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Abstract
Background There are many research studies have estimated the heritability of phenotypic traits, but few have considered 
longitudinal changes in several phenotypic traits together.
Objective To evaluate the progressive effect of single nucleotide polymorphisms (SNPs) on prominent health-related phe-
notypic traits by determining SNP-based heritability ( h2

snp
 ) using longitudinal data.

Methods Sixteen phenotypic traits associated with major health indices were observed biennially for 6843 individuals with 
10-year follow-up in a Korean community-based cohort. Average SNP heritability and longitudinal changes in the total 
period were estimated using a two-stage model. Average and periodic differences for each subject were considered responses 
to estimate SNP heritability. Furthermore, a genome-wide association study (GWAS) was performed for significant SNPs.
Results Each SNP heritability for the phenotypic mean of all sixteen traits through 6 periods (baseline and five follow-ups) 
were significant. Gradually, the forced vital capacity in one second (FEV1) reflected the only significant SNP heritability 
among longitudinal changes at a false discovery rate (FDR)-adjusted 0.05 significance level ( h2

snp
= 0.171 , FDR = 0.0012). 

On estimating chromosomal heritability, chromosome 2 displayed the highest heritability upon periodic changes in FEV1. 
SNPs including rs2272402 and rs7209788 displayed a genome-wide significant association with longitudinal changes in 
FEV1 (P = 1.22 × 10−8 for rs2272402 and P = 3.36 × 10−7 for rs7209788). De novo variants including rs4922117 (near LPL, 
P = 2.13 ×  10−15) of log-transformed high-density lipoprotein (HDL) ratios and rs2335418 (near HMGCR , P = 3.2 ×  10−9) 
of low-density lipoprotein were detected on GWAS.
Conclusion Significant genetic effects on longitudinal changes in FEV1 among the middle-aged general population and 
chromosome 2 account for most of the genetic variance.

Keywords Heritability · Phenotypic trait · Genomic restricted maximum likelihood · Longitudinal changes

Introduction

Single nucleotide polymorphism (SNP)-based herit-
ability ( h2

snp
 ) indicates the relative proportion of genetic 

variance explained based on SNPs used for genome-wide 
association studies (GWASs). For h2

snp
 estimation, the 

genomic restricted maximum likelihood (GREML) for 
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linear mixed models (LMMs) is often implemented in the 
genetic complex trait analysis (GCTA) tool (Yang et al. 
2011). GREML first calculates the genetic relatedness 
matrices (GRM), which are used as variance–covariance 
matrices for random effects. The significance of estimates 
obtained through GREML depends on the study design; if 
it is applied to family-based samples, it displays pedigree-
based heritability, but for unrelated subjects, it estimates 
h2
snp

 (Kim et al. 2015; Yang et al. 2017). Estimation of h2
snp

 
involves considerable differences across not only method-
ologies but also procedures requiring careful interpretation 
of results (Evans et al. 2018; Ni et al. 2018). Moreover, the 
estimated heritability is potentially biased and misleading 
owing to measurement errors at various degrees. To over-
come these challenges, the heritability determined from 
longitudinal data is more reliable than that determined 
from cross-sectional data. While most studies on h2

snp
 

focused on the primary effect of SNPs, significant effects 
of SNPs on the average annual differences indicate the 
SNP-by-age interaction. Numerous examples illustrate the 
importance of age on longitudinal changes (Genetic epi-
demiologic studies on age-specified traits. NIA Aging and 
Genetic Epidemiology Working Group 2000; Nishimura 
et al. 2012; van de Pol and Verhulst 2006). For instance, 
one study showed that an annual decline in lung function 
is associated with age (Kim et al. 2016), and another study 
reported a genetic influence on changes in both lipopro-
tein risk factors and systolic blood pressure over a decade 
(Friedlander et al. 1997). Therefore, the h2

snp
 should be 

estimated on the basis of not only the mean of observed 
traits but also changes in the sufficient period. Hence, 
we applied a two-stage approach, which is a convenient 
method of analyzing longitudinal data by combining linear 
regression models to investigate the effect of SNPs on both 
average and longitudinal differences in phenotypic traits.

