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A B S T R A C T

Background: Tumor-infiltrating lymphocytes (TILs) are clinically significant in triple-negative breast cancer
(TNBC). Although a standardized methodology for visual TILs assessment (VTA) exists, it has several inherent
limitations. We established a deep learning-based computational TIL assessment (CTA) method broadly fol-
lowing VTA guideline and compared it with VTA for TNBC to determine the prognostic value of the CTA and a
reasonable CTA workflow for clinical practice.
Methods: We trained three deep neural networks for nuclei segmentation, nuclei classification and necrosis
classification to establish a CTA workflow. The automatic TIL (aTIL) score generated was compared with man-
ual TIL (mTIL) scores provided by three pathologists in an Asian (n = 184) and a Caucasian (n = 117) TNBC
cohort to evaluate scoring concordance and prognostic value.
Findings: The intraclass correlations (ICCs) between aTILs and mTILs varied from 0.40 to 0.70 in two cohorts.
Multivariate Cox proportional hazards analysis revealed that the aTIL score was associated with disease free
survival (DFS) in both cohorts, as either a continuous [hazard ratio (HR)=0.96, 95% CI 0.94�0.99] or dichoto-
mous variable (HR=0.29, 95% CI 0.12�0.72). A higher C-index was observed in a composite mTIL/aTIL three-
tier stratification model than in the dichotomous model, using either mTILs or aTILs alone.
Interpretation: The current study provides a useful tool for stromal TIL assessment and prognosis evaluation
for patients with TNBC. A workflow integrating both VTA and CTA may aid pathologists in performing risk
management and decision-making tasks.
© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/)
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1. Introduction

Recent evidence has suggested that tumor-infiltrating lympho-
cytes (TILs) have prognostic and predictive capabilities for triple-
negative (TNBC) and human epidermal growth factor receptor 2
(HER2)-positive breast cancers [1-7]. TIL assessments are clinically
useful for risk predictions, adjuvant and neoadjuvant chemotherapy
decisions, and more recently, immunotherapy [8]. TIL assessments
are being included in clinical trials and diagnostic assessments, which
has raised concerns regarding the existence of a standardized meth-
odology for evaluating TILs. Therefore, recommendations and guide-
lines for visual TIL assessment (VTA) in invasive breast carcinoma
patients have been recently developed by the International Immuno-
Oncology Biomarker Working Group (or TILs-WG) [9,10]. TIL popula-
tions are semiquantified by determining how much of a demarcated
area of stroma or tumor visible on a slide is infiltrated by immune
cells (average TIL%). Although several studies with small sample sizes

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ebiom.2021.103492&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:sunpeng1@sysucc.org.cn
mailto:shuoyu.xu@bio-totem.com
https://doi.org/10.1016/j.ebiom.2021.103492
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.ebiom.2021.103492
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ebiom


Research in context

Evidence before this study

Tumor-infiltrating lymphocytes (TILs) are important prognostic
biomarkers in triple negative breast cancer (TNBC) as well as in
many other types of solid tumors. The International Immuno-
Oncology Biomarker Working Group (TIL-WG) has established
a detailed reporting guideline for visual assessment of TILs
(VTA) for TNBC which helps to reduce manual scoring varia-
tions but still exists inherent limitations. The development of
new computational TIL assessment (CTA) methods is a promis-
ing solution to address these limitations. We searched articles
from Pubmed database with the terms ("tumor infiltrating lym-
phocytes") AND ("TNBC" OR "breast cancer") AND ("deep learn-
ing" OR "artificial intelligence" OR "computational
assessment"). The found CTA methods established alternative
quantitative metrics (eg. lymphocyte percentage, spatial pat-
terns of lymphocyte distribution) for stromal TILs assessment
rather than being consistent with VTA guideline. Moreover, all
these methods were validated in Caucasian cohort only.

Added value of this study

The CTA method in this study is developed broadly following
the visual reporting guidelines to quantify area percentage of
TILs-dense areas over all the tumor stromal areas, which ena-
bles a direct comparison with VTA from multiple pathologists.
The automated TILs (aTILs) score was found to be consistent
with manual TILs (mTILs) score, and was associated with dis-
ease-free survival in both Asian and Caucasian cohorts as either
a continuous or dichotomous variable. We discovered that the
optimized TILs cut-off values for patient stratification varied
between different ethnicities. Our results also suggested a com-
posite model by combining both aTILs and mTILs could help
junior pathologist for better risk stratification.

Implications of all the available evidence

The proposed CTA method provides a useful stromal TIL scores
and prognostic stratification in TNBCs, which is consistent with
VTA. Besides, a workflow integrating both VTA and CTA is illus-
trated which may aid pathologists in performing risk manage-
ment and decision-making tasks in clinical practice.
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[11-15] have been conducted since then, demonstrating acceptable
agreement among observers for decentralized TIL assessments of
breast cancer, there are still difficulties in performing consistent eval-
uations on the basis of hematoxylin and eosin (H&E)-stained sections
due to factors such as individual outliers or cutoff points, the spatial
distribution of TILs, the tumor-stroma ratio, histologic subtypes, TILs
in ductal carcinomas in situ, the perivascular abundance of TILs,
necrosis, the tertiary lymphoid structure (TLS), and intratumoral het-
erogeneity. All of these factors may increase the interobserver and
intraobserver variability of VTAs [8].

Ring studies by Denkert et al. [11] have led to the development of
a preliminary software-guided TIL evaluation that addresses varia-
tion caused by intratumoral heterogeneity and random errors, which
resulted in an improved concordance rate among pathologists. In
addition, an increasing number of studies have used machine learn-
ing algorithms to analyze histological images and have recently
shown promising results regarding diagnostics, therapeutic target
predictions, and prognostic evaluations [9,16,17]. These successes
may suggest that quantitative, automated, and reproducible compu-
tational TIL assessments (CTAs) [18] of whole-slide images (WSIs)
based on machine learning algorithms may be useful for further
standardization. For breast cancer, various automated computerized
tools have been previously developed to detect lymph node metasta-
ses [19], identify tumor-associated stroma [20], classify mitoses [21],
or predict molecular subtypes [22]. A few studies have been con-
ducted to explore TILs based on histologic H&E images using deep
learning models and breast cancer data. Saltz et al. [23] reported the
spatial organization and molecular correlations of TILs using deep
learning and pathology images of 13 tumor types from The Cancer
Genome Atlas (TCGA) database. Moreover, Abe et al. [24] preliminar-
ily performed a quantitative digital image analysis of TIL density, the
number of TILs per unit area, in HER2-positive breast cancer cases.
These previous studies demonstrate the potential to improve the pre-
cision of histomorphological evaluations of TILs, thereby promoting
its implementation in clinical decision-making.

In the present study, we developed a CTA algorithm for automatic
stromal TIL quantification (aTILs) in TNBC cases based on WSIs. We
also retrospectively reviewed the data of patients diagnosed with
TNBC at our cancer center (Sun Yat-sen University Cancer Center
(SYSUCC), N = 184) and from the TCGA database (N = 117), which
were included as validation cohort data for the CTA model. Clinico-
pathologic features, such as age, tumor size, lymph node metastasis
(LNM), the TNM stage, clinical treatment, and survival outcomes,
were evaluated. The coefficient of variation (CV), intraclass correla-
tion coefficient (ICC), and Cohen’s kappa score were assessed to esti-
mate the interobserver agreement among three pathologists in the
manually determined stromal TILs (mTILs), as well as the concor-
dance between mTIL and aTIL scores. We subsequently compared
mTILs and aTILs in terms of prognostic value in both cohorts using
the Kaplan�Meier survival curve and Cox proportional hazards
regression model for disease-free survival (DFS). In addition, we
developed a composite mTIL/aTIL three-tier stratification model and
compared its prognostic performance with that of a two-tier stratifi-
cation model using mTILs or aTILs. The objectives of the present study
were to generate a CTA algorithm that can precisely and automati-
cally calculate stromal TILs in TNBC cases and to explore its prognos-
tic value and potential application in clinical practice.

