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Although the link between stress and alcohol is well recognized, the underlying
mechanisms of how they interplay at the molecular level remain unclear. The purpose
of this study is to identify molecular networks underlying the effects of alcohol
and stress responses, as well as their interaction on anxiety behaviors in the
hippocampus of mice using a systems genetics approach. Here, we applied a gene
co-expression network approach to transcriptomes of 41 BXD mouse strains under
four conditions: stress, alcohol, stress-induced alcohol and control. The co-expression
analysis identified 14 modules and characterized four expression patterns across the
four conditions. The four expression patterns include up-regulation in no restraint
stress and given an ethanol injection (NOE) but restoration in restraint stress followed
by an ethanol injection (RSE; pattern 1), down-regulation in NOE but rescue in
RSE (pattern 2), up-regulation in both restraint stress followed by a saline injection
(RSS) and NOE, and further amplification in RSE (pattern 3), and up-regulation
in RSS but reduction in both NOE and RSE (pattern 4). We further identified
four functional subnetworks by superimposing protein-protein interactions (PPIs) to the
14 co-expression modules, including γ-aminobutyric acid receptor (GABA) signaling,
glutamate signaling, neuropeptide signaling, cAMP-dependent signaling. We further
performed module specificity analysis to identify modules that are specific to stress,
alcohol, or stress-induced alcohol responses. Finally, we conducted causality analysis to
link genetic variation to these identified modules, and anxiety behaviors after stress and
alcohol treatments. This study underscores the importance of integrative analysis and
offers new insights into the molecular networks underlying stress and alcohol responses.
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INTRODUCTION

Stress is a physical, mental or emotional response to events
that disrupt normal homeostasis (Lazarus et al., 1952;
Selye, 1998). Stress is one of the contributing causes to
many mental disorders, such as depression and anxiety.
A major component of the stress response system is
activation of the hypothalamic–pituitary–adrenocortical
(HPA) axis (Smith and Vale, 2006). HPA axis dysregulation
is postulated to significantly influence motivation for alcohol
behaviors, including alcohol exposure and withdrawal (Koob
and Le Moal, 2001); however, the underlying molecular
mechanisms of the interplay between stress and alcohol remain
unclear.

Over the past decade, a number of genetic loci involved
in either stress or alcohol, or combined responses have been
uncovered by genetic linkage and association studies (Gelernter
et al., 2014) and genome sequencing analyses (Clark et al.,
2017). For example, genetic linkage using quantitative trait
locus (QTL) mapping identified a tyrosine phosphatase (Ptp4a1)
and a transcription factor (Phf3) as candidate genes for stress-
alcohol interactions (Cook et al., 2015). These same genes
have also been nominated as candidate genes for alcohol
dependence in a human genetic association study (Zuo et al.,
2011). We further confirmed that Ptp4a1 is a candidate gene
in stress and alcohol responses (Baker et al., 2017) by using
differentially expressed (DE) genes and QTL analysis in BXD
recombinant inbred (RI) strains. In addition, we identified
a sequence variant in a circadian rhythm gene, Per3, and
associated it with stress and alcohol responses by integrating
expression QTL (eQTL) and phenotype QTL analyses (Wang
et al., 2012). Although many individual genes have been
identified by various genetic studies, the interaction of these
genes at the molecular network level has not been extensively
explored.

Weighted Gene Co-Expression Network Analysis (WGCNA)
for gene expression has been successfully applied to identify
functional modules implicated in diseases (Voineagu et al.,
2011). In recent years, several studies have applied the
WGCNA approach to successfully identify transcriptional
networks associated with alcohol-related studies, including
alcohol consumption in liver of the HXB/BXH RI strains (Saba
et al., 2015; Hoffman et al., 2018) and in different brain
regions of the BXD RI strains (Vanderlinden et al., 2013),
consumption and withdrawal in striatum of the BXD F2 strains
(Metten et al., 2014) and of the heterogeneous stock mice (Iancu
et al., 2013), alcohol dependence in human brain (Ponomarev
et al., 2012; Farris et al., 2015). The approach has extended
to identify mRNA and miRNA co-expression modules in a
matched human alcohol dependence case-control postmortem
samples (Mamdani et al., 2015). Compared to differential
expression analysis, the co-expression network approach can
avoid multiple testing problems (Langfelder and Horvath,
2008). Co-expression modules between different genetic or
environmental conditions can be compared to examine module
preservation and specificity (Miller et al., 2010). Combining
co-expression gene modules with protein-protein interaction

(PPI) could further identify functional sub-networks that
are potential involved in a disease (Oldham et al., 2008).
Recently, structural equation model (SEM) is often used
(Vermunt and Magidson, 2014) to identify causal relations
from genetic variation to co-expression modules, and anxiety
phenotypes.

In this study, we apply co-expression network analysis to
transcriptomes of the BXD RI mice under stress and alcohol
responses. The co-expression analysis identifies 14 modules for
combined four conditions and characterizes four expression
patterns. PPIs are mapped to co-expression modules to define
four functional subnetworks. We further perform modular
specificity analysis between stress, alcohol and stress-induced
alcohol. Finally, we performed SEM-based causative analysis
to link genetic variation to expression modules and anxiety
phenotypes.

