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A deep learning model to classify 
and detect brain abnormalities 
in portable microwave based 
imaging system
Amran Hossain1,2*, Mohammad Tariqul Islam1* & Ali F. Almutairi3*

Automated classification and detection of brain abnormalities like a tumor(s) in reconstructed 
microwave (RMW) brain images are essential for medical application investigation and monitoring 
disease progression. This paper presents the automatic classification and detection of human 
brain abnormalities through the deep learning-based YOLOv5 object detection model in a portable 
microwave head imaging system (MWHI). Initially, four hundred RMW image samples, including non-
tumor and tumor(s) in different locations are collected from the implemented MWHI system. The RMW 
image dimension is 640 × 640 pixels. After that, image pre-processing and augmentation techniques 
are applied to generate the training dataset, consisting of 4400 images. Later, 80% of images are 
used to train the models, and 20% are used for testing. Later, from the 80% training dataset, 20% 
are utilized to validate the models. The detection and classification performances are evaluated by 
three variations of the YOLOv5 model: YOLOv5s, YOLOv5m, and YOLOv5l. It is investigated that the 
YOLOv5l model performed better compared to YOLOv5s, YOLOv5m, and state-of-the-art object 
detection models. The achieved accuracy, precision, sensitivity, specificity, F1-score, mean average 
precision (mAP), and classification loss are 96.32%, 95.17%, 94.98%, 95.28%, 95.53%, 96.12%, and 
0.0130, respectively for the YOLOv5l model. The YOLOv5l model automatically detected tumor(s) 
accurately with a predicted bounding box including objectness score in RMW images and classified the 
tumors into benign and malignant classes. So, the YOLOv5l object detection model can be reliable for 
automatic tumor(s) detection and classification in a portable microwave brain imaging system as a 
real-time application.

Worldwide, brain abnormalities such as tumors are the prime reasons for fatality and incapacity since it damages 
the primary cell of the human brain. A brain tumor enhances abnormal tissues that create inside the human 
head. Due to the brain abnormality effectiveness, the possibility of brain cancer in the head is increasing day 
by day, and it is the 9th dominant reason of death for women, men, and children1. Brain abnormalities might 
be fatal, crucially affecting the quality of longevity and changing the whole thing for patients and their families. 
Brain tumor as an abnormality is mainly classified into two categories: benign and malignant tumor2. The benign 
tumors are non-cancerous cells and have a homogeneous structure with a regular shape. In contrast, malignant 
tumors are cancerous cells and have a heterogeneous structure with an irregular shape1. In addition, benign 
tumors have a slower growth rate, and malignant tumors can grow uncontrollably. The percentage of death rate 
increases due to the invasive features of the tumors. But, early detection of brain tumors might increase the 
survival rate of a human. At present, different modern imaging modalities: PET(positron emission tomogra-
phy), X-ray screening, MRI (magnetic resonance imaging), CT (computed tomography) scans, and ultrasound 
screening are used to identify brain tumors in medical applications2–4. The key disadvantages of the conventional 
medical imaging modalities are increasing cancerous risk due to high dose radiation, lower susceptibility, high 
ionizing with brain cells, costly, and danger for the old patient and pregnant women2,5–10. In the last decades, 
microwave imaging (MI) research has been growing in medical applications due to its abundant properties: 
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non-ionizing radiation, inexpensive, non-invasive, and safe for the human body compared to conventional 
medical imaging modalities11–17. A microwave imaging system consists of an antenna array, where the transmit-
ting antenna produces the microwaves and transmits them to the target objects. The receiving antennas receive 
the backscattering waves. After that, the image reconstruction algorithm is applied to the collected scattering 
signals to generate the reconstructed microwave image, including the target object of interest (ROI). A wideband 
antenna is indispensable in a microwave head imaging (MWHI) system that works within the frequency band 
of 1 GHz to 4 GHz with unidirectional radiation characteristics, high gain, and high efficiency11,18–24. Various 
MWHI systems have been implemented over time by using multiple types of two-dimensional (2D)15,18,23–28 and 
three-dimensional(3D) antenna arrays to identify the brain tumor14,19,22,29–32.