In this study, we investigated the magnitude of 
SNPs effect on average and longitudinal differences by using 
both genomic data and 16 phenotypic traits associated with 
major health indices using a phenotype-genotype dataset 
of unrelated individuals in a community-based cohort and 
evaluated their importance. Except for baseline, each phe-
notype was objectively measured every 2 years for 10-year 
follow-up, and six repeated measurements (maximum) were 
obtained for each individual. For each subject, both the aver-
age phenotypic traits and their longitudinal changes were 
estimated via subject-specific regression analysis, using 
intercepts and coefficients of ages, respectively. Each h2

snp
 

value was estimated using GCTA. Our results show that 
lung function has the only significant h2

snp
 for longitudi-

nal changes, while all average phenotypes of the 16 traits 
yielded a significant h2

snp
 value. Furthermore, the GWAS 

revealed certain novel genome-wide significant SNPs asso-
ciated with the phenotypes analyzed herein.

Materials and Methods

Ethics approval and consent to participate

The respective Institutional Review Board (IRB) of Seoul 
National University reviewed and approved the informed 
consent, the study protocols and other documents (Per-
mit No. E1605/002-003). All methods were performed in 
accordance with the relevant guidelines and regulations.

Korea Associated Resource (KARE) cohort data

Korea Associated Resource (KARE) data are based on a 
community-based epidemiological study and comprises sub-
jects residing in Ansan (urban area) and Ansung (rural area) 
in the Gyeonggi Province of South Korea (Cho et al. 2009). 
A baseline survey was completed in 2001–2002, and 10,030 
participants aged 40–69 years were recruited. After that, 
biennial repeated surveys were conducted, and the last sur-
vey were completed in 2013–2014 (Kim et al. 2017). Six dif-
ferent surveys were conducted in total. These measurement 
periods are indicated as periods 1–6 throughout this study, 
each with a different number of subjects (e.g., period 1: 8543 
subjects [4052 male, 4491 female]; period 6: 5391 subjects 
[2502 male, 2889 female]). The number of overlapping sub-
jects throughout the six periods was 4306 (2009 male, 2297 
female). Among these, subjects whose traits were measured 
at least three times were considered, and 6843 participants 
(3273 male, 3570 female) were assessed in total.

Many participant phenotypes were recorded by trained 
interviewers through questionnaires and clinical measure-
ment, and we only considered the 16 quantitative traits that 
they were measured objectively and associated with major 
health indices; these were classified into four groups: anthro-
pometric, biochemistry, cardiopulmonary, and red blood cell 
traits (Table 1). As glycated hemoglobin (HbA1c), fasting 
blood glucose (GLU0), high-density lipoprotein (HDL), 
triglycerides (TG), and systolic blood pressure (SBP) dis-
played skewed distributions, they were log-transformed and 
denoted by log(HbA1c), log(GLU0), log(HDL), log(TG), 
and log(SBP), respectively. The missing rate of HbA1c was 
larger than 0.5 at period 2 and was excluded from further 
analyses. For each trait, subjects with more than three meas-
urement observations were assessed.

Genotypes

Genotype data for the KARE cohort were obtained using 
the Affymetrix Genome-Wide Human SNP array 5.0 (Cho 
et al. 2009). Quality control (QC) analysis of SNPs and 
subjects was conducted using PLINK (Purcell et al. 2007) 
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and ONETOOL (Song et al. 2018). SNPs with P-values 
from Hardy–Weinberg equilibrium (HWE) analysis < 10−5, 
minor allele frequencies (MAFs) < 0.05, and genotype call 
rates < 95% were excluded. Furthermore, subjects with miss-
ing genotype call rates > 5% or sex-based inconsistencies 
were excluded. The missing genotypes for typed SNPs were 
imputed on the basis of the 1000-genome sequence reference 
data. After QC analysis, 305,158 SNPs were analyzed for 
SNP heritability and GWAS (Fig. 1).

Data availability

The data used in this study underwent an application process 
according to the Korean Genome and Epidemiology study 
data access policy, and can be downloaded from following 
website: http://nih.go.kr/index .es?sid=a5#a.