MATERIALS AND METHODS

BXD RI Mice and Treatments
The BXD strains were raised at the University of Tennessee
Health Science Center and were between 60 and 95 days of
age. A total of 41 BXD mouse strains and parental strains
of adult male and female mice (Supplementary Table S1; an
average of two mice per strain per group; n = 211) were used
for phenotyping and expression profiling following exposure to
stress, treatment with ethanol, or their combination. Within each
strain, animals were separated into four conditions:

• Group 1, acute stress (RSS: Restraint stress followed by a saline
injection): These animals were subjected to acute restraint in a
ventilated 50 ml centrifuge tube for 15 min.
• Group 2: acute ethanol (NOE: No restraint stress and given
an ethanol injection): These animals received a 1.8 g/kg i.p.
injection of ethanol (12.5% v/v).
• Group 3: stress plus ethanol treatment (RSE: Restraint stress
followed by an ethanol injection): For these animals, ethanol
injections were administered immediately after the restraint
exposure received saline injections at the same volume in the
ethanol group.
• Group 4: Control (NOS: No restraint stress): These animals
received saline injections (isovolumetric to the ethanol dose),
but were not exposed to stress or ethanol injections.

All procedures involving animals were approved by the
Animal Care and Use review boards of The University of
Tennessee Health Science Center and The University
of Memphis. More detailed information about BXD strains
for each group is available at GeneNetwork:

• NOS: http://genenetwork.org/webqtl/main.py?FormID=shar
inginfo&GN_AccessionId=814
• RSS: http://genenetwork.org/webqtl/main.py?FormID=shar
inginfo&GN_AccessionId=815
• NOE: http://genenetwork.org/webqtl/main.py?FormID=shar
inginfo&GN_AccessionId=816
• RSE: http://genenetwork.org/webqtl/main.py?FormID=shar
inginfo&GN_AccessionId=817
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Behavioral Phenotypes
The phenotypes were measured for four treatment groups: NOS,
RSS, NOE and RSE. Five minutes after injection with saline
or ethanol, the mice were placed in an elevated zero-maze,
which is commonly used to measure the anxiety level and
activity of mice, for 10 min and their behavior was monitored.
The behavior of the mice was measured using two phenotypes
over three periods of time. The first phenotype was activity
count (ACTCNT) calculated as the average number of beam
breaks of infrared sensors in closed quadrants per second
over 0–5 min (ACTCNT0–5), 5–10 min (ACTCNT5–10),
and 0–10 min (TOTAL ACTCNT) of the time spent in the
maze. The second phenotype was the percentage of time
spent in open quadrants (OPEN) over 0–5 min (OPEN0–5),
5–10 min (OPEN5–10), and 0–10 min (TOTAL OPEN). A
summary of behavioral phenotypes is provided in Supplementary
Table S2. Behavioral testing was carried out at the University of
Memphis.

RNA Isolation and Microarray Experiments
Four hours after the initial injection, mice were sacrificed by
cervical dislocation and brains were removed (Wang et al.,
2012). Hippocampal dissection was conducted and hippocampal
RNA was isolated according to manufacturer’s protocol using
RNA STAT-60. Gene expression for all groups was examined
by microarray analysis as previously described (Wang et al.,
2012; Baker et al., 2017). Hippocampal gene expression was
analyzed using Illumina v6.1 microarrays, according to the
manufacturer’s protocol1. All data were normalized using the
rank invariant method and background subtraction protocols
outlined by Illumina in the BeadStation software. All four
datasets were normalized by Illumina Rank Invariant method
and then performed Log2 Transformed and Z-score. Batch
effects were removed using analysis of variance (ANOVA). Strain
and sex assignments were verified and corrected.

Genotype and Microarray Annotation
Genotypes and phenotypes were downloaded from
GeneNetwork2. The genotype data include 3811 markers.
The detailed information about genotypes and phenotypes
can be found in our previous study (Wang et al., 2016). An
annotation file available on the GeneNetwork Data Sharing
Zone3 was used to determine the genes and genome locations
associated with the 46,643 unique probe sequences in the
Illumina Mouse 6.1 array.

Analysis of Identified Variable Genes
A total of 16,578 probe sets on the Illumina v6.1 microarray were
used to interrogate gene expression across all four conditions,
each with on average 45 BXD strains. To detect variable
expression genes for network analysis, we calculated the
coefficient of variation (CV) for each gene across all conditions
and BXD strains. The distributions of CV were fitted by two

1http://www.illumina.com/
2www.genenetwork.org
3http://www.genenetwork.org/webqtl/main.py?FormID=annotation

mixed normal distributions using an expectation–maximization
(EM) algorithm to define variable genes. The left side of the
normal distribution was defined as representing invariable genes,
whereas the right side of the distribution was considered to
represent variable genes.

Gene Co-expression Analysis
We constructed weighted gene co-expression networks based on
variable genes using the WGCNA package in R (Langfelder and
Horvath, 2008). The product was a weighted adjacency matrix
that provided continuous connection strength ([0, 1]) based
on the β parameter for each condition to meet the scale-free
topology criterion. Subsequently, the co-expression matrix and
the topological overlap matrix (TOM) were constructed. For
TOM, we assessed the interconnectedness of two genes by the
degree of their shared neighbors across the global network.
We detected the gene modules by average linkage hierarchical
clustering for each group. The intra-modular connectivity of each
gene was also computed using the intra-modular connectivity
function in R. The module eigengene (ME) is the first principal
component of a given module, and it was used to evaluate the
module membership, which assesses the importance of genes in
the network.

Module Preservation Statistics
To assess modular preservation and specificity of any two
modules from two different conditions, we computed the
number of shared genes between the two modules and then used
Fisher’s Exact Test to calculate the significance. p< 0.01 was used
as a threshold.

Protein-Protein Interaction Network and
Subnetwork Construction
PPI networks provide valuable information toward
understanding cellular functions and biological processes.
In this study, PPI networks were constructed based on the
protein interaction information retrieved from STRING (version
10; Search Tool for the Retrieval of Interacting Genes/Proteins).
To define subnetworks, we first only selected those interactions
having an interaction score greater than 700 (high-confidence).
These highly confident interaction in PPI network were then
mapped to the co-expression modules to examine whether
any common interactions were found in both networks. Those
common interactions were defined as subnetworks in this study.
The subnetworks and the linker genes were visualized using
Cytoscape software (Kohl et al., 2011).