2. Materials and methods

2.1. Identification of the SYSUCC cohort

Clinical data, including data on the age at diagnosis, tumor size,
LNM, TNM stage, histological grade, clinical treatments, and survival
outcomes, for patients with pathologically confirmed invasive breast
cancer in the SYSUCC during 2005�2010 were collected. All patients
underwent operations at SYSUCC, and formalin-fixed paraffin-
embedded (FFPE) tissue specimens, including the tumor, sentinel
lymph nodes, and axillary lymph nodes, were stained routinely with
H&E. Tumor staging was performed on the basis of the criteria estab-
lished by the 8th edition of the American Joint Committee on Cancer
(AJCC 8th) staging manual. Estrogen receptor (ER), progesterone
receptor (PR), and HER2 statuses were determined by immunohisto-
chemical (IHC) staining. ER and PR statuses were classified as nega-
tive if the values were below the cutoff of 1%, according to the
American Society of Clinical Oncology/College of American Patholo-
gists (ASCO/CAP) guidelines [25]. HER2 status was defined as nega-
tive, with 0, 1+ as well as 2+ on IHC without HER2 gene amplification
on fluorescence in situ hybridization (FISH) [26]. The archived H&E
and IHC slides were retrospectively reviewed by three pathologists
(HJH, SP, and CX) to confirm the diagnosis. A total of 184 patients
with TNBC were included in the SYSUCC cohort.

2.2. Identification of TCGA cohort

The TCGA cohort was identified from the public Cancer Genome
Atlas Breast Invasive Carcinoma (TCGA_BRCA) database. The clinical
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data, including age at diagnosis, TNM stages, histological grades, and
survival outcomes, of 1097 patients with invasive breast cancer were
retrieved from the TCGA Pan-Cancer Clinical Data Resource [27]. ER,
PR and HER2 status was collected from TCGA data portal. ER-, PR-, or
HER2-positive/unknown patients and those without H&E-stained
WSIs available from FFPE samples were excluded, and a total of 117
patients with TNBC were included in the TCGA cohort.

2.3. Sample preparation and whole-slide image acquisition

One representative FFPE tissue block of breast lesions was col-
lected for individuals with TNBC in the SYSUCC cohort. The block was
sectioned into 4-mm-thick tissue slides for H&E staining (VENTANA
HE 600 system, Roche). All slides were scanned at 40x magnification,
with an image resolution of 0.25 mm/pixel (Aperio, ScanScope AT2,
Leica). The scanned WSIs from the TCGA cohort were directly down-
loaded from the NIH portal (portal.gdc.cancer.gov), with a resolution
of either 0.25 mm/pixel or 0.5 mm/pixel. We also collected an addi-
tional 148 tissue H&E slides (training set) from TNBC patients diag-
nosed at the SYSUCC, who were not included in the SYSUCC cohort,
for image analysis algorithm training. These slides were prepared,
stained, and scanned using the same equipment and settings men-
tioned above.

2.4. Manual stromal TIL evaluation and annotation

All WSIs from the SYSUCC and TCGA cohorts were evaluated inde-
pendently by three experienced breast pathologists. The pathologists
had a diagnostic experience of 15 years (mTILs-1, HJH), 8 years
(mTILs-2, SP), or 3 years (mTILs-3, CX) using ImageScope software
(Leica Biosystems) to score mTILs according to a five-step standard-
ized scoring system developed by the International Immuno-oncol-
ogy Biomarker Working Group [9,10]. In brief, TILs encompass all
mononuclear cells (including lymphocytes and plasma cells), and
polymorphonuclear leukocytes (neutrophils) were excluded. The
percentage of stromal TILs in the entire studied area (stromal TILs%)
was assessed within the invasive tumor's borders. TILs in tumor areas
with crush artifacts, necrosis, and regressive hyalinization and those
in previous biopsy sites were excluded. The percentage of stromal
TILs was considered a semiquantitative continuous parameter indi-
cating how much of the demarcated stromal area exhibits dense
mononuclear infiltrates. One pathologist (SP) marked the contours of
necrosis regions on each WSI from the training cohort and annotated
the different cell types (malignant epithelial cells, mononuclear cells,
and other cells) in 740 cropped images measuring 1024 £ 1024 pix-
els. These annotations were then used for training and validation of
the image analysis algorithms.

2.5. Whole-slide image analysis

Regarding the quantification of TILs in the stromal regions, the key
is to identify both stromal areas and mononuclear cells from WSIs. In
previous studies [23], this step was achieved by the direct classifica-
tion of image patches as tumor, stroma, or lymphocyte regions. How-
ever, one patch might contain different tissue components, which
makes classification difficult. Moreover, this patch-based approach
may not provide detailed, quantitative information on the number or
density of TILs. Alternatively, we used a cell-based approach in this
study; we identified the nucleus of each cell type, including malig-
nant epithelial cells and mononuclear cells, in WSIs (Fig. 1a,b). The
stromal areas could also be accurately recognized from nuclei density
maps. Because deep learning models have been shown to have signif-
icant advantages in a large number of computer vision tasks, we used
several deep learning networks for nuclei segmentation, nuclei classi-
fication, and necrosis detection.
2.6. Nuclei segmentation

To first localize the nuclei in WSIs, we used a nuclei segmentation
model that was developed with the MICCAI multiorgan nuclei seg-
mentation (MoNuSeg) challenge dataset [28], which contains 30
well-annotated images extracted from H&E slides of various types of
organs. Our approach mainly relied on the Mask-RCNN network [29],
which is one of the most popular segmentation architectures used in
the challenge. We selected a 101-layer deep ResNet [30] network as
the convolutional backbone in the Mask-RCNN network. We modi-
fied the regional proposal network anchor area scale to better fit the
nuclei segmentation task because the nuclei in the WSIs were small.
The training parameters were carefully tuned, and the test time was
increased when the segmentation masks were generated. The aggre-
gated Jaccard index (AJI) of our segmentation model was 0.665,
0.610, and 0.662 on the training set, validation set, and unseen test
set images, respectively, and the model ranked 9th in the challenge.
Methods and training details can also be found in our previous study
[31].

2.7. Nuclei classification

To create a training set for nuclei classification, we extracted 740
images with a size of 1024£1024 pixels from the 148 WSIs in the
training cohort. One pathologist (SP) carefully annotated the cell
types. A total of 61,620 malignant epithelial cells, 38,154 mononu-
clear cells, and 33,729 other cells were annotated and split into the
training, validation, and testing sets at a proportion of 8:1:1 while
the ratio between three types of cells was same in each set.

Several CNN models, such as ResNet, Inception, Xception, and
NASNetLarge, have shown excellent performance in various classifi-
cation tasks. In this study, we selected the Xception architecture [32],
with initial weights that were pretrained on ImageNet for nuclei clas-
sification, as this network has been demonstrated to outperform
other state-of-art networks in classifying histological breast cancer
images in a recent study [33]. Extensive data augmentation, such as
rotating, flipping, cropping, and strong color augmentation in HSV
color space, was performed during training. The model was trained
for at least 20 epochs using the stochastic gradient descent (SGD)
optimizer and categorical cross-entropy loss function with a learning
rate of 10�4.

The size of a nucleus varies significantly, and the surrounding
areas of the nuclei might be useful in improving the classification
results. Thus, we adopted a multiresolution approach and extracted
nucleus patches of four different sizes (27 £ 27, 36 £ 36, 45 £ 45, and
54 £ 54 pixels at 40 £ amplification) from each nucleus center and
trained an individual Xception network according to each patch size.
The prediction of four networks was integrated by averaging the pre-
diction probability of each cell class. The average weighted F1 score
and Matthews Correlation Coefficient (MCC) were 0.856 and 0.770
for the validation set and 0.851 and 0.765 for testing set, respectively,
showing excellent performance for nuclei classification (Supplemen-
tary Table 1).