Determination of phenotypic averages 
and longitudinal changes in each subject

The phenotypic averages and longitudinal changes for each 
subject were determined and used to estimate SNP herit-
ability and for the GWAS. Significant differences in phe-
notypic variances were observed for each period, and such 
heteroscedasticity was considered for phenotypic averages 
and longitudinal changes for each subject as follows. First, 
the linear regression model for subjects of the same period 
was adjusted for traits. The effect of sex, age, and top 10 
principal component (PC) scores estimated from the genetic 
relationship matrix were adjusted as covariates. Considering 
wjk as the residual variances of trait k (k = 1, …, 16) at the 
period j, the following linear regression model was adjusted 
with repeated measures for each subject i as follows:

Table 1  Sixteen phenotypic traits associated with major health indices

Anthropomorphic traits Height, Waist, Weight, body-mass index (BMI)

Biochemistry traits
 Glucose Glycated hemoglobin (HbA1c), Fasting blood glucose (GLU0)
 Cholesterol Low-density lipoprotein (LDL), high-density lipoprotein (HDL), total cholesterol (TCHL), triglyceride (TG)

Cardiopulmonary traits
 Blood pressure Systolic blood pressure (SBP), diastolic blood pressure (DBP)
 Lung capacity Predicted forced vital capacity (FVC) %, predicted forced expiratory volume in one second (FEV1) %, 

predicted FEV1/FVC  %
Red blood cell traits Hemoglobin levels (Hb)

Fig. 1  A schematic representa-
tion of heritability analysis and 
the genome-wide association 
study

http://nih.go.kr/index.es%3fsid%3da5#a
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Here, i indicates the ith subject, and agei indicates the mean 
of ages at the observed time points. In the regression model 
(1), yijk is the jth period observed value of subject i for trait 
k, �ik0 indicates the expected phenotypic mean of subject 
i for trait k when he or she is agei years old, and �ik1 is the 
average longitudinal change in trait k. The estimated values 
of �ik0 and �ik1 were used to estimate the heritability and for 
GWAS analysis. For convenience, both are denoted by B0 
and B1 , respectively.

Estimation of heritability

B0 and B1 were separately used to estimate SNP heritabil-
ity. Analyses were conducted using GCTA (Yang et al. 
2011), and the restricted maximum likelihood estima-
tor was used. Effects of age and sex were adjusted as 
covariates.

GWAS analysis

B0 and B1 were separately analyzed to identify disease 
susceptibility loci for 16 different traits. The agei  , sex, 
and 10 PC scores estimated from the genetic relationship 
matrix were included as covariates to adjust the popula-
tion stratification.

(1)

yijk = �ik0 + �ik1
(

ageij − agei
)

+ �ijk, �ijk ∼ N

(

0,
1

wjk

�2

ik

) Results

Estimation of heritability

A schematic representation of the heritability analysis and 
genome-wide association study is shown in Fig. 1. For 16 
different traits of 6843 subjects, the mean and standard devi-
ation values of each trait at period 1 are shown in Table 2 
(see Table 1 for detailed information). Some missing val-
ues resulted in differences in the total number of subjects 
depending on the phenotype, and the sample sizes of those 
traits and descriptive statistics including sex and age were 
summarized.

For those 6843 subjects, a multidimensional scaling 
(MDS) plot was generated (Fig. 2). As shown in Fig. 2, sub-
jects from the 1000 Genomes Project were also included, and 
our analyses were not affected by population stratification.

We calculated the descriptive statistics for B0 and B1 
(Table 3, see “Materials and methods” for details). B0 in 
Eq. (1) indicates the means of the predicted traits at agei 
years of age. B1 stands for the longitudinal changes in the 
traits of each subject. Table 3 shows that the means of B0 
are similar to those of period 1. Means of B1 were generally 
closer to 0. Figure 3 shows the estimates of heritability with 
B0 as the response in the GREML model, and the estimated 
heritability of height for the data peaked at 0.318 (P = 1.665 
×  10−16, FDR = 2.664 ×  10−15). The subsequent three highest 
heritability traits were total cholesterol (TCHL), log(HDL), 
and low-density lipoprotein (LDL), with values of 0.265 
(P = 3.895 ×  10−12, FDR = 3.116 ×  10−11), 0.241 (P = 8.911 
×  10−10, FDR = 4.753 ×  10−9), and 0.222 (P = 5.178 ×  10−9, 