Causative Analysis to Link Genotype to
Phenotype
Structural equation modeling (SEM) was used to infer causality
among genetic variants (SNP markers), co-expression modules
and phenotypes. The Network Edge Orienting (NEO) method
uses SEM to estimate the probabilities for each of the three
relationships. The NEO was used to evaluate causality as
previously described (Aten et al., 2008). Briefly, the NEO
uses phenotype, transcriptome and genotype information to
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infer a causal link between genotype, module and phenotype.
We applied this analysis to a phenotype, genotypes that had
the phenotypic QTL with the highest likelihood score, genes in
each module associated with the phenotype. Default parameters
for NEO were used as originally described (Aten et al., 2008)
in which NEO estimates the likelihoods of all local SEMs and
returns a Local Edge Orientation (LEO) likelihood score between
genotypes, genes and phenotypes. To make a determination of
edge orientation, we only examined ‘‘forward’’ (genotype affects
gene, and then phenotype). The LEO score is defined by log10 of
dividing the model p-value for genotype→gene→phenotype
(Model 1) by the p-value of the best fitting alternative models
(Model 2: genotype→phenotype→gene; Model 3: gene←
genotype→phenotype; Model 4: genotype→gene←phenotype;
Model 5: genotype→phenotype←gene). For example, an LEO
score of 1 indicates that genotype →gene→phenotype fits the
data ten times better than any competing model when the fit
is measured using the p-value. An LEO score of 0.5 was used
as a threshold. The more positive the score, the stronger the
evidence.

Over-Representation Analysis
We used Fisher’s Exact Test to measure the statistical
over-representation of cell type i in co-expression module j.
p-values are computed from a 2× 2 contingency table comprised
of: (1) the number of genes in bothmodule i and cell type j; (2) the
number of genes in module i but not in cell type j; (3) the number
of genes in cell type j but not in module i; and (4) the number
of genes in neither module i nor cell type j. The test statistic
is implemented in the R software package. p value < 0.05 was
considered as statistical significance.

The over-representation of gene ontology (GO)
functional terms for each module was conducted by the
‘‘GOenrichmentAnalysis’’ function in the WGCNA package
(Langfelder and Horvath, 2008). This function uses the Fisher’s
Exact Test on overlaps of GO terms, including their GO
offspring, and modules. The top enriched GO term was selected
as representation for each module. The mouse was selected as
the organism in the function.

Statistical Analysis for Expression Pattern
A standard linear one-way ANOVA was performed each
expression pattern. For each expression pattern, an average
of the expression of all genes in each module (Eij), which
is similar to module eigenvalue, was used as the dependent
variable. The effect examined for each expression pattern was
treatment/condition with four levels (NOS, RSS, NOE and RSE).
The following linear model was used:

Eij = µ+ Ti + εij

where u is the grand mean of the observations; Ti is the effect
of the ith treatment; εij is random error which is distributed
normally with mean zero, εij ∼ N(0,σ2). p-value was generated
for each expression pattern using a standard F-test.

RESULTS

To elucidate molecular networks underlying stress, alcohol and
stress-induced alcohol relationships, we used an integrative
approach that combines gene co-expression, PPI networks, and
causative analysis to identify genes associated with alcohol

FIGURE 1 | Diagram showing network-based data analysis. (A) The expression data were generated from the BXD recombinant inbred (RI) mice. (B) The transcripts
of these four conditions were compared and analyzed. (C) Weighted gene co-expression network analysis by WGCNA. (D) Conservative analysis of gene modules
under experimental conditions. (E) Causal analysis.
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and stress responses. Gene expression in the hippocampus of
41 BXDRImice wasmeasured bymicroarray for four conditions,
including exposure to ethanol (NOE), stress (RSS), the
combination of both (RSE), and control without any treatment
(NOS; total sample number n = 211; an average of 2 mice
per strain per group; Supplementary Table S1; Figures 1A,B).
The integrative approach involved three steps: (1) constructing
weighted gene co-expression networks of the stress and alcohol
response conditions (Figure 1C); (2) analyzing the specificity
of each network between four conditions (Figure 1D); and
(3) identifying causal genes underlying each network that
regulates expression of genes and modulates stress and alcohol
responses (Figure 1E).

Weighted Gene Co-expression Networks
of Stress and Alcohol Responses
To gain insight into the functional organization of the
transcriptomes from four conditions (NOS, RSS, NOE and
RSE), we constructed gene co-expression networks using
highly variable genes (see ‘‘Materials and Methods’’ section).
Four-stepwise criteria were used to produce a list of highly
variable genes across the BXD RI strains and four conditions.
First, we measured the reproducibility between replicates for
four conditions. Expression of each condition showed a high
reproducibility, with an average coefficient of determination (R2)
of 0.9993 (Supplementary Figure S1). Second, the variability
of the expression level of each gene across BXD strains was
determined by calculating the CV. Third, variable genes were
decomposed by using the EM algorithm. Finally, genes with
average expression value less than 8 were removed. With these
four steps, we detected an average of 6569 highly variable genes
for each condition (Supplementary Figure S2). The variable
genes across all four conditions were merged into a combined
dataset (n = 6413) for subsequent analyses (Supplementary
Table S3).