Recently, the deep neural networks (DNNs) technique has been applied in medical imaging to identify brain 
abnormalities due to the benefit of making decisions with significantly less involvement from human interac-
tion. The DNN filters the imaging data through the cascade of multiple layers and provides a more accurate 
result as an output, and it is faster than the traditional imaging system33–36. Researchers are currently applying 
the DNN technique in microwave imaging applications to identify the target object and imaging purposes36–42. 
An autoencoder-based deep learning method was investigated to reconstruct the microwave image of the dif-
ferent shaped objects40. The technique used a 24 × 24 antenna array system, which generated EM signals and 
propagated through the network to reconstruct the image. But no object detection mechanism was presented in 
the article. A convolutional neural network(CNN) based U-Net segmentation framework was used for mask-
ing the tumor object in MW imaging41. The framework was investigated on only the simulated data but did not 
implement any experimental framework and detection algorithm. An automatic DNN based classification and 
detection framework was presented in43. The approach classified only the tumor and non-tumor images and 
then masked the image’s tumor regions. But the process is failed to classify the benign or malignant tumor in the 
images. A faster region-based CNN (Faster R-CNN) model was used to detect and classify brain tumors44. The 
outperforms of the model were comparatively low due to the small training dataset. It achieved 91% classifica-
tion accuracy, and it failed to classify the small tumor in the images. The Mask R-CNN model45 improved the 
tumor detection accuracy. This approach improved the overall detection accuracy but failed to detect and classify 
malignant tumors in the images due to diverse tumor profiles. A handcrafted deep learning feature-based brain 
tumor detection approach was presented in46. The approach used the grab cut technique to segment the tumor 
regions, and then hand crafted including deep features was used to diminish the noise level in the image, but the 
abnormalities classification and specific tumor detection scenarios were not presented in the literature. A fully 
CNN (F-CNN) method was applied to the brain tumor image dataset to detect the brain abnormalities47. The 
technique was used U-Net segmentation scheme with an adam optimizer algorithm to segment the tumor region 
in the images. This approach able to identify the tumor, but tracing the appropriate location and classification 
of the tumor is difficult because of the shortage of impartial predictors. Rresidual CNN (R-CNN) was applied to 
the brain images to recognize and classify the tumors in the brain images34. The method used data augmentation 
and distillation procedures to mitigate the unwanted signal in the image, but tumor identification setup with 
exploratory analysis was not accomplished in the article. A DNN network-based super-resolution algorithm 
(SRA) was proposed for MW imaging purposes48. The network used a 33 × 33 image dataset to train the model, 
and it produced two-dimensional images. But it was seen that, the produced images were noisy, blurry, and the 
accuracy of classification was very low due to the small training dataset. Thus, detecting the precise position of 
the target tumor in the images was complicated, and the approach failed to classify the benign and malignant 
tumor. A YOLOv3 deep learning model was used to identify and localize the tumor with bounding box in 
microwave images14. The model detected the tumors, but failed to classify the benign and malignant tumor(s) 
in reconstructed images.

It is observed that the stated MWHI systems used numerous traditional microwave imaging algorithms to 
identify the target tumor from the reconstructed images. It is problematic to detect the precise position of the 
tumor because of the noisy, irregular tumor shape and low-quality image resolution. In addition, benign and 
malignant tumor classification is more challenging in real-time applications. As a result, it is necessary to manu-
ally indicate the locations and classify the tumor(s) in the reconstructed images by the professional physician 
or technician, which is a vigorous problem of the traditional MWHI system. Therefore, the inspiration of the 
research to mitigate the issues in the stated MWHI scheme relies on an object detection algorithm is required in 
the real application that can automatically detect the tumor(s) with precise location and classify them into two 
classes (i.e., benign and malignant) in the reconstructed microwave brain images. The key contributions of the 
research work might be specified below:

(i)	 According to the author’s knowledge, it is the first research work where a YOLOv5 deep neural network-
based object detection model is employed in a portable microwave brain imaging system as a real-time 
application due to its abundant features. The YOLOv5 model can automatically detect small and large 
sized brain tumor(s) with a bounding box including objectness score and classify the brain tumors into 
two classes: benign and malignant.

(ii)	 A 3D wideband antenna array is utilized in the implemented imaging framework and investigated by the 
fabricated tissue-mimicking head phantom, including a benign and a malignant tumor, for generating 
reconstructed microwave (RMW) brain images.