Table 2  Descriptive statistics of 
16 traits

Trait Trait (baseline) Total (N) Female Age

Mean SD N % Mean SD

Height (cm) 160.11 8.63 6823 3557 52.13% 51.90 8.69
Waist (cm) 82.63 8.70 6835 3567 52.19% 51.90 8.69
Weight (kg) 63.24 10.10 6822 3556 52.13% 51.90 8.69
BMI (kg/m2) 24.62 3.10 6822 3556 52.13% 51.90 8.69
HbA1c (%) 5.74 0.82 6329 3321 52.47% 51.87 8.62
GLU0 (mg/dl) 86.73 19.41 6728 3514 52.23% 51.85 8.67
TG (mg/dl) 161.47 103.19 6840 3568 52.16% 51.91 8.70
LDL (mg/dl) 115.00 32.89 6840 3568 52.16% 51.91 8.70
HDL (mg/dl) 44.69 9.91 6840 3568 52.16% 51.91 8.70
TCHL (mg/dl) 191.92 35.09 6840 3568 52.16% 51.91 8.70
SBP (mmHg) 121.12 18.10 6843 3570 52.17% 51.91 8.70
DBP (mmHg) 80.19 11.33 6843 3570 52.17% 51.91 8.70
Hb (g/dl) 13.61 1.57 6840 3568 52.16% 51.91 8.70
FVC (%predicted) 104.76 14.17 4291 2135 49.76% 50.37 8.17
FEV1 (%predicted) 112.27 16.62 4290 2134 49.74% 50.37 8.16
FEV1/FVC (predicted) 74.89 1.77 4291 2135 49.76% 50.37 8.17
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FDR = 1.657 ×  10−8), respectively. These three traits are 
cholesterol-related. The heritability of waist was 0.218 
(P = 5.016 ×  10−9, FDR = 1.657 ×  10−8) and that of weight 
was 0.196 (P = 2.046 ×  10−7, FDR = 5.456 ×  10−7). The her-
itability was 0.195 for Hb (P = 4.926 ×  10−7, FDR = 9.852 × 
 10−7) and 0.192 for log(TG) (P = 4.419 ×  10−7, FDR = 9.852 
×  10−7). The heritability of the other traits with an FDR 
larger than 1 ×  10−6 were less than 0.19. 

Figure 4 shows the heritability estimates for B1 , which 
are generally less than those for B0 , and we found that lung 
function traits FVC and FEV1, wasit, diastolic blood pres-
sure (DBP), BMI, and log(SBP) are relatively high. The 
highest heritability estimate was observed for FEV1 (0.171) 
and its FDR-adjusted P value was 0.0189. The heritability 
estimates of other traits were less than 0.1. The second high-
est heritability was 0.0941 for FVC, and its FDR-adjusted 
P value was 0.166. The heritability of waist was also rela-
tively higher than that of other traits. Waist heritability and 
the FDR-adjusted P values were 0.0082 and 0.0657, respec-
tively. The higher heritability estimates for B1 indicate that 
the decreasing/increasing rates were associated with genetic 
factors. Height displayed the highest heritability estimates 
for B0 , but its estimate for B1 was low (0.0297). Height does 
not usually change after the age of 20, and its lower value 
here is probably attributable to it. For the other traits includ-
ing log(HbA1c), LDL, log(HDL), TCHL, and Hb levels, 
SNP heritability estimates tended towards 0.

Furthermore, we determined chromosomal heritabil-
ity estimates of FEV1, which displayed the highest her-
itability in the B1 model. Consequently, chromosome 2 
accounted for the highest proportion of phenotypic variance 
( h2

snp
 = 0.0397), albeit with a high standard error (Fig. 5).

There was a significant positive correlation between chromo-
some length and heritability (r = 0.58, P = 0.0045) in FEV1 
(Fig. 6). 