We used WGCNA program to construct gene co-expression
networks for a combined data set that is generated by combining
expression data of four conditions. We first determined the
soft-thresholding power (β = 9) in accordance with the
scale-free topology criterion (Figures 2A,B). By using this
soft thresholding power, we identified a total of 14 modules
(Supplementary Table S4; Figure 2C). The module size (i.e., the
total number of genes in a module) varies significantly,
ranging from 104 genes in module M4 to 1047 genes in
module M14 (Supplementary Tables S5, S6). Similarly, we
performed co-expression network analysis for each condition
(Supplementary Figures S3, S4). We detected a total of
72 modules, ranging from eight modules in RSS to 21 in RSE
(Supplementary Table S4). The modules for each condition also
vary in size. For example, module M1 in NOE condition contains
as many as 1405 genes, whereas module M13 only contains 53
genes.

To investigate pattern changes in expression among
conditions, we summarized the 14 detected modules into
four patterns with respective to up- or down-regulation in
alcohol or stress response for the combined dataset. The

four patterns include up-regulation in NOE but restoration in
RSE (pattern 1: NOE Up→RSE Restore); down-regulation in
NOE but rescue in RSE (pattern 2: NOE Down→RSE Rescue);
up-regulated in both RSS and NOE, and amplified in RSE
(pattern 3: RSS, NOE Up→RSE Amplify); up-regulated in RSS,
reduced in NOE and RSE (pattern 4: RSS Up→NOE, RSE
Reduce). One-way ANOVA and post hoc Tukey’s test were
utilized to determine the conditions which are significantly
different from each other for each expression pattern
(Supplementary Table S7). The first expression pattern includes
five modules, including modules M1 (p-value < 0.01), M6
(p-value < 0.40), M10 (p-value < 0.18), M14 (p-value < 0.01),
and M15 (p-value < 0.18; Figure 2D; left panel). Genes
in this pattern exhibit strong up-regulation in NOE but
restoration in RSE, suggesting that these genes are activated by
alcohol but counterbalanced by the interaction of alcohol and
stress. The M1 module includes a cluster of γ-aminobutyric
acid receptor subtype A (GABAA) genes (Gabra2, Gabra1
and Gabrb1). A neurotropic factor, Creb3, encoding cAMP
response element-binding protein, was also found in the
module M1.

The second pattern includes five modules, including M3
(p-value < 0.39), M4 (p-value < 0.84), M5 (p-value < 0.06),
M11 (p-value < 0.82) and M12 (p-value < 0.09; Figure 2D;
middle panel). Genes in this pattern exhibit down-regulation
in NOE but rescue in RSE. For example, the module
M11 contains the Aldh2 gene which is associated with
alcohol metabolism. Additional genes, Dnm1 (dynamin-1)
and Comt (Catechol-o-methyltransferase), in module M3 are
related to neurotransmission. Dnm1 is involved in endocytic-
and energy-related pathways in alcohol treatment, while
Comt is important in the metabolism of catecholamines
(including dopamine, epinephrine and norepinephrine). The
third pattern includes two modules, M8 (p-value < 0.94) and
M9 (p-value < 0.78; Figure 2D; upper-right panel). Genes
in this pattern exhibit up-regulation in both RSS and NOE,
and further amplification in RSE. The fourth pattern includes
2 modules, M2 (p-value < 0.90) and M13 (p-value < 0.52;
Figure 2D; lower-right panel). Many genes in these modules
are associated with intracellular signaling cascades. For example,
module M2 contains the Grin2 gene, which is related to
glutamate receptor signaling.

We then summarized the expression levels of each module
by the first principal component (ME), and assessed the extent
to which the modules were related to anxiety phenotypes
associated with the four conditions (Supplementary Table S2).
For the 14 modules produced by the combined dataset, the
moduleM2 shows significant correlation with the RSS phenotype
(p = 0.05), and the module M11 shows significant correlation
with the RSS phenotype (p = 0.04) and the RSE phenotype
(p = 0.03; Figure 2E). Consistent with expression patterns as
shown above, the module M2 is one that is up-regulated in the
RSS condition, and the module M11 is up-regulated in both
RSS and RSE conditions compared to NOE (Figure 2D). We
also examined the relationship between modules from individual
expression datasets and the four phenotypes. For both the
NOS and RSS modules, none of the modules were significantly
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FIGURE 2 | Co-expression module analyses. (A) The soft thresholding index R2 (y-axis) as a function of different powers β (x-axis). (B) The mean connectivity (y-axis)
is a strictly decreasing function of the power β (x-axis). (C) Fourteen co-expression modules identified from the combined dataset. WGCNA cluster dendrogram
groups genes (n = 6413) measured across BXD Hippocampus into distinct gene modules (M1–14) defined by dendrogram branch cutting. These modules were
significantly enriched for gene ontologies linked to discrete cellular functions and/or organelles in the brain. Genes that did not belong to any modules were housed in
the gray modules. The gray gene modules were ignored in this study. (D) Four expression patterns. Four expression patterns were found: up-regulation in No
restraint stress and given an ethanol injection (NOE) but restoration in Restraint stress followed by an ethanol injection (RSE) (NOE Up→RSE Restore);
down-regulation in NOE but rescue in Restraint stress followed by an ethanol injection (NOE Down→RSE Rescue); up-regulation in both Restraint stress followed by
a saline injection (RSS) and NOE, and further amplification in RSE (RSS, NOE Up→RSE Amplify); up-regulation in RSS but reduction in NOE and RSE (RSS
Up→NOE, RSE Reduce). One-way analysis of variance (ANOVA) was used to determine the conditions which are significantly different from each other for each
expression pattern. ANOVA p-values are indicated in each pattern. The error bar represents standard error of the mean (SEM). (E) Heat maps of Pearson correlation
and p-value between modules and traits. Each cell represents the correlation coefficient (and p-value) computing from correlating module eigengenes (MEs) (rows) to
traits (columns). Only those correlations with |p| < 0.1 are shown.

correlated with their respective phenotypes (Supplementary
Figures S5A,B). Interestingly, module M11 in NOS shows a
significant correlation with RSE phenotype (p = 3.6× 10−3). For
the 13 NOE modules, the module M1 shows the most significant

correlation with its phenotype (p = 5.6 × 10−3; Supplementary
Figure S5C). The expression pattern of the module M1 is also
up-regulated in NOE compared to other conditions (Figure 2D).
Four of the RSE modules (M2, M5, M13 and M20) were highly
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correlated with its phenotype (p < 5 × 10−2; Supplementary
Figure S5D).