2.8. Necrosis detection

All necrotic areas were annotated in WSIs from the training
cohort, and the 224 £ 224 pixel patches from the necrotic regions
were extracted at the highest magnification of 40 £, which accounted
for a total of 139,909 patches. Additionally, 198,274 patches of the
same size were randomly sampled from the nonnecrotic regions. All
patches were split into training, validation, and testing sets at a ratio
of 8:1:1, and the ratio between necrosis and non-necrosis patches
was kept same at around 0.7:1 for three sets. As with nuclei classifica-
tion, we adopted the Xception network for the classification of necro-
sis and nonnecrotic patches. The data augmentation and training



Fig. 1. Overview of the deep learning model used for CTA and the correlation between TIL density and TIL scores. (a) Three deep learning models were trained for nuclei segmenta-
tion, nuclei classification, and necrosis detection. (b) A flowchart of the automated stromal TIL quantification process. Step 1: The invasive tumor area was manually outlined by the
pathologist (green contour). Step 2: The regions inside the outlined area were cut into 224£224 pixels patches and classified into necrotic and non-necrotic; the necrotic patches
were excluded for the following analysis. Step 3: The nuclei in each non-necrosis patch were segmented (yellow contours) and classified into tumor (blue dots), lymphocyte (red
dots) and others (no dot). Step 4: A sliding window of 128£128 pixels corresponding to a size of 32£32 mm was used to visualize all of the non-necrotic regions; if the number of
tumor cell nuclei in the window was greater than 2, then this region was considered a tumor region (blue blocks). The remaining regions were recognized as the stromal region
(green blocks). The identified tumor, stroma and necrosis regions in the entire WSI were also shown. Step 5: A smaller 32£32 pixel (8 £ 8 mm) sliding window was used to view all
of the stromal regions; if the number of lymphocytes in the window was greater than 2, then the region was considered lymphocyte-dense (red blocks). Step 6: The final aTIL score
was calculated as the overlapping area between lymphocyte-dense regions and stromal regions divided by the area of the stromal regions. The sliding window without overlap was
shown for illustration purpose, as 50% overlapping was actually adopted. (c, d) The stromal TIL density within the invasive tumor area positively correlated with the mTIL and aTIL
scores in both cohorts.
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parameters were also similar to those used in the nuclei classification
task. The trained network yielded weighted F1 scores and MCC of
0.900 and 0.798 for the validation set and 0.818 and 0.801 for the
testing set, respectively (Supplementary Table 1).

The visual assessment of the outputs of three models from all the
images in SYSUCC and TCGA cohort were performed by a pathologist
(SP) to ensure no obvious segmentation and classification mistakes
were found from a large number of nuclei or areas thus the results
were suitable for downstream analysis.

2.9. Stromal til quantification

One straightforward method of quantifying stromal TILs is to cal-
culate the density of mononuclear cells in stromal areas. The overall
invasive breast carcinoma area was first annotated by a pathologist
(SP) in the WSIs to exclude the benign and ductal carcinoma in situ
(DCIS) regions. The necrotic areas within the invasive carcinoma area
were then detected using the trained deep learning network. All of
the nuclei in the nonnecrotic invasive carcinoma area were seg-
mented and then classified to generate nuclei density maps of malig-
nant epithelial cells and mononuclear cells using a sliding window
approach. Specifically, a sliding window of 128 £ 128 pixels moved
in steps of 64 pixels among nonnecrotic invasive carcinoma areas
and counted the number of malignant epithelial cells in each win-
dow. Steps of 64 pixels were used to increase the following tumor/
stroma region image resolution and to avoid missing nuclei at the
boundary of each sliding window. If the number of malignant epithe-
lial cells in the current window was greater than the set threshold,
the block was identified as a tumor region; otherwise, it was consid-
ered a stromal region. The threshold was empirically set to 2 in this
study. The density of mononuclear cells in stromal areas could then
be quantified as the total number of TILs in the stromal regions
divided by the entire stromal region.

However, the above density-based measurement was different
from the definition used for manual sTIL scoring, making it difficult
to compare the two methods. Thus, we constructed a new computa-
tional metrics, the percentage of TIL-dense stroma blocks within all
stroma blocks, using the sliding window method. A TIL-dense stroma
block was defined as a block with more than two mononuclear cells
which is equivalent to the stroma area occupied by TILs in our defini-
tion. This metrics ranged between 0 and 100% and highly correlated
with the mononuclear cell density-based measurement (SYSUCC
cohort: r = 0.97, 95% CI 0.96�0.98, p<0.001; TCGA cohort: r = 0.90,
95% CI 0.86�0.93, p<0.001; t-test; Fig. 1c). In all subsequent analyses
in this study, we used the above metrics as the automated quantified
stromal TIL score (aTILs). The image analysis and quantification pro-
cesses are illustrated in Fig. 1a,b.

3. Ethics

This study has been approved by the Sun Yat-sen University Can-
cer Center (SYSUCC) ethics committee (reference number: 047/20).
The requirement to obtain informed consent from the participants
was waived by the ethics committee.

3.1. Statistical analysis

The CV was used to characterize the variation in manual scores for
each sample. The Pearson correlation coefficient was used to analyze
the correlation between TIL density and the aTIL score, between TIL
density and the CV, as well as between the stroma ratio and CV. The
difference in TIL density and the stroma ratio between groups was



Table 1
Characteristics of patients with TNBC in SYSUCC and TCGA cohorts.

Variable SYSUCC cohort (N = 184) TCGA cohort (N = 117)

Age at diagnosis (y)
<40 34 (18.5) 14 (12.0)
40�55 107 (58.1) 50 (42.7)
>55 43 (23.4) 53 (45.3)

Histological grade
Grade II 21 (11.4) 13 (11.1)
Grade III 163 (88.6) 104 (88.9)

Tumor size (pT)
pT1 24 (13.0) 24 (20.5)
pT2 130 (70.7) 78 (66.7)
pT3 30 (16.3) 11 (9.4)
pT4 0 (0.0) 4 (3.4)

LNM (pN)
pN0 93 (50.5) 75 (64.1)
pN1 72 (39.1) 27 (23.1)
pN2 17 (9.2) 9 (7.7)
pN3 2 (1.1) 6 (5.1)

TNM staging
I 13 (7.1) 24 (20.5)
II 146 (79.3) 76 (65.0)
III 25 (13.6) 17 (14.5)

Chemotherapy
No 18 (9.8) �
Yes 166 (90.2) �

Radiotherapy
No 155 (84.2) �
Yes 29 (15.8) �

Disease related events
Yes 44 (23.9) 23 (19.7)
No 140 (76.1) 94 (80.3)

TNBC, triple negative breast cancer; LNM, lymph node metastasis.
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compared using Student's t-test. Intraclass correlation (ICC) analysis
was used to estimate the interobserver agreement among three path-
ologists in stromal TIL evaluations, as well as the differences between
aTIL and mTIL scores. There are currently no formal recommenda-
tions for a clinically relevant cutoff point for stromal TILs. We used
various cutoff points, including 10%, 20%, 30%, and 40%, as reported in
previous studies [3-6,8], to stratify the patients into two groups
(TILs-High vs. TILs-Low) and calculated the Cohen’s kappa score to
assess the agreement between mTIL and aTIL scores. For survival
analysis, the primary endpoint used was DFS, which was defined as
the first relapse or death from any cause. X-tile software (version
3.6.1; Yale University, New Haven, CT, USA) was used to identify the
optimal cutoff mTIL and aTIL scores for DFS. The survival curves of
DFS were drawn using the Kaplan�Meier method and were com-
pared using log-rank tests.

