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ABSTRACT A core principle of bacterial pathogenesis is that pathogens preferen-
tially utilize metabolites that commensal bacteria do not in order to sidestep nutri-
tional competition. The metabolite ethanolamine (EA) is well recognized to play a
central role in host adaptation for diverse pathogens. EA promotes growth and influ-
ences virulence during host infection. Although genes encoding EA utilization have
been identified in diverse bacteria (nonpathogenic and pathogenic), a prevailing
idea is that commensal bacteria do not utilize EA to enhance growth, and thus, EA
is a noncompetitive metabolite for pathogens. Here, we show that EA augments
growth of two human commensal strains of Escherichia coli. Significantly, these com-
mensal strains grow more rapidly than, and even outcompete, the pathogen entero-
hemorrhagic E. coli O157:H7 specifically when EA is provided as the sole nitrogen
source. Moreover, EA-dependent signaling is similarly conserved in the human com-
mensal E. coli strain HS and influences expression of adhesins. These findings sug-
gest a more extensive role for EA utilization in bacterial physiology and host-
microbiota-pathogen interactions than previously appreciated.

IMPORTANCE The microbiota protects the host from invading pathogens by limit-
ing access to nutrients. In turn, bacterial pathogens selectively exploit metabolites
not readily used by the microbiota to establish infection. Ethanolamine has been
linked to pathogenesis of diverse pathogens by serving as a noncompetitive meta-
bolite that enhances pathogen growth as well as a signal that modulates virulence.
Although ethanolamine is abundant in the gastrointestinal tract, the prevailing idea
is that commensal bacteria do not utilize EA, and thus, EA utilization has been par-
ticularly associated with pathogenesis. Here, we provide evidence that two human
commensal Escherichia coli isolates readily utilize ethanolamine to enhance growth,
modulate gene expression, and outgrow the pathogen enterohemorrhagic E. coli.
These data indicate a more complex role for ethanolamine in host-microbiota-
pathogen interactions.
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he microbiota plays essential roles in human health. For example, the microbiota

functions as a barrier against invading pathogens by limiting access to nutrients (1).
Significantly, bacterial pathogens have evolved to exploit specific host- and microbiota-
derived metabolites to sidestep nutritional competition and control expression of
virulence traits (1). For instance, ethanolamine (EA) is abundant in the gastrointestinal
(GI) tract due to the turnover of bacterial and epithelial cells (EA is a breakdown product
of the cell membrane lipid phosphatidylethanolamine) as well as through the diet (2).
EA utilization plays a central role in host adaptation for a diverse range of pathogens,
including opportunistic pathogens (3, 4). EA can serve as a carbon, nitrogen, and/or
energy source to promote growth as well as a signal to influence virulence during host
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infection (5-11). Genes encoding EA utilization are carried in the ethanolamine utiliza-
tion (eut) locus (12). In the Enterobacteriaceae, the eut locus encodes the transcription
factor EutR. EutR senses EA and vitamin B, to directly activate eut transcription (13, 14).
Moreover, in the foodborne pathogens enterohemorrhagic Escherichia coli O157:H7
(EHEC) and Salmonella enterica serovar Typhimurium, EutR regulates expression of
virulence traits (5, 13, 15, 16). Despite the continual replenishment of EA in the Gl tract,
it has been reported that commensal bacteria do not utilize EA (17), and thus, EA
utilization is a trait associated with pathogenesis (3, 4).

The idea that EA is a noncompetitive metabolite for pathogens is largely perpetu-
ated by data that showed that commensal E. coli isolated from ruminants did not
consume EA in a modified bovine intestinal fluid (17). However, subsequent genome
sequencing revealed that at least one of the E. coli strains used in the study contained
several single nucleotide polymorphisms (SNPs) and an insertion element in the eut
operon (18), which is expected to render this strain unable to utilize EA. In contrast, the
eut operon of the human commensal E. coli HS strain contains an intact eut locus (19).
HS was isolated from the stool of a healthy laboratory scientist and is used as a
representative of nondomesticated E. coli in a number of human colonization studies
(19-21). Therefore, to revisit EA utilization by human commensal E. coli, we assessed
growth of HS when cultured in a minimal medium containing EA as the sole nitrogen
or carbon source. Physiologically relevant concentrations of EA supported EutR-
dependent growth of HS when provided as a nitrogen (but not carbon) source (Fig. 1A
to Q). Similarly to other E. coli strains, growth on EA required the addition of vitamin B,
(Fig. 1Q).

The Gl tract contains several nitrogen sources that might diminish the potential
importance of EA utilization in HS. To test this, we measured growth of HS in minimal
medium containing NH, only or NH, and EA. When EA was added as a supplement to
the medium, HS grew to a higher cell density than it did in medium containing only
NH, (Fig. 1D). In support of these data, we also measured a significant increase in eut
gene expression from HS grown in medium supplemented with EA compared to
medium without EA supplementation (minimal medium containing NH, or Dulbecco’s
modified Eagle’s medium) (Fig. 1E; see also Fig. S1 in the supplemental material). To
confirm that EA utilization by a human E. coli isolate was not unique to the HS isolate,
we next examined EA utilization in E. coli Nissle, which was isolated from the stool of
a German soldier during World War | (22, 23). Consistent with the HS data, Nissle grew
and responded to EA (Fig. S2A to D). Altogether, these data indicate that human
commensal E. coli strains have maintained the ability to sense and utilize EA as a
metabolite and that EA enhances growth in the presence of alternative nitrogen
sources (as would be found in the gut).