Genome‑wide association studies

B0 and B1 were considered responses for GWAS. Tables 4 
and 5 show genome-wide significant SNPs at a significance 

Fig. 2  Population structures identified via a multidimensional scal-
ing (MDS) plot. This plot shows that our analyses (KARE) are not 
affected by population stratification. AFR, AMR, EAS, EUR, and 
SAS indicate African, Ad Mixed American, East Asian, European, 
and South Asian populations, respectively, from the 1000 Genomes 
Project

Table 3  Summary of B0 and B1 
of 16 traits

Trait B0 B1

Mean SD Min Max Mean SD Min Max

Height 159.906 8.724 130.241 187.866 − 0.060 0.139 − 2.168 0.747
Waist 83.743 8.480 58.333 121.591 0.184 0.692 − 4.968 6.904
Weight 62.860 9.931 30.532 105.355 − 0.094 0.480 − 3.739 2.657
BMI 24.531 2.992 14.197 38.831 − 0.019 0.185 − 1.486 1.048
log(HbA1c) 1.737 0.107 1.256 2.441 0.002 0.011 − 0.093 0.157
log(GLU0) 4.538 0.149 4.260 5.733 0.012 0.018 − 0.166 0.171
log(TG) 4.834 0.423 3.584 7.189 − 0.012 0.057 − 0.409 0.412
LDL 120.111 25.757 11.833 281.590 0.193 4.065 − 29.218 28.549
log(HDL) 3.782 0.193 3.100 4.567 − 0.001 0.024 − 0.211 0.135
TCHL 194.208 28.114 97.986 343.106 − 0.120 4.468 − 34.599 29.468
log(SBP) 4.768 0.114 4.461 5.156 − 0.001 0.017 − 0.122 0.086
DBP 78.252 8.239 50.639 111.556 − 0.259 1.358 − 12.330 8.066
Hb 13.695 1.370 7.764 18.889 0.022 0.147 − 1.641 1.468
FVC 104.541 13.466 46.629 162.844 − 0.090 2.478 − 13.065 13.685
FEV1 111.128 16.295 38.951 184.532 − 0.239 2.575 − 16.022 15.620
FEV1/FVC 73.945 1.809 67.654 78.000 − 0.213 0.127 − 1.246 1.244
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level of 1 × 10−7. Subsequent findings are summarized in 
the Supplementary material (Tables S1 and S2). Table 4 
shows that SNPs have relatively lower P values for 
log(TG) and log(HDL) than any other trait. The most sig-
nificant variant for log(TG) was rs6589566 in ZPR1 with 
a P-value of 7.9 ×  10−38, the lowest P value among all 16 
traits. Furthermore, ZPR1 is associated with TG (Coram 
et al. 2013). The most significant variant of log(HDL) was 
rs16940212 with a P value of 2.08 ×  10−18 in ALDH1A2, 
which is associated with HDL (Spracklen et al. 2017). Cer-
tain other significant variants were significantly associated 

with proximal genes and with traits assessed herein. The 
variant rs180349 (P = 8.86 ×  10−35) of log(TG) was proxi-
mal to BUD13, which is associated with TG (Hoffmann 
et al. 2018). The variant rs17482753 (P = 3.199 ×  10−18) is 
proximal to LPL, which was strongly associated with HDL 
(Hoffmann et al. 2018). Herein, we also detected some de 
novo variants including rs4922117 (P = 2.13 ×  10−15) of 
log(HDL) and rs2335418 (P = 3.2 ×  10−9) of LDL, which 
were previously unknown; however, both their proximal 
genes LPL and HMGCR  are significantly associated with 
each trait (Hoffmann et al. 2018). The Manhattan Plot and 

Fig. 3  Single-nucleotide polymorphism heritability estimates of 16 traits with B0 as the response. Error bars correspond to standard error values. 
The values above the error bar are P values and false discovery rate (FDR; bold)

Fig. 4  Single-nucleotide polymorphism heritability estimates of 16 traits with B1 as the response. Error bars correspond to standard error values. 
The values above the error bar are P values and the false discovery rate (FDR; bold), and “*” indicates significant findings at an FDR of 0.05
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QQ plot for the model with B0 as the response are provided 
in the Supplementary material (Figures S1 and S2). 

