared genetic
basis between RA and SLE. Furthermore, we found that the
SNP effect sizes of these genes were positively correlated and
that these genes were implicated in multiple auto-immune
relevant pathways such as inositol phosphate metabolic process,
membrane and glucagon signaling pathway. As compared
to previous cross-phenotype studies of autoimmune diseases
(Orozco et al, 2011; Marquez et al,, 2017), our study differs
from them in multiple aspects and has several strengths. First,
previous studies in general attempted to detect pleiotropy loci
at the SNP level, while our work aimed to identify shared loci
with gene as the functional unit. The power for detecting single
SNP association is limited because genetic variants often have
weak effect sizes (Hindorff et al., 2009; Visscher et al., 2017),
making the detection of common associated SNPs difficult even
with large samples. In contrast, due to the aggregation of multiple
weak association signals and the reduced burden of multiple
testing, gene-based analysis often has higher power than its
counterpart of single SNP analysis. Therefore, our analysis is
biologically more meaningful and statistically more powerful as
widely demonstrated by gene-based association studies (Kwee
et al., 2008; Wu et al.,, 2010, 2011; Schifano et al., 2012; Huang
and Lin, 2013; Ionita-Laza et al., 2013; Wang et al., 2013; Lee et al,,
2014; Zeng et al., 2014a,b, 2015a).

Second, as shown in previous studies, disease-associated SNPs
were more likely to be eQTLs (Nicolae et al., 2010), implying that
the functional roles of associated SNPs were regulated through
gene expression; thus, the power improvement of gene-based
association studies would be further achieved by integrating
eQTLs into the test (Su et al., 2018; Wu and Pan, 2018; Xue
et al,, 2020). To do so, we systematically evaluate predicted gene
expressions in RA and SLE through integrating eQTLs of relevant
tissues from the GTEx project and GWAS summary statistics.
Third, we aggregated association evidence across various tissues
by applying the HMP procedure (Wilson, 2019a) which is robust
against positive dependency among P-values and can produce
a single well-calibrated P-value for evaluating the association.
Fourth, prior studies were performed as across-disease meta-
analysis for RA and SLE aimed to detected genetic loci that were
associated with at least one disease rather than simultaneously
related to both the diseases (Orozco et al., 2011; Mdrquez et al,,
2017; Acosta-Herrera et al., 2019). Compared to these studies,
besides the HMP combination strategy, our work also applied
the widely used pleiotropy-informed method of cFDR to formally
discover shared genes and provided a solid statistical foundation

for our analysis (Zhernakova et al., 2009; Andreassen et al., 2013,
2014; Li et al., 2015; Ellinghaus et al., 2016; Smeland et al., 2020).
Finally, there are some limitations of our study needed to state.
First, we cannot replicate these identified pleiotropic genes with
external datasets or via in vivo and in vitro experiments. Second,
the limited sample size of reference panel for calculating LD
among SNPs and the well-known tissue-specific genetic effects
of eQTLs may undermine the power of our integrative analysis.
Third, although prior evidence described before indicates these
newly pleiotropic genes may underlie certain aspects of the
pathogenesis of RA and SLE, their biological mechanisms are
still largely unclear; therefore, further studies are required to
characterize functional roles of these genes on RA and SLE.

CONCLUSION

This study reveals common genetic components between RA and
SLE and provides candidate associated loci for understanding
of molecular mechanism underlying the comorbidity of
the two diseases.
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