Because the hippocampus is a heterogeneous structure,
we also determine modules enriched in genes expressed by
different cell types. We evaluated the enrichment of each module
with nine hippocampus cell types, which were previously
generated from mice hippocampus using single cell RNA
sequencing, including ependymal, oligodendrocyte, microglia,
CA1 pyramidal, interneuron, endothelial, S1 pyramidal,
astrocyte and mural (Zeisel et al., 2015). We observed four
modules (i.e., M5, M6, M14 and M15) are statistically
significantly enriched for microglia, ependymal, astrocyte,
and endothelial, respectively (p < 0.05; Fisher Exact test;
Supplementary Table S8). The module, M5, was enriched with
microglia-specific transcripts (p< 4.9× 10−2), includingMbnl1,
Fau, C1qa, Ctsz and 0610031J06Rik. The module, M6, was also
enriched for ependymal markers (p < 4.5 × 10−2), including
Ascc1, Smad5 and 1700029J07Rik. Twenty-one astrocyte genes
were predominantly enriched in M14 (e.g., Adk, Ckb and
Akt2; p < 3.9 × 10−2). Finally, 14 endothelial markers were
over-represented in the M15 module (e.g., ribosomal genes Rps6,
Rps18, Rpl9 and Rpl23).

Functional Subnetworks Identified by
Relating Protein Interaction Networks and
Co-expression Modules
We reasoned that genes in both PPI networks and co-expressed
networks are more likely to share common molecular functions
(Brown and Botstein, 1999; Zhang and Horvath, 2005). By
superimposing PPI networks from the STRING database to
14 co-expression modules, we identified four subnetworks
in which the genes are highly inter-connected at both the
transcription level (co-expression network) and the protein level
(PPI interaction network; Figure 3; Supplementary Table S9).

Subnetwork 1 is mainly involved in γ-aminobutyric acid
(GABA) signaling. The subnetwork includes six GABA receptors,
Gabra1, Gabrb1, Gabrb3, Gabrg2, Gabarap and Gabarapl1;
GABA receptors were first identified as a target of alcohol (Martz
et al., 1983). It also includes two GABA decarboxylase enzymes
(Gad1 and Gad2) which catalyze the synthesis of GABA. These
two enzymes, Gad1 and Gad2, have been implicated in acute
alcohol withdrawal severity (Buck et al., 1997), alcohol preference
(Phillips et al., 1998) and alcohol-induced locomotion (Demarest
et al., 1999) in the BXD RI strains. Finally, this subnetwork
includes three genes that are highly related to GABA synapses

FIGURE 3 | Subnetworks were constructed by combining co-expression network and protein-protein interaction (PPI) network. A total of 14 co-expression modules
identified by co-expression analysis were superposed with PPI networks from the STRING database, leading to four subnetworks. The network was visualized by
Cytoscape software.
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(Nsf, Gphn and Trak2); GABA synapses contribute to many
of alcohol behaviors, including dependence and withdrawal
(Ariwodola and Weiner, 2004). This subnetwork, presumably, is
a subnetwork implicated in alcohol responses.

Subnetwork 2 is largely associated with glutamate signaling,
with a hub gene of Grin2b, an N-methyl-D-aspartate receptor
(NMDA) receptor. Glutamate signaling is mediated through the
activation of two families of transmembrane receptors: G-protein
coupled receptors (mGluRs) and ligand-gated ion channels
including NMDA, AMPA and kainate receptors (Traynelis
et al., 2010). This subnetwork includes two additional NMDA
receptors (Grin2a and Grin2c), three AMPA receptors (Gria2,
Gria3 and Grik5), and metabotropic glutamate receptor (Grm5).
The NMDA and AMPA receptors are well-known for their
involvement in alcohol’s effects (Ron and Wang, 2009; Salling
et al., 2016). The Grm5 gene has been linked to alcohol
dependence in both humans and mice (Ceccarini et al., 2017).
In addition, epidermal growth factor receptor kinase substrate
8, Eps8, is localized part of the NMDA receptor complex, is
a regulator of actin dynamics and has been shown to increase
ethanol consumption in mice (Offenhäuser et al., 2006). Overall,
this module is highly related to alcohol response.

Subnetwork 3 is a neuropeptide network. Neuropeptides act
as neuromodulators in the brain and in the autonomic nervous
system. This subnetwork includes neuropeptide Y (Npy) and
three Npy receptor genes (Npy1r, Npy2r and Npy5r). Several
lines of evidence in both human and animal studies suggest
that variations in these four genes are associated with alcohol
dependence as well as alcohol withdrawal symptoms (Ehlers
et al., 1998; Wetherill et al., 2008; Kokare et al., 2017). In
addition, G-protein alpha (Gna1, Gnal2, Gnb1 and Gng2) and
its regulators (Rgs10 and Rgs14) are included in this subnetwork.
The involvement of these genes in both alcohol and stress
responses is well known (Baker et al., 2017).