Table 5 shows the results of GWAS for B1 . Based on the 
results, rs2272402 (SLC6A1) was the most significant variant 
both in FEV1 (P = 1.22 ×  10−8) and FVC (P = 1.40 ×  10−9) 
(Regional plots are shown in Supplementary Figures S5 
and S7), and the SLC6A1 enhancer was associated with 
lung function. Other variants including rs7209788 (NARF, 
P = 3.36 ×  10−7) for FEV1 and rs2668162 (FAM19A1, 
P = 6.18 ×  10−7) for FVC had P-values less than the 1 × 
 10−6 threshold (S2 Table). From the regional plot (Sup-
plementary Figure S6), we found that rs4789777(HEXDC, 
P = 4.599 ×  10−6) is highly correlated with rs7209788 of 
FEV1. The Manhattan Plot and QQ plot for the model with 
B1 as the response are provided in the Supplementary mate-
rial (Figures S3 and S4).

Discussion

In this study, SNP-based heritability estimates of 16 phe-
notypic traits were estimated longitudinal data from a 
10-year follow-up of the KARE cohort. The GCTA tool 
was used with a two-stage approach to determine the her-
itability estimate of phenotypic mean and longitudinal 
changes in each trait. Moreover, chromosomal heritabil-
ity estimates were determined and GWAS analyses were 
performed using the same approach. Overall, heritability 
estimates within the population-based cohort including 
KARE are potentially lower than those of pedigree or twin 
studies for all 16 traits, regardless of whether the response 
is B0 that phenotypic mean of traits or B1 which stands for 
the changes by time of traits. For example, the heritability 
of height herein was estimated to be approximately 0.318 

Fig. 5  Single-nucleotide polymorphism heritability estimates of FEV1 based on chromosomes with B1 as the response. Error bars correspond to 
standard error values. The values above the error bar are P values and false discovery rate (FDR; bold)

Fig. 6  Correlation between 
chromosome length and 
chromosome-specific heritabil-
ity. Numbers near dots are the 
chromosome numbers. Black 
line is the estimated regression 
line
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with B0 as the response, which is lower than the conven-
tional heritability estimate of height of approximately 0.8 
based on the assumption-free model (Visscher et al. 2006). 
In the case of TCHL and LDL, each heritability estimate 
was determined to be 0.265 and 0.22, respectively, which 
are also lower than the heritability estimates of 0.67 and 
0.69 for TCHL and LDL, respectively, on familial and 
pedigree analysis (van Dongen et al. 2013). The under-
lying reason may be explained on the basis of the miss-
ing heritability, which describes the difference in values 
between heritability estimated via GWAS and via familial 
studies (Sandoval-Motta et al. 2017). However, systemic 
inflation of estimated heritability estimates of polygenic 
phenotypes in familial studies may be confounded owing 
to a shared environment or environment-dependent genetic 
effects (Robinson et al. 2017). Therefore, the population-
based design similar to that of the present study potentially 
represents the average genetic effects regardless of various 
confounding environmental factors.

Based on the present B0 and B1 model, the heritabilities of 
B1 are markedly lower than those of B0 , indicating that most 
of the genetic variance of traits are not temporally influ-
enced. Here, B0 was not determined from the baseline meas-
urements of traits but rather the average values of repeated 
measurements to yield a more robust and reasonable result. 
If baseline measurement and longitudinal changes (B1) cal-
culated from those were considered responses during the 
estimation of heritability, the estimate may have been poten-
tially inaccurate owing to the correlation between baseline 
and B1 values. Thus, by applying a regression model to esti-
mate the average B0 and longitudinal changes B1 , the effect 
of B0 on B1 in each subject could be removed.

On GWAS, the two-stage model elucidated significant 
variants associated with the traits and their changes in the 
longitudinal data. We confirmed several proven variants 
and identified some other significant unreported variants. 
In the case of the B0 model, rs4922117 (P = 2.13 ×  10−15) 
of log (HDL) and rs2335418 (P = 3.2 ×  10−9) of LDL were 
both unreported; however, their proximal genes LPL and 
HMGCR , respectively, were significantly associated with 
each trait (Hoffmann et al. 2018). Furthermore, unreported 
genes, such as rs180349, including non-coding SNPs with a 
significant P value for TG are proximal to BUD13, which is 
strongly associated with TG (Hoffmann et al. 2018). Variants 

including rs17482753 also had significant P values and was 
proximal to LPL, which is strongly associated with the HDL 
trait (Hoffmann et al. 2018). In the B1 model, rs2272402 
(SLC6A1, P = 1.22 ×  10−8) was significant in both FEV1 
and FVC lung function. The SLC6A1 enhancer is associated 
with pulmonary function. Therefore, the present results are 
concurrent with previous findings regarding genes associ-
ated with each phenotype.