Univariate and multivariate analyses of DFS were performed using
the Cox proportional hazards regression model, and hazard ratios
(HRs) were also calculated. The Harrell concordance index (C index)
was calculated to measure the model's predictive performance for
DFS using different TIL scoring methods. A higher C index indicated a
better predictive performance. All tests were two-sided, and a p-
value <0.05 was considered significant. Statistical analyses were per-
formed using Medcalc software v19.0.4 (MedCalc Software Ltd., Bel-
gium), MATLAB software v2017b (The MathWorks, Inc., Natick, MA,
USA), and RStudio software v1.2.5 (RStudio, Inc.).

3.2. Role of funders

The funder had no role in study design, data collection, data analy-
sis, data interpretation, or writing of the report. The corresponding
authors had full access to all the data in the study and had final
responsibility for the decision to submit for publication.

4. Results

4.1. Patient characteristics

The characteristics of the patients with TNBC in the SYSUCC and
TCGA cohorts are summarized in Table 1. In the SYSUCC cohort, the
median age of the patients at diagnosis of TNBC was 48 years (range,
23�80 years). The median follow-up period was 53.5 months (range,
1�271 months). Disease-related events (either relapse, metastasis, or
death) occurred in 23.9% of the patients. The median age of patients
at diagnosis of TNBC was 53 years (range, 26�90 years) in the TCGA
cohort, with a median follow-up of 30.5 months (range, 0.2�286
months). A total of 19.7% of the patients in the TCGA cohort had dis-
ease-related events.

4.2. Interobserver agreement among mTILs

A heatmap of the aTIL and mTIL scores is shown in Fig. 2a. The CV
of mTIL scores among the three pathologists was calculated to evalu-
ate CTA consistency. As shown in Fig. 2b, a negative correlation was
observed between the automatic measurements of the stromal TIL
density and CV in both cohorts (SYSUCC cohort: Pearson r=�0.16,
p = 0.027; TCGA cohort: Pearson r=�0.30, p = 0.001; t-test), while no
correlations were found between the automatic measurements of the
tumor-stroma ratio (TSR) and CV. The median CV values of the mTIL
scores were 0.29 [interquartile range (IQR), 0.17�0.45] and 0.43 (IQR,
0.29�0.66) in the SYSUCC and TCGA cohorts, respectively (Fig. 2c).
The stromal TIL density was significantly higher (SYSUCC cohort,
609.9 § 43.1/mm2 vs. 430.9 § 39.7, p = 0.003; TCGA cohort,
633.8 § 62.7/mm2 vs. 439.2 § 54.1/mm2, p = 0.020; student’s t-test)
in the CV-low cases than in the CV-high cases in both cohorts
(Fig. 2d). In addition, no significant differences in TSR were found
between CV-low and CV-high cases in either the SYSUCC cohort
(45.6 § 1.4 vs. 47.7 § 1.8, p = 0.354, student’s t-test) or the TCGA
cohort (48.4 § 2.2 vs. 47.4 § 2.2, p = 0.735, student’s t-test) (Fig. 2d).

The intraclass correlations (ICCs) of the mTIL scores in the SYSUCC
cohort among the three pathologists were 0.89 (95% CI 0.85�0.91,
mTILs-1 vs. mTILs-2), 0.81 (95% CI 0.75�0.85, mTILs-1 vs. mTILs-3),
and 0.85 (95% CI 0.79�0.88, mTILs-2 vs. mTILs-3), which indicated
excellent interobserver agreement (Fig. 3a). However, there was
moderate agreement in the mTIL scores among the pathologists in
the TCGA cohort, as the ICCs were lower: 0.61 (95% CI 0.48�0.71,
mTILs-1 vs. mTILs-2), 0.66 (95% CI 0.53�0.74, mTILs-1 vs. mTILs-3),
and 0.68 (95% CI 0.56�0.76, mTILs-2 vs. mTILs-3) (Fig. 3d).

4.3. Concordance between mTILs and aTILs

The ICCs between the aTILs and mTILs scores varied from 0.62 to
0.70 in the SYSUCC cohort (aTILs vs. mTILs-1, ICC=0.70, 95% CI
0.61�0.76; aTILs vs. mTILs-2, ICC=0.68, 95% CI 0.59�0.75; aTILs vs.
mTILs-3, ICC=0.62, 95% CI 0.52�0.70), while they were lower, ranging
from 0.40 to 0.52, in the TCGA cohort (aTILs vs. mTILs-1, ICC=0.52,
95% CI 0.37�0.64; aTILs vs. mTILs-2, ICC=0.40, 95% CI 0.23�0.53; aTILs
vs. mTILs-3, ICC=0.45, 95% CI 0.28�0.57). Both cohorts showed fair-
to-moderate agreement between the VTA and CTA. Among the CV-
low cases, the ICCs improved slightly to 0.66�0.70 and 0.66�0.72 in
the SYSUCC and TCGA cohorts, respectively (Fig. 3b and 3e).
Although decreased ICCs were observed in the CV-high cases in both
cohorts (0.48�0.68 in the SYSUCC cohort; 0.20�0.40 in the TCGA
cohort), the mTIL scores provided by senior pathologists were shown
to be more consistent with the aTIL scores (mTILs-1 vs. aTILs:
ICC=0.68, 95% CI 0.55�0.77 in the SYSUCC cohort; ICC=0.37, 95% CI
0.14�0.56 in the TCGA cohort) than the mTIL scores provided by
junior pathologists (mTIL-1 vs. mTIL-3: ICC=0.55, 95% CI 0.38�0.67 in
the SYSUCC cohort; mTIL-1 vs. mTIL-3: ICC=0.34, 95% CI 0.11�0.54 in
the TCGA cohort) for these CV-high cases (Fig. 3c and 3d). Scatter
plots between mTILs and aTILs scores were also summarized in Sup-
plementary Figure 1 with lower RMSE found in SYSUCC cohort



Fig. 2. The interobserver variation among VTAs. (a) Heatmap of the aTIL scores (as reference) and mTILs scores provided by three pathologists in both cohorts. (b) The CV was neg-
atively correlated with TIL density, while there was no correlation between the CV and the TSR. (c) The distribution of CVs among the cases in both cohorts. (d) Differences in TIL
density and TSR between the CV-low and CV-high cases in the SYSUCC cohort (CV cutoff at 0.3) and TCGA cohort (CV cutoff at 0.4).
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(0.15�0.16) than in TCGA cohort (0.21�0.24). It is worth noted that
mTILs and aTILs were not necessarily well calibrated although mod-
erate correlation was found in between.

We subsequently assessed the agreement between mTIL and aTIL
scores in the TILs-Low and TILs-High groups using four different cut-
off points, 10%, 20%, 30%, and 40%, which have been reported in pre-
vious studies. We also generated a consensus group (mTILs-con)
from individual dichotomized mTIL groups made by three patholo-
gists on the basis of the majority voting rule. The kappa values of
both cohorts are displayed in Fig. 4, and the values indicated a mod-
erate-to-substantial agreement in groups determined using aTILs and
those determined using individual/consensus mTILs scores at the cut-
off points of 20% (kappa 0.36�0.58), 30% (kappa 0.36�0.50), and 40%
(kappa 0.39�0.65) but not at 10% (kappa 0.15�0.21) in the SYSUCC
cohort. The optimal agreement between the mTIL and aTIL scores in
terms of dichotomization was at the cutoff point of 40% in the
SYSUCC cohort. The strength of agreement was lower in the TCGA
cohort than in the SYSUCC cohort at all cutoff points (10%: kappa
0.15�0.28; 20%: kappa 0.33�0.46; 30%: kappa 0.30�0.33; 40%: kappa
0.21�0.31), and the optimal kappa value was observed at the cutoff
point of 20% for the TIL score.