Subnetwork 4 is associated with cAMP-dependent signaling.
The cAMP signaling pathway has been strongly implicated in

both anxiety-like and alcohol-drinking behaviors. This pathway
is activated by the protein kinase C (PKC) complex, Protein
kinase B (AKT), and Ca2+/calmodulin-dependent protein kinase
II (CAMK2). In this subnetwork, we found four PKC genes
(Prkca, Prkcb1, Prkcg and Prkg1) and two protein kinase B genes
(Akt2 andAkt3), and two CAMKII genes (Camk2b andCamb2g).
We also identified glycogen synthase kinase 3 (Gsk3), which
inhibits the cAMP pathway in this subnetwork and has been
linked to mechanisms associated with stress, mood regulation
and the effects of antidepressants (Pavlov et al., 2017). Both
kinases, Akt and Gsk3, play critical roles in ethanol-induced
cognitive impairment (Wang et al., 2016). This subnetwork is
believed to be linked to the interaction of alcohol and stress
responses.

Module Specificity Between Networks of
the Stress and Alcohol Responses
Differences among network organization could provide a basis
for better understanding the molecular processes underlying
alcohol and stress responses. To assess the modular differences
between four conditions on a module-by-module basis, we first
calculated the modular preservation, which is defined as whether
genes in a module in one condition are enriched in any modules
in the other conditions (see ‘‘Materials and Methods’’ section).
The preservation was computed by Fisher’s exact test and a
p-value of 0.01 was applied. We observed that 12 modules
(Figures 4A,B) are significantly preserved between RSE and
RSS. We identified a module M21, containing 44 RSE-specific
genes (Supplementary Table S10), of which nine genes (Gabra3,
Slc6a11, Slc17a6, Fgf12, Cacna1h, Prkcd, Diras1, Adcy8 and
Vangl1) were found to be associated with either alcohol, or
stress responses, or both. Gabra3 and Slc6a11, are GABA
receptors and transporters respectively, which are known to
be involved in alcohol responses. For example, expression
levels of vesicular glutamate transporter genes including Slc17a6
can be reduced by alcohol exposure (Flatscher-Bader et al.,

FIGURE 4 | Module specificity and preservation. (A) Perseveration of co-expression networks between RSE and RSS. Each square in the graph represents the
degree of overlap between two modules. The number in the cell represents the probability of module preservation between two conditions. A hypergeometric
two-tailed Fisher’s exact test was used to determine the probability. (B) Summary of module preservations for all four conditions.
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2008). This result suggests a possible molecular link between
Module M21 and the interaction between alcohol and stress
responses.

Similarly, we examined module specificity between NOS
and NOE, between NOS and RSS, and between NOE and RSE
(Supplementary Figure S6). We observed two NOS-specific
modules: M6 and M14, when comparing NOS to the other
three conditions (i.e., RSS, NOE and RSE), suggesting that
genes in these two modules were dysregulated either in
alcohol or stress response. M6 contains 68 genes, including
Crhbp, Dpysl3, Mekk3 and Msk1. Crhbp and Dpysl3 are
known to modulate stress responses in genetic mouse models
(Ketchesin et al., 2017). In addition, this module also contains
eight histone cluster 1 and cluster 2 genes, including Hist1h2af,
Hist1h2ag, Hist1h2ah, Hist1h2ai, Hist1h2ak, Hist1h2an,
Hist1h2ao and Hist2h2ac, suggesting this module may be
involved in epigenetic regulation. M14 contains 76 genes,
including Slc12a2 and two insulin-like growth factor binding
proteins (IGFBP2 and IGFBP7). Upregulation of Slc12a2
induces loss of GABAergic inhibition of stress-induced
corticotrophin-releasing hormone levels (Gao et al., 2017).

IGFBP7 treatment was also associated with strong activation
of the stress associated p38 MAPK pathway (Benatar et al.,
2012).

Causative Analysis for Co-expression
Modules
Finally, to address whether the identified modules and
genes within the module are likely to cause the phenotypic
outcomes, the SEM method (Figure 5A) was used to
infer causal relationships between genetic variation, gene
expression, and 24 behavioral phenotypes generated for this
study (Supplementary Table S11). Here, we used three SNP
markers (rs13476184, rs3676124 and CEL-15_74539061) that
showed the highest Likelihood Ratio Statistics (LRS) for three
behaviors of our studied conditions (RSS: Activity in closed
quadrants during 10 min under RSS condition; NOE: Activity
in closed quadrants during 10 min under NOE condition; and
RSE: Time in open quadrants during first 5 min under RSE),
respectively (Figures 5B–D). We performed causality tests for
these three genetic markers, genes in all identified modules,
and all behavioral phenotypes using the NEO algorithm. Genes

FIGURE 5 | Causative analysis. (A) Schematic diagram showing SNP→Module→Phenotype causality analysis. Five possible Single Anchor Models were shown.
(B–D) Quantitative trait locus (QTL) mapping for three conditions, including No restraint stress (NOS), RSS and RSE. (E–G) The causal network was constructed by
SEM methods for NOE, RSS and RSE.
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causally affecting ≥1 phenotype were ranked by their maximum
scores. A causality Local SEM-based Edge Orienting (LEO)
score threshold of 0.5, equivalent to a 3.2-fold (100.5) higher
probability compared with any other model, was used. Thus,
the NEO provides a way to prioritize genes that may cause the
behavioral phenotypes.