Among the 16 phenotypic traits in this study, only FEV1 
displayed longitudinally significant heritability herein 
(Fig. 4), thus reliably reflecting the physiological state of 
the lungs and airways and acting as a predictor of mor-
bidity and mortality in the general population; FEV1 is 
also widely used to define chronic obstructive pulmonary 
disease (COPD) (Young et al. 2007). Lung function develops 
in early life, peaks at a specific time point in early adulthood, 
and subsequently declines with age. Therefore, the decline 
of lung function in middle-aged and older individuals is 
suggested to be heritable in the general population (Got-
tlieb et al. 2001). However, longitudinal studies on FEV1 
and FEV1/FVC have suggested several significant genetic 
regions that markedly differ from the numerous genetic 
variants associated with lung function, with FEV1 being 
estimated at a single time point (John et al. 2017; Tang 
et al. 2014). Hence, gene-environment interactions and sig-
nificant genetic heterogeneity in lung function have been  
observed in diseases such as asthma or COPD (Hansel et al. 
2013; Imboden et al. 2012). Accordingly, the present study 
included the middle-aged general population with similar 
environmental exposure without specific lung diseases, 
thus suggesting that intact FEV1 decreased due to aging. 
Therefore, the present results show that FEV1 has significant 
SNP heritability for longitudinal changes (FDR = 0.0012 for 
FEV1).

This study has several limitations. First, the analysis of 
new variants in the present GWAS was not replicated for 
other cohorts. Second, the two-stage approach is statistically 
inefficient even though it is computationally fast. However, 
the sample size was very large, which hopefully minimized 
this problem. Furthermore, we considered subjects with at 
least three or more measurements, which potentially mini-
mize statistical power loss. Third, gene-environment inter-
actions were not analyzed, although the estimation of ran-
dom effects in the mixed model was elusive. Fourth, GCTA 

Table 5  Results of the genome-wide association study with B1 as the response

Only the variants with P values less than 1 × 10−7 are included. The more variants under suggestive threshold (P values less than 1 × 10−5) are 
listed in the supplement material (Table S2)

Trait SNP CHR BP1 BP2 A1 A2 GP GENE MAF HWE_P BETA P

FEV1 rs2272402 3 11,075,461 11,075,461 A G Intronic SLC6A1 0.07363 0.1473 − 0.5823 1.22E−08
FVC rs2272402 3 11,075,461 11,075,461 A G Intronic SLC6A1 0.07363 0.1473 − 0.595 1.40E−09
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itself has limitations for reasons such as data overfitting 
and skewed singular values (Kumar et al. 2016). Though our 
study optimized parameters to attain accurate results using 
GCTA, our sample size might have resulted in certain vari-
ations in comparison with other large studies. Furthermore, 
the issue regarding missing heritability was inevitable to an 
extent because the Affymetrix genotypic array represents 
only common variants for SNPs, while rare genetic SNP var-
iants were not included herein (Bandyopadhyay et al. 2017).

Despite the aforementioned limitations, our study eluci-
dates heritability estimates via a two-stage approach using 
a mixed model in GCTA and a GWAS, which further deter-
mines longitudinal change effects independently with a lin-
ear model, followed by estimating heritability using regres-
sion coefficients. This approach provides a reasonable and 
easy method to estimate heritability in longitudinal data 
and potentially assess both heritability of the phenotypic 
mean and changes through several periods. Essentially, our 
results show that significant SNP heritability is objectively 
confirmed for longitudinal changes in lung function decline 
including FEV1 in comparison with other health-related 
indices. Therefore, genetic studies on longitudinal FEV1 
decline among the middle-aged general population and chro-
mosome 2, which attributes the most in genetic variance 
should be encouraged.
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