4.4. Prognostic values of mTILs and aTILs

In the SYSUCC cohort, the optimal cutoff points of the mTIL and
aTIL scores for risk stratification were 9.0�15.0% (Supplementary
Figure 2). DFS curves among TNBC cases in the TILs-Low and TILs-
High groups with respect to the individual mTIL, mTILs-con, and aTIL



Fig. 3. Interobserver agreement among aTILs and mTILs scores. ICCs among the aTIL and mTIL scores of all the TNBC cases (a, d), as well as those in the CV-low (b, e) and CV-high
groups (c, f). The cutoff values used in the SYSUCC and TCGA cohorts were 0.3 and 0.4, respectively.
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scores are displayed in Fig. 5a-e, and the curves consistently show
that TNBC cases in the TILs-High group have a higher DFS than do
patients in the TILs-Low group. The HRs for the individual mTILs
were 0.23 (mTILs-1; 95% CI 0.12�0.45, p<0.001; log-rank test), 0.26
(mTILs-2; 95% CI 0.13�0.53, p<0.001; log-rank test), and 0.34
(mTILs-3; 95% CI 0.19�0.64, p<0.001; log-rank test). The HRs for
mTILs-con and aTILs were 0.20 (95% CI 0.11�0.39, p<0.001; log-rank
test) and 0.30 (95% CI 0.16�0.59, p<0.001; log-rank test), respec-
tively. A Cox proportional hazards regression model was then used to
identify the impact of stromal TILs, as either a continuous or
Fig. 4. Interobserver agreement among the aTIL, mTIL, and mTILs-con scores. The kappa
determined using a cutoff point of 10% (a, e), 20% (b, f), 30% (c, g), or 40% (d, h). In the mTILs-c
grouped by three pathologists on the basis of the majority voting rule.
dichotomous variable, on the prognosis of patients with TNBC. The
results are summarized in Table 2 and show that the stromal TIL den-
sity and individual mTIL, mTILs-con, and aTIL scores are considered
significant and independent factors for DFS in univariate and multi-
variate analyses.

In the TCGA cohort, the optimal cutoff points for the mTIL and aTIL
scores for risk stratification were 12.3�20.0% (Supplementary
Figure 3). The survival analysis results shown in Fig. 5f-j revealed
that the DFS in the TIL-High group was significantly higher than that
in the TIL-Low group among TNBC cases after dichotomization by a
values among aTILs, mTILs, and mTILs-con scores for the TILs-Low and TILs-High groups
on model, a consensus group was generated from individual dichotomized mTIL scores



Fig. 5. DFS curves for TNBC cases using dichotomous models for stromal TILs. Kaplan�Meier curves of the DFS of TNBC patients in the TIL-Low and TIL-High groups based on
dichotomization using mTIL-1 (a, f), mTIL-2 (b, g), mTIL-3 (c, h), mTIL-con (d, i), and aTIL models (e, j). The groups were established on the basis of the optimal cutoff stromal TIL
scores for DFS using X-Tile. Details on the cutoff points used in the mTIL and aTIL models are demonstrated in Supplementary Figure 2 and Supplementary Figure 3. In the mTILs-
con model, a consensus group was generated from individual dichotomized mTIL scores grouped by three pathologists based on the majority voting rule. The cut-off values used
were 15%, 9%, 10% and 14.1% for mTILs-1, mTILs-2, mTILs-3 and aTILs in SYSUCC cohort and 15%, 20%, 20% and 12.3% for mTILs-1, mTILs-2, mTILs-3 and aTILs in TCGA cohort. P-value
was calculated using log rank test.
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senior pathologist by mTIL (mTILs-1: HR=0.24, 95% CI 0.11�0.55,
p = 0.002; log-rank test), mTILs-con (HR=0.30, 95% CI 0.13�0.68,
p = 0.02; log-rank test) and aTIL (HR=0.24, 95% CI 0.09�0.65,
p<0.001; log-rank test) scores. No significant differences were
observed between groups after dichotomization by the mTILs scores
provided by junior pathologists (mTILs-2: HR=0.40, 95% CI 0.17�0.91,
p = 0.058; mTILs-3: HR=0.52, 95% CI 0.22�1.21, p = 0.178; log-rank
test). For the continuous variables, the stromal TIL density, mTIL
scores provided by a senior pathologist (mTILs-1), and aTIL scores
were significantly associated with DFS in the univariate model. Only
stromal TIL density and the aTIL scores were still considered signifi-
cant and independent factors for DFS in further multivariate analyses
(Table 2). For the categorical variables, mTILs-1, TILs-con, and aTILs
were shown to be associated with DFS in the univariate model. How-
ever, only mTILs-1 and aTILs continued to be significant in further
multivariate analyses (Table 2). The HRs of the mTIL and aTIL scores
Table 2
Univariate and multivariate analyses of stromal TILs for DFS in SYSUCC and TCGA co

Variable SYSUCC cohort (N = 184)

Univariate model Multivariate m

HR (95% CI) p-value HR (95% CI)

Continuous variable
TILs density (N/mm2) 0.99 (0.99�1.00) 0.014 0.99 (0.99�1.00)
mTILs-1 (%) 0.96 (0.95�0.98) <0.001 0.96 (0.94�0.98)
mTILs-2 (%) 0.96 (0.94�0.98) 0.003 0.95 (0.93�0.98)
mTILs-3 (%) 0.96 (0.94�0.98) <0.001 0.95 (0.92�0.98)
aTILs (%) 0.97 (0.95�0.99) 0.009 0.97 (0.94�0.99)

Dichotomous variable
mTILs-1 (high vs. low) 0.23 (0.12�0.42) <0.001 0.19 (0.09�0.42)
mTILs-2 (high vs. low) 0.26 (0.14�0.47) <0.001 0.28 (0.14�0.55)
mTILs-3 (high vs. low) 0.34 (0.18�0.62) <0.001 0.24 (0.11�0.53)
mTILs-con (high vs. low) 0.24 (0.13�0.44) <0.001 0.23 (0.11�0.47)
aTILs (high vs. low) 0.34 (0.18�0.63) 0.001 0.33 (0.16�0.68)

TILs, tumor infiltrating lymphocytes; DFS, disease-free survival; HR, hazard ratio; C
aTILs, automated quantified stromal TILs score; mTILs-con, a consensus group ge
based on majority voting rule. P-value was calculated using likelihood ratio test.
mTILs-3 and aTILs in SYSUCC cohort and 15%, 20%, 20% and 12.3% for mTILs-1, mTIL

1 Other variables included in the multivariate analysis were age, histological grad
N).

2 Other variables included in the multivariate analysis were age, histological gra
determined using various cutoff points (10%, 20%, 30%, and 40%) in
both cohorts are also shown in Supplementary Table 2.

4.5. Composite mTIL and aTIL model for prognostic stratification

On the basis of the different dichotomous outcomes using mTIL
and aTIL scoring methods, we further stratified the cohort into three
subgroups: the composite TILs-High group (mTILs-High/aTILs-High);
the composite TILs-Low group (mTILs-Low/aTILs-Low); and the com-
posite TILs-Uncertain group (either mTILs-High/aTILs-Low or mTILs-
Low/aTILs-High). The DFS curves among groups in both cohorts are
shown in Fig. 6. TNBC patients in the composite TILs-High group con-
sistently showed the best DFS outcomes among the groups in the
SYSUCC cohort, while the patients in the composite TILs-Low group
showed the worst DFS among the groups in the TCGA cohort. The C
index was calculated to measure the model's predictive performance
hort.