Figure 5 shows the results of NEO analysis for the three
genetic markers that are mapped to RSS, NOE and RSE. For
all modules identified in the expression of RSS, we identified
five genes within RSS module M1 that link the rs13476184
marker and RSS behavioral phenotype. The five genes include
Anapc13, Ddx21, Ebp, Lactb and Gtf2h3 (Figure 5E), of which
the Ebp gene shows the highest Local Edge Orienting (LEO)
score. The Ebp gene encodes an integral membrane protein
that functions as a key enzyme in restraint stress (Jangra et al.,
2016). Similarly, we identified a link between the NOE genetic
marker rs3676124, 17 genes in NOE module 1, and the NOE
behavioral phenotype (Figure 5F). Among the 17 NOE module
genes, seven (Prdx6, Grp, Cyb5r1, Ddt, S100b, Calm2 and Ptma)
show cis-regulation with a fixed cutoff of LRS > 15 (Likelihood
ratio (LOD) > 3) in NOE eQTL analysis. Note that the fixed
cutoff may not met genome-wide statistically significant level
for all eQTLs. The Prdx6 gene, which is a member of the
peroxiredoxin family of antioxidant enzymes, had the highest
LRS (23.4). Previous studies have shown that Prdx6 plays a
role in alcohol metabolism (Roede et al., 2009). For RSE, we
identified four genes (Vegfa, Bnip3l, Ddah2 and Lamp2) in
module M1, and four genes (Rbm45, Usp7, Aldh6a1, Ncam1) in
module M10 that connect the genetic marker CEL-15_74539061
and the RSE behavioral phenotype (Figure 5G). Aldh6a1 is a
member of the aldehyde dehydrogenase family that is thought
to play a major role in alcohol metabolism (Quertemont,
2004). For all three conditions, we observed that a genotype
influences expression of multiple genes, indicating potential
pleiotropic effects. In summary, we postulate that Ebp, Prdx6,
and Aldh6a1 are potential causal genes for RSS, NOE and RSE,
respectively.

DISCUSSION

In this study, we identified molecular networks mediating
alcohol and stress responses, as well as their interaction in
the hippocampus of mice using a systems genetics approach
that integrates co-expression network analysis, protein-protein
network, and causality analysis. We identified 14 modules
for the combined dataset. By combining co-expression and
PPI networks, four functional subnetworks were found. We
also observed two NOS-specific modules and one RSE-specific
module. We investigated potential causal genes involved in
alcohol and stress responses using the SEM algorithm. Overall,
this comprehensive analysis allows for the identification of
molecular networks and causal genes that likely mediate stress
and alcohol responses.

Over the past decade, forward and reverse genetics
approaches have been widely used in the study of complex
traits, such as alcohol consumption, alcohol administration and
stress response. Although these traditional genetics approaches

identified many genes underlying complex traits, they provide
little information on molecular networks linking genotypes to
specific phenotypes. In contrast to traditional genetic studies,
we first constructed molecular modules through co-expression
analysis and identified potential causal genes within the
modules. The advantage of this network-based approach is that
it provides a clear picture of the connection between genotype
and phenotype. The analysis brought us to the identification of
candidate modules, subnetworks and causative genes.

In the previous study (Baker et al., 2017), they identified
15 differentially expressed genes (DEGs) after exposure to acute
stress (RSS vs. NOS), 243 DEGs after exposure to ethanol (NOE
vs. NOS), and 70 DEGs after exposure to stress and ethanol
combination, respectively. They further found five RSS DEGs,
38 NOE DEGs and 27 RSE DEGs that highly correlate with
phenotypes within each group. Among these, 16 DEGs were
found in our detected modules, including 14 DEGs in six NOS
modules, six in five RSS modules, 14 in 5 NOE modules and
14 in 6 NOS modules. The differential expression analysis can
capture only differentially expressed genes (DE genes) between
inter-group comparison, for instance, two parental strains of
BXD RI strains (i.e., C57BL/6J and DBA/2J) in the Baker’s
study. In contrast, network-based co-expression analysis is able
to detect the population-level differentially expressed genes, even
for minor changes.

One example of connecting genotype to phenotype is
the differential regulation of histone genes relative to our
experimental conditions. In this study, we identified eight histone
genes, including Hist1h2af, Hist1h2ag, Hist1h2ah, Hist1h2ai,
Hist1h2ak, Hist1h2an, Hist1h2ao and Hist2h2ac, that were
dysregulated under either stress- or alcohol-induced conditions
(RSS, NOE and RSE) compared to control (NOS). This
observation is consistent with a recent study that linked
histone modification to alcohol exposure in BXD strains
(van der Vaart et al., 2017). Histone modification plays a
fundamental role in epigenetic regulation, influencing gene
expression (Esteller, 2007). Histone modification is subjected
to many post-translational modifications including acetylation
and methylation. The effects of alcohol metabolism on histone
acetylation have been demonstrated in animal experiments
(Albaugh et al., 2011).

Here, we have been able to identify genes that are affected
under specific conditions (exposure to stress, alcohol, or
their combination) as well as the preservation of modules
across conditions (i.e., genes were generally dysregulated in
one condition or another, but not multiple conditions). We
have also identified genes that are not only co-expressed,
but connected at the protein level. Finally, we were able
to show that some modules and their associated expression
patterns were correlated with the respective stress- and alcohol-
related phenotypes. These findings are indicative of shared
molecular function and provide insight into how these genes
might affect phenotypes of interest. For example, subnetwork
1 included GABA receptor genes, GABA decarboxylase enzyme
genes, and GABA synapse genes. This suggests more than
the general involvement of GABAergic signaling, but rather
that several components of GABAergic signaling are involved.