We previously reported that EA influences expression of genes carried outside the
eut locus in EHEC and Salmonella, including expression of fimbriae (5, 13, 15, 16). HS and
EHEC share a conserved set of fimbrial loci; therefore, we next measured expression of
one gene in each of the conserved loci (expression of eight genes was measured) in HS
grown in minimal medium with NH, only or NH, and EA. We measured an ~2- and
3-fold change in expression of genes carried in the yad and ybg loci, respectively
(Fig. 1F). Interestingly, EA supplementation resulted in reduced levels of fimbrial gene
expression in HS, which is the opposite of the impact of EA on EHEC fimbrial gene
expression. These differences in expression may be reflective of the different coloni-
zation niches of these strains (lumen/mucus [HS] versus epithelial attachment [EHEC]).
Regardless, these findings provide proof-of-principle data that similarly to EA-
dependent growth, EA-dependent signaling is conserved in human commensal E. coli
and not restricted to pathogens.

Scavenging nutrients is paramount for success in colonizing the host intestinal niche
(24, 25). Commensal E. coli and EHEC compete for similar resources (24), and EA has
been proposed to provide a selective growth advantage to EHEC over commensal E.
coli (17). Therefore, we next compared growth of HS and EHEC in EA-minimal medium
(containing glucose as the carbon source). Surprisingly, HS grew more rapidly than
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FIG 1 EA-dependent growth and signaling in E. coli HS. (A) Growth curve of HS grown in minimal medium with
indicated EA concentrations. n = 3. ODy,, optical density at 600 nm. (B) Growth curve of wild type (WT) with empty
vector, AeutR mutant with empty vector, and eutR complemented strain grown in minimal medium containing EA.
n = 3. (C) Growth curve of HS grown in minimal medium with indicated carbon and nitrogen sources or without
vitamin B,,, as specifically indicated. n = 3. (D) Bacterial cell density at indicated time points after growth in
minimal medium with NH, or NH, and EA. n = 3. (E) Reverse transcription-quantitative PCR (QRT-PCR) of eut gene
expression in HS grown in in minimal medium with NH, or NH, and EA. n = 3. (F) qRT-PCR of fimbrial genes in HS
grown in minimal medium with NH, or NH, and EA. n = 6. For all, unless indicated, vitamin B,, was added
whenever the medium was supplemented with EA. Error bars represent the mean =+ standard deviation (SD). **,
P=0.01; ***, P < 0.001.

EHEC when EA was provided as the sole nitrogen source (Fig. 2A), with a doubling time
of 1.6 h compared to 4.3 h, respectively (of note, the doubling time of Nissle was 1.3 h
[Fig. S2A]). Consistent with these data, during competition HS was recovered at nearly
10-fold-higher levels than EHEC (Fig. 2B). eut expression and/or enzymatic activity may
be subject to carbon catabolite repression (26, 27); therefore, it is possible that
effectiveness of carbon catabolite repression between HS and EHEC caused the differ-
ences in growth rates. To test this idea, we repeated the growth and competition
experiments in EA-minimal medium containing glycerol as the sole carbon source.
During exponential growth, growth rates of HS and EHEC were similar to growth rates
in medium containing glucose, with doubling times of 1.4h and 4.2 h, respectively
(Fig. 2C). Of note, we observed a slightly shorter lag phase for EHEC grown in
EA-minimal medium containing glycerol compared to glucose. Even so, consistent with
the previous assay, HS was recovered in higher numbers than EHEC during competition
(>2-fold) (Fig. 2D). Interestingly, this growth advantage was specific for EA utilization
as no differences in bacterial growth or recovery were measured when HS and EHEC
were cultured in minimal medium containing NH, as the sole nitrogen source (Fig. 2E
and F and Fig. S3A and B).

Although genes encoding EA utilization are carried by phylogenetically diverse
bacteria (27), EA utilization has been suggested to be a potential virulence determinant
and/or has been specifically linked to pathogenesis (i.e., references 4, 7, and 28 to 31).
Our findings reveal that commensal Gl bacteria rely on EA to enhance growth, and thus,
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FIG 2 HS outcompetes EHEC specifically during growth on EA. (A) Growth curve of E. coli HS and EHEC in minimal
medium with EA and glucose. (B) Competition assay between E. coli HS and EHEC in minimal medium with EA and
glucose. (C) Growth curve of E. coli HS and EHEC in minimal medium with EA and glycerol. (D) Competition assay
between E. coli HS and EHEC in minimal medium with EA and glycerol. For panels A to D, vitamin B,, was added
to the medium. (E) Growth curve of E. coli HS and EHEC in minimal medium with NH, and glucose. (F) Competition
assay between E. coli HS and EHEC in minimal medium with NH, and glucose. For all, n equals 3; error bars
represent the mean = standard deviation. *, P =< 0.05; **, P < 0.01; ns, P > 0.05.

EA utilization and signaling are more complex than previously appreciated. This work
suggests that further investigation on the impact of EA utilization on host-microbiota-
pathogen interaction is warranted.
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