TCGA cohort (N = 117)

odel1 Univariate model Multivariate model2

p-value HR (95% CI) p-value HR (95% CI) p-value

0.003 0.99 (0.99�1.00) 0.013 0.99 (0.99�1.00) 0.019
<0.001 0.97 (0.94�1.00) 0.028 0.97 (0.93�1.00) 0.067
0.001 0.98 (0.96�1.00) 0.097 � �
<0.001 0.99 (0.96�1.01) 0.230 � �
0.016 0.96 (0.93�0.99) 0.005 0.96 (0.93�0.99) 0.007

<0.001 0.24 (0.09�0.64) 0.005 0.28 (0.10�0.79) 0.016
<0.001 0.40 (0.15�1.07) 0.068 � �
<0.001 0.51 (0.19�1.39) 0.189 � �
<0.001 0.30 (0.10�0.87) 0.027 0.32 (0.11�0.91) 0.032
0.003 0.24 (0.11�0.54) 0.001 0.20 (0.08�0.50) 0.001

I, confidence interval; mTILs, manual quantified stromal TILs score;.
nerated from individual dichotomized mTILs grouped by three pathologists
The cut-off values used were 15%, 9%, 10% and 14.1% for mTILs-1, mTILs-2,
s-2, mTILs-3 and aTILs in TCGA cohort.
e, tumor size, LNM(Y/N), TNM stage, chemotherapy(Y/N) and radiotherapy(Y/

de, tumor size, LNM(Y/N) and TNM stage.



Fig. 6. DFS curves for TNBC cases using three-tier stratification models integrating aTILs and mTILs. TNBC cases in both cohorts were stratified into three subgroups based on
the different dichotomous outcomes for the mTIL, mTILs-con, and aTIL models, including the composite TILs-High group (mTILs-High/aTILs-High), composite TILs-Low group
(mTILs-Low/aTILs-Low), and composite TILs-Uncertain group (either mTILs-High/aTILs-Low or mTILs-Low/aTILs-High). Kaplan�Meier curves of DFS were generated for the three
groups using the composite mTIL/aTIL models in the SYSUCC cohort (a-d) and TCGA cohort (e-h). The cut-off values used were 15%, 9%, 10% and 14.1% for mTILs-1, mTILs-2, mTILs-3
and aTILs in SYSUCC cohort and 15%, 20%, 20% and 12.3% for mTILs-1, mTILs-2, mTILs-3 and aTILs in TCGA cohort. P-value was calculated using log rank test.
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for DFS with the mTIL, mTILs-con, and aTIL models, as well as the
composite mTIL and aTIL models. We observed that the composite
model demonstrated slightly higher C index ranges of 0.64 to 0.68
and 0.63 to 0.67 than did the previous two-tier stratification, which
yielded C index ranges of 0.59 to 0.67 and 0.55 to 0.64 in the SYSUCC
and TCGA cohorts, respectively (Table 3). The HRs of mTILs, mTILs-
con, and aTILs in the three-tier stratification model in both cohorts
are summarized in Table 4. The results revealed that for the three-
tier stratification method, the composite mTIL and aTIL models were
significantly associated with DFS in both the SYSUCC and TCGA
cohorts. Notably, the mTIL scores provided by the two junior patholo-
gists (mTILs-2 and mTILs-3), which were not found to be associated
with DFS in the previous Cox regression analysis in the TCGA cohort,
were significantly associated with DFS when composited with the
aTIL scores in univariate (composite mTILs-2/aTILs, p = 0.007; com-
posite mTILs-3/aTILs, p = 0.005; likelihood ratio test) and multivariate
analyses (composite mTILs-2/aTILs, p = 0.031; composite mTILs-3/
aTILs, p = 0.033; likelihood ratio test). Similarly, the TILs-con grouping
method, which was not found to be significantly associated with DFS
in the previous multivariate model, was considered an independent
factor for DFS when the aTIL scores were composited in three-tier
stratification.

In addition, the interclass comparison showed a significantly
higher DFS in patients in the composite TIL-High group than in those
in the composite TIL-Low group in both cohorts. In the SYSUCC
cohort, compared with the composite TILs-Uncertain group, an
increased DFS was observed in the composite TILs-Low group (uni-
variate model: HR=0.40, 95% CI 0.18�0.88, p = 0.023; multivariate
model: HR=0.42, 95% CI 0.18�0.96, p = 0.040; likelihood ratio test),
Table 3
Harrell’s C-index of two-tier or three-tier stratification model using stromal TILs for D

Cohort Two-tiers stratification model (c-index § S.E)

mTILs-1 mTILs-2 mTILs-3 mTILs-con aTILs

SYSUCC 0.67 § 0.04 0.64 § 0.04 0.63 § 0.04 0.66 § 0.04 0.59 § 0
TCGA 0.64 § 0.05 0.57 § 0.05 0.55 § 0.05 0.61 § 0.05 0.63 § 0

TILs, tumor infiltrating lymphocytes; DFS, disease-free survival; mTILs, manual quan
con, a consensus group generated from individual dichotomized mTILs grouped by th
The cut-off values used were 15%, 9%, 10% and 14.1% for mTILs-1, mTILs-2, mTILs-3
mTILs-3 and aTILs in TCGA cohort.
while a decreased DFS was found in the composite TILs-High group
(univariate model: HR=2.40, 95% CI 1.18�4.92, p = 0.016; multivariate
model: HR=3.01, 95% CI 1.41�6.40, p = 0.004; likelihood ratio test)
with the composite mTILs-2/aTILs model. Similar survival outcomes
were also observed among the composite mTILs-3/aTILs model
according to the multivariate analysis (Table 4). However, with the
mTILs-1/aTILs and mTILs-con/aTILs model, the patients in the com-
posite TILs-Uncertain group were likely to have a DFS overlapping
with those of the patients in the composite TILs-Low group. In con-
trast, the patients in the composite TILs-Uncertain group had a DFS
similar to that of the patients in the composite TILs-Low group in the
TCGA cohort.

5. Discussion

Stromal TILs have been verified to constitute a crucial prognostic
and predictive factor for TNBC. Routine examinations of stromal TILs
in patients with TNBC have also been recommended by the majority
of experts who attended the St. Gallen International Breast Cancer
Conference [34]. The International Immuno-Oncology Biomarker
Working Group has developed a standardized assessment of TILs for
breast cancer patients. Its value in terms of reproducibility and clini-
cal use is highlighted by several previous studies [11-15], and both
factors demonstrated acceptable interobserver agreement, with
reported ICCs of 0.62�0.91. In the present study, similar ICCs (range,
0.61�0.93) were observed among three pathologists for the mTIL
scores. However, VTAs still have inherent limitations, such as having
interreader variability, having a risk of perceptual bias, and being
time-consuming for comprehensive evaluations, which cannot be
FS in SYSUCC and TCGA cohort.

Three-tiers stratification model (c-index § S.E)

mTILs-1/aTILs mTILs-2/aTILs mTILs-3/aTILs mTILs-con/aTILs

.04 0.68 § 0.04 0.65 § 0.04 0.64 § 0.04 0.67 § 0.04

.06 0.67 § 0.06 0.64 § 0.06 0.63 § 0.06 0.66 § 0.06

tified stromal TILs score; aTILs, automated quantified stromal TILs score; mTILs-
ree pathologists based on majority voting rule; S.E, standard error.
and aTILs in SYSUCC cohort and 15%, 20%, 20% and 12.3% for mTILs-1, mTILs-2,



Table 4
Univariate and multivariate analyses in three-tier stratification model using stromal TILs for DFS in SYSUCC and TCGA cohort.