Frontiers in Molecular Neuroscience | www.frontiersin.org 10 April 2018 | Volume 11 | Article 102

https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-neuroscience#articles


Luo et al. Network Analysis of Alcohol and Stress Responses

More specifically, this finding suggests that at least six GABA
receptor subtypes, two enzymes related to the synthesis of
GABA, and several genes that are part of GABA synapse
functioning are involved in alcohol-related behaviors including
dependence, locomotion, preference, and withdrawal severity
(Buck et al., 1997; Phillips et al., 1998; Demarest et al., 1999).
Similarly, subnetwork 3 contains genes that are associated with
glutamate signaling and includes both AMPA and NMDA
receptor genes.

The integrative analysis we have used and demonstrated
here, combined with other powerful and emerging resources
will aid in future examinations and understanding of molecular
networks affecting phenotypes. For example, the BXD RI
panel represents a powerful genetic resource which, as shown
here, has been important in studying stress, alcohol and its
interaction. Importantly, the progenitors of this panel C57BL/6J
(B6) and DBA/2J (D2) differ for both alcohol- and stress-
related traits. The B6 strain exhibits a high level of alcohol
consumption, whereas the D2 strain shows avoidance (De
Waele et al., 1992). In contrast, the D2 strain is more
vulnerable to stress than the B6 strain (Mozhui et al., 2010).
Many other alcohol- and stress-related phenotypes are available
for the BXD mice in the GeneNetwork database4. Perhaps
more importantly, both parental strains have been sequenced,
containing about 5 million sequence variants (Wang et al.,
2016). Therefore, we should be able to identify sequence variants
for any of alcohol- and stress-related traits acquired in the
BXD mice. Emerging resources include ‘‘omics’’ data such
as proteomics and metabolomics. High-throughput proteomics
and metabolomics data can be readily generated by liquid
chromatography coupled with tandem mass spectrometry
(LC-MS/MS). By combining proteomics and metabolomics
with the integrative approach we have used here, we could
provide more complete information on molecular networks
involved in alcohol and stress responses. Moreover, single-cell
RNA sequencing and single cell-type proteomics are also
emerging. With these technologies, we could potentially
identify the major cell types involved in alcohol- and stress-
responses.

The hippocampus is a key region that helps mediate response
to stressors. A hallmark is feedback inhibition of the HPA axis.
The hippocampus is also particularly vulnerable to the effects
of alcohol. Smith et al. (2016) found that the hippocampus
is the most affected brain region by chronic ethanol using
co-expression analysis of time-course expression data in mice.
Both human and rodent studies have shown that prolonged
exposure to both stress and alcohol leads to hippocampal atrophy
(Redila et al., 2006). The hippocampus is an especially suitable
site to study the interaction of stressors and alcohol. In this
study, we further dissected the hippocampus into nine specific
cell types using single cell RNAseq data, and found that four cell
types (i. e. endothelial, astrocyte, ependymal andmicroglia) show
statistically enriched in different modules. The Astrocytes are
the most enriched cell type in co-expressed modules. Astrocytes
are star-shaped glial cells, playing an important role in the

4www.genenetwork.org

normal functioning of the central nerve system. Recently, several
studies demonstrated that astrocyte structural plasticity (such as
astrocyte protrusion length, branching and volume) is disrupted
after long-term exposure to stress, which may be the underlying
mechanism of stress-induced anxiety behaviors (Mayhew et al.,
2015; Bender et al., 2016). Another possible explanation is
the close interaction between astrocyte-derived peptides and
receptors involved in the control of anxiety-related behaviors,
such as benzodiazepine receptors, which are also localized on
astrocytes (Rao et al., 2001).

The sample size is an important factor for constructing
a robust network. A minimum sample size is 20, which is
recommended by WGCNA program5. In our study, we use
41 strains (138 samples) for a combined data. Moreover,
we used strain means (an average of female and male),
which reduced the variance that could cause false correlations
and reduce network robustness. A recent report published
by Hoffman et al. (2018) suggested that increase in sample
size would not yield a systematic difference in the number
of co-expression modules as long as the number of strains
exceeds the minimum number (i.e., 20). To evaluate whether
our generated modules are robust, we performed module
preservation analysis for female and male strains from NOE
condition. The result showed that all 27 modules showed
preserved with Z summary >2, and four modules exhibit Z
summary <10. A simulation study (Langfelder et al., 2011)
suggested that Z summary>10 indicates strong evidence that the
module is preserved, and 2 < Z summary <10 indicates weak
to moderate evidence of preservation. Thus, we believe that the
strain number used in this study is sufficient to generate robust
modules (Supplementary Figure S7).

While gene co-expression network approach has been
successfully applied in a variety of studies related alcohol
consumption (Vanderlinden et al., 2013; Saba et al., 2015;
Hoffman et al., 2018), withdrawal (Iancu et al., 2013; Metten
et al., 2014), and dependence (Ponomarev et al., 2012; Farris et al.,
2015), there are computational and biological limitations in using
co-expression for gene functional inference. First, it typically
requires a large sample size (e.g., n ≥ 20) as discussed above.
Second, co-expressed gene modules with similar expression
patterns may not necessarily have related functions. Third,
co-expressed gene modules sometimes rely on parameters used
inWGCNA, such as minimummodule size and the power β used
as a soft threshold. Finally, expression patterns may not exhibit
co-expression for some genes that do have related functions due
to post-transcriptional regulation.

In summary, by integrating gene co-expression network, PPI
network, and causality analysis, we provide evidence that alcohol
and stress responses are regulated by functional modules. This
study also underscores the importance of integrative analyses for
identifying genes involved in addiction research. Our application
of this integrative approach offers new insight into the molecular
networks underlying essentially any phenotype or complex trait
of interest.

5https://labs.genetics.ucla.edu/horvath/CoexpressionNetwork/Rpackages/
WGCNA/faq.html
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