Variable SYSUCC cohort (N = 184) TCGA cohort (N = 117)

Univariate model Multivariate model1 Univariate model Multivariate model2

HR (95% CI) p-value HR (95% CI) p-value HR (95% CI) p-value HR (95% CI) p-value

composite mTILs-1/aTILs <0.001 <0.001 0.001 0.001
uncertain vs. low 0.93 (0.45�1.90) 0.832 0.76 (0.34�1.70) 0.507 0.35 (0.13�0.94) 0.037 0.26 (0.09�0.77) 0.015
high vs. low 0.19 (0.09�0.41) <0.001 0.14 (0.05�0.36) <0.001 0.16 (0.06�0.44) <0.001 0.14 (0.05�0.44) 0.001
uncertain vs. high 4.96 (2.41�10.19) <0.001 5.57 (2.31�13.46) <0.001 2.25 (0.68�7.43) 0.184 1.81 (0.53�6.15) 0.341

composite mTILs-2/aTILs <0.001 0.001 0.007 0.008
uncertain vs. low 0.40 (0.18�0.88) 0.023 0.59 (0.24�1.41) 0.231 0.40 (0.17�0.98) 0.044 0.31 (0.11�0.81) 0.018
high vs. low 0.17 (0.08�0.35) <0.001 0.20 (0.08�0.47) <0.001 0.14 (0.04�0.51) 0.003 0.15 (0.04�0.57) 0.006
uncertain vs. high 2.40 (1.18�4.92) 0.016 2.95 (1.31�6.65) 0.009 2.89 (0.79�10.55) 0.107 2.09 (0.55�7.93) 0.277

composite mTILs-3/aTILs <0.001 <0.001 0.005 0.001
uncertain vs. low 0.38 (0.18�0.81) 0.011 0.51 (0.22�1.18) 0.118 0.30 (0.12�0.74) 0.009 0.19 (0.07�0.53) 0.002
high vs. low 0.21 (0.10�0.43) <0.001 0.19 (0.08�0.44) <0.001 0.21 (0.07�0.66) 0.007 0.15 (0.05�0.51) 0.002
uncertain vs. high 1.82 (0.87�3.80) 0.110 2.78 (1.14�6.79) 0.025 1.42 (0.43�4.74) 0.566 1.23 (0.36�4.23) 0.745

composite mTILs-con/aTILs <0.001 <0.001 0.002 0.001
uncertain vs. low 0.66 (0.31�1.39) 0.271 0.80 (0.34�1.85) 0.598 0.30 (0.12�0.77) 0.012 0.19 (0.07�0.53) 0.002
high vs. low 0.13 (0.06�0.30) <0.001 0.18 (0.08�0.44) <0.001 0.17 (0.05�0.51) 0.002 0.15 (0.05�0.51) 0.002
uncertain vs. high 3.52 (1.74�7.12) <0.001 4.38 (1.91�10.03) <0.001 1.83 (0.53�6.28) 0.336 1.23 (0.36�4.23) 0.745

TILs, tumor infiltrating lymphocytes; DFS, disease-free survival; HR, hazard ratio; CI, confidence interval; mTILs, manual quantified stromal TILs score;.
aTILs, automated quantified stromal TILs score; mTILs-con, a consensus group generated from individual dichotomized mTILs grouped by three pathologists based on
majority voting rule. P-value was calculated using likelihood ratio test. The cut-off values used were 15%, 9%, 10% and 14.1% for mTILs-1, mTILs-2, mTILs-3 and aTILs in
SYSUCC cohort and 15%, 20%, 20% and 12.3% for mTILs-1, mTILs-2, mTILs-3 and aTILs in TCGA cohort.

1 Other variables included in the multivariate analysis were age, histological grade, tumor size, LNM(Y/N), TNM stage, chemotherapy(Y/N) and radiotherapy(Y/N).
2 Other variables included in the multivariate analysis were age, histological grade, tumor size, LNM(Y/N) and TNM stage.
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fully resolved by standardization or training [18]. Our data also
showed a higher interobserver variability in the TCGA cohort than in
the SYSUCC cohort. Although the m-TIL score distributions were simi-
lar in the two cohorts, the pathologists declared that they are more
familiar with the slides stained in their own center. The poor quality
of the slides can explain why the pathologists had more difficulty
with the TCGA dataset. Thick or faded sections, frozen sections, as
well as those with scarce eosin staining or poor tissue fixation, are
more commonly found in the TCGA cohort (examples are demon-
strated in Supplementary Figure 4). Moreover, there are more out-
liers (determined as when the m-TIL scored by any pathologist
deviated from that of the other two pathologists by over 20%) in the
TCGA cohort than in the SYSUCC cohort (24/117, 20.5% vs. 20/184,
10.9%). The outliers more frequently occurred in cases with scarce
stroma, abundant intratumoral TILs (Supplementary Figure 5), TILs
surrounding residual lobules, sTILs mixed with neutrophils (Supple-
mentary Figure 6), and extensive lymphovascular invasion (Supple-
mentary Figure 7), which is consistent with the findings of Kos et al.
[15] that interobserver variation was driven by heterogeneity in the
lymphocyte distribution, staining procedure, tumor-associated
stroma ratio, and tumor boundary definition, as well as lymphocytes
being associated with other structures.

To overcome such limitations of VTAs, the current study aimed to
develop a new CTA method and to investigate its clinical implications
compared with VTAs. In a CTA workflow, the accurate identification
and segmentation of intratumoral stromal regions and TILs, either in
patches [23,35,36] or in individual TILs [37-39], are essential for stro-
mal TIL analysis. We established a large annotated nuclei dataset to
obtain a sufficient number of nuclei for classification training in our
study. The accuracy of the nuclei classification model showed satis-
factory performance for lymphocyte detection, and it was compara-
ble to the level reported in the latest literature [40]. However, it
should be noted that grouping all the nuclei other than malignant
epithelial cells and TILs into “other” class was only feasible if the
pathologist has demarcated tumor area beforehand, since some types
of nuclei such as normal acini outside of the tumor area could be very
similar to malignant epithelial cells. Intratumoral stroma area seg-
mentation typically requires exhaustive boundary annotation, which
is tedious and prone to high annotation errors. Most of the published
CTA studies [23,30,40,41] excluded this step. Amgad et al. [37]
obtained a high-quality dataset with detailed area annotations
through crowdsourcing and successfully trained an area segmenta-
tion model accordingly. In our study, the intratumoral stromal area
was determined by the sliding window approach through a spatial
distribution map of tumor cell nuclei. Compared with the segmenta-
tion model developed at the pixel level described by Amgad et al.
[37,39], the segmentation mask generated by our method was rela-
tively coarser, especially at the region boundaries. Thus, we asked a
pathologist to inspect the stroma segmentation results and verify
their suitability for subsequent analysis. In the future study, it would
also be benefit if we can further solidate the necrosis and nuclei type
ground truths by integrating annotations from various pathologists
who are independent frommTILs scoring.

As suggested by the TILs-WG [9,18], the CTA algorithm should be
developed in accordance with the guidelines for VTAs, and the frac-
tion of intratumoral stroma occupied by TILs should be calculated.
However, some of the existing CTA algorithms [23,38,40,41] did not
recognize the stromal regions or identify individual TILs. The metrics
established in these studies include lymphocyte hotspot-based detec-
tion [40,41] and TIL spatial distribution statistics [23,38]. To date,
there has been no conclusion on which CTA algorithm is most appro-
priate. In a recent study by Le et al. [41], a patch-based CTA algorithm
was adopted to calculate the ratio between lymphocyte patches and
tumor patches. As Le et al. released their measurements for all BRCA
cases in the TCGA cohort, we stratified those TNBC cases used in our
study and found a similar prognostic performance between Le’s
approach (HR=0.32, 95% CI 0.13�0.77, p = 0.01, log-rank test, C-
index=0.634§0.06) and our approach (HR=0.24, 95% CI 0.09�0.65,
p<0.001, log-rank test, C-index=0.632§0.05), although our aTIL
scores were determined in accordance with the manual scoring crite-
ria to the greatest extent possible. These findings indicate the need
for further validation of both types of approaches in the larger scale
cohorts.

A few examples are presented to illustrate the details of consistent
cases (Supplementary Figures 8�10) and inconsistent cases (Sup-
plementary Figures 11�13) between the mTIL and aTIL scores. The
possible reasons identified for the aTIL score to be inconsistent with
the mTIL score include the following: 1.) the aTIL includes a possible
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TLS region or dense lymphocyte clusters surrounding vessels, which
are excluded by the pathologist in the mTIL (Supplementary
Figure 11); 2.) the aTIL underestimated the stromal region when the
tumoral stroma is sparce due to the resolution issue from the sliding
window approach (Supplementary Figure 12); and 3.) aTIL tends to
confuse the stromal area with loose appearance and necrotic areas
(Supplementary Figure 13). Some of these discrepancies might be
eliminated with improved algorithms, such as a finer stroma segmen-
tation model and a specific TLS recognition model to exclude such
areas. On the other hand, some of these issues, such as scarce stroma,
TILs surrounding residual lobules, and extensive lymphovascular
invasion, are also the causes for the interobserver variation between
pathologists, as discussed previously. These difficulties might need to
be more emphasized in the guidelines both for VTA and CTA. Another
challenge we faced in developing CTA is the lack of quantitative crite-
ria to determine how dense mononuclear infiltrates can be arranged
and considered TILs-dense, especially if we wish to follow the VTA
guideline. In our design, possible stroma areas were evaluated in 8-
mm*8-mm (32£32 pixels) sliding windows, and those containing
more than two mononuclear cells were considered a TIL-dense block.
The choice of sliding window size and number of mononuclear cells
inside each windowwere based on the overall consideration of image
resolution and typical TIL diameters. The modification of this criteria
might lead to a change in the aTIL scores, and further studies will be
performed to systematically optimize the criteria in a larger cohort.
Additionally, in the process of generating the aTIL score, we also cal-
culated the overall TIL density and tumor-stroma ratio (TSR) across
WSIs and evaluated their impact on the variation in mTIL scores. Our
data suggested that the discordant VTA was more frequently
observed in cases with low TIL density but was not relevant to TSR.
These evidence might enable the identification of the elements caus-
ing ambiguity and interobserver variability of VTAs.

The CTA developed in this study could be used as an sTIL bio-
marker for TNBC prognosis as well as a complementary approach to
VTA. The prognostic value of the CTA was verified in univariate and
multivariate analyses in terms of DFS and was compared with VTA.
We observed that the aTIL scores demonstrated better prognostic
power than the mTIL scores, especially in the TCGA cohort. Neverthe-
less, an ideal cutoff point for stromal TILs is still desired for decision-
making or risk management clinically, as in the ER, PR, HER2 work-
flows, as well as the recurrence rate (Oncotype DX); however, to
date, no formal clinically relevant TILs cutoff points have been recom-
mended. Previous VTA studies analyzing the prognostic impact of
stromal TILs across various cutoff points on TNBC have yielded prom-
ising results [3-6,8]. A meta-analysis by Ibrahim et al. [42] also
revealed that every 10% increment in TILs might lead to a 15�20%
reduction in disease recurrence or mortality in TNBC patients. On the
other hand, a cutoff point of 10% for the TIL fraction, which was used
in the CTA algorithm developed by Amgad et al. [39], did not have
any significant impact on overall survival in the breast cancer sub-
group. In our study, we displayed the optimal cutoff of mTILs and
aTILs scores for DFS, which varied between 9.0�20.0%. The prognostic
power of aTILs was found to be significant under different optimal
cutoff points in both cohorts. These findings suggested that our CTA
model could be used individually in predicting prognoses under
appropriate cutoff values.

On the other hand, inescapable variations were highlighted
between mTILs and aTILs dichotomization. Kos et al. [15] mentioned
that if only one singular cutoff point is used either for mTILs or aTILs,
cases with the values around that cutoff point may frequently be mis-
assigned. Thus, the present composite mTIL/aTIL model achieved a
better prognostic performance than dichotomization using a single
cutoff point, especially for junior pathologists. Over 73.4% and 52.7%
of cases were assigned to either the composite TIL-High or composite
TIL-Low group, respectively, which displayed a promising prognostic
stratification result. This workflow complementing mTILs with aTILs
mitigates the overall risk of misassignment and enables pathologists
to focus more on composite TIL-Uncertain group cases. Further analy-
ses are subsequently required in "TILs-Uncertain" cases with the
existing tools, including the reference images publicly available or
online TNBC-prognosis tool [43] (www.tilsinbreastcancer.org), so
that comprehensive, evidence-based decisions can be made for
individuals [44]. Hence, we assume that our CTA model might be
more suitable to be used as a computer-aided tool, which pro-
vided an on-site, immediate, second opinion regarding grouping
according to the stromal TIL score for pathologists. An alternative
workflow could be established under the computer-assisted set-
ting to guide pathologist through the manual scoring process as
suggested [18] for better standardization. Following studies will
be required to compare both.

One strength of our study is that both VTA and CTA were assessed
in Asian (SYSUCC) and Caucasian (TCGA) TNBC cohorts. As shown in
Supplementary Figure 14, no significant differences were found for
mTIL-2 (p = 0.417, student’s t-test), mTIL-3 (p = 0.751, student’s t-
test) and aTIL (p = 0.621, student’s t-test) scores between the two
cohorts, while the mTIL-1 scores were slightly higher (p = 0.004, stu-
dent’s t-test) in the SYSUCC cohort. The optimized cut-off values of
the two cohorts were the same for mTILs-1 (15% vs. 15%) but varied
for mTILs-2 (9% vs. 20%), mTILs-3 (10% vs. 20%) and aTILs (14.1% vs.
12.3%). These findings suggested the possible need for different TILs
cut-off values for different ethnicities, although no significant differ-
ence of TIL distribution was found between Asians and Caucasians.
The prognosis performance was found slightly better in the SYSUCC
cohort, but this result needs to be further validated as the cut-off val-
ues used were different in two cohorts.

In our CTA workflow, the invasive carcinoma boundary still needs
to be manually delineated within all WSIs to reduce the impact of
regional identification errors on the subsequent quantification results
for stromal TILs. This process prevents our method from being fully
automated. We should note that the identification of main tumor
bulk and intratumoral stromal area, either manually or automatically,
can be a challenge in some special histological subtypes of invasive
breast carcinoma, such as lobular carcinomas, mucinous carcinomas,
etc. In the present study, all cases included in SYSUCC cohort were
diagnosed as invasive breast carcinoma of no specified type
(IBC��NST). In TCGA cohort, 113 cases (96.6%) were IBC��NSTs, 3
cases (2.6%) were medullary carcinoma, which is currently catego-
rized as TIL-rich IBC��NST or IBC��NST with medullary pattern. Only
1 case (0.8%) displayed pleomorphic lobular carcinoma in morphol-
ogy with high nuclear grade. Thus, we need to clarify that the current
CTA method is only validated on IBC��NSTs. Further tests and valida-
tions should be performed on other special histological subtypes of
IBCs. From the technical point of view, automated region identifica-
tion in breast cancer remains a challenging task, even with the most
advanced deep learning techniques. In the recent ICIAR 2018 Breast
Cancer Histology Image (BACH) Grand Challenge, the best pixel-level
accuracy of the classification for normal epithelial cells, benign
lesions, DCIS, and invasive carcinoma achieved from WSIs was lower
than 70% [45]. Moreover, optimizations for our CTA algorithm are
required to identify and handle other histological components
including DCIS within invasive tumor, fibrosis, hyalinization, and
larger number of granulocytes which are mentioned in VTA guide-
line.

In addition, the current CTA algorithm, as well as the composite
mTIL/aTIL workflow, should be further verified in a larger multicenter
cohort and integrated with standard clinicopathologic and genomic
predictors to offer more practical insights. Independent validation in
prognosis with identical cut-off values in both discovery and valida-
tion cohort should also be performed which is lack in the current
study. Nonetheless, the CTA algorithm described in the present study
provides a useful tool for stromal TIL assessments and prognosis eval-
uations in patients with TNBC.

http://www.tilsinbreastcancer.org
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