(iii)	 Implemented the YOLOv5 model with its three versions: YOLOv5s, YOLOv5m, and YOLOv5l to investigate 
the detection and classification performances by utilizing training and testing datasets.

(iv)	 The performances of the YOLOv5l model are compared with five other state-of-the-art object detection 
models: Faster R-CNN, Mask R-CNN, F-CNN, Residual R-CNN, and YOLOv3.
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(v)	 The detection performance is investigated and compared with the fabricated phantom images and simulated 
images as an alternative to collected in-vivo images to ensure real application accuracy.

In this research, we have developed a portable microwave brain imaging system to produce microwave brain 
images, which can be used in the rural area as a real application due to its safety and portability features with 
low cost. It is noticeable that early diagnosis, automatic tumor identification with location, and classification are 
crucial without an object detection algorithm when the system is integrated with the high-end computational 
device. The overall system needs low computational inference time, automatic detection characteristics with 
objectness score including predicted bounding box, and high classification performances. A deep learning-based 
object detection algorithm can be a reliable solution to overcome these issues. YOLOv5 is a popular single-stage 
deep learning algorithm that uses CNN for object detection. This model reduces inference speed, increases object 
detection accuracy, and enhances localization accuracy49. The traditional deep learning algorithms are incapable 
of identifying an object in a single run, but the YOLOv5 makes the detection in a single run through the NN 
(neural network), which makes it suitable for real-time application and high-end computational devices. Thus, 
we have been used YOLOv5 as a classifier instead of the conventional deep convolutional neural network to get 
significant benefits in our research. The significant benefits of the YOLOv5 in our work are: (i) it has a lightweight 
architecture with low computational complexity, (ii) it takes low inference time to update the weights which 
properly train the model, (iii) it has three scaling features maps to predict, localize the small, medium, and large 
sized object (i.e., tumor) with a predicting bounding box, (iv) it shows the objectness score of the predicting 
tumor object, that help to improve the tumor classification performances, and (v) it can monitor and identify 
the target tumor in noisy, blurry, and low resolution based RMW brain images.

The overall process is discussed as follows: initially, the RMW image samples are collected from the imple-
mented MWHI system. The RMW image dimension is 640 × 640 pixels. Four hundred image samples with non-
tumor and tumor in different locations are collected from the implemented MWHI system. After that, image 
pre-processing and augmentation techniques are applied to generate the training dataset. The training dataset 
consists of 4400 images, including single benign and malignant tumors, double benign tumors, double malignant 
tumors, single benign and single malignant tumors. Later, 80% of images are used to train the model, and 20% are 
used for testing. From the 80% training dataset, 20% are utilized to validate the models. The YOLOv5 model with 
its three versions (YOLOv5s, YOLOv5m, and YOLOv5l) is implemented and executed by the Python high-level 
language with a powerful PyTorch machine learning library. The tumor classification and detection performances 
are investigated on various datasets by the YOLOv5s, YOLOv5m, and YOLOv5l models. In addition, training vs. 
validation loss, training classification loss vs. validation classification loss, and training vs. validation accuracy 
are investigated to evaluate the models. Moreover, the precision, recall, specificity, F1-score, and mean average 
precision (mAP) are observed to verify the models. It is seen that the YOLOv5l performed better than the other 
two models. The training accuracy, validation loss, precision, recall, specificity, F1 score, train classification loss, 
validation classification loss, and mAP for YOLOv5l model are 99.84%, 9.38%, 93.20%, 94.80%, 94.21%, 94.00%, 
0.004, 0.0133, and 96.20% respectively. It is noticeable that the lower validation loss, higher accuracy, precision, 
recall, specificity, F1 score, and lower train and validation classification losses confirm the YOLOv5l shown better 
detection and classification performances. Also, the detection and classification outcomes are evaluated by the 
YOLOv5s, YOLOv5m, and YOLOv5l models. Then the YOLOv5l model is compared with other state-of-the-art 
object detection models. It concludes that the YOLOv5l model can be reliable for automatic tumor detection and 
classification in microwave brain imaging systems.

The remaining part of the article is structured as follows: Experimental investigation of the MWHI system is 
illustrated in section “Experimental investigation of MWHI system”. A comprehensive study of the deep learning-
based YOLOv5 object detection model with its background is discussed in section “Background analysis of 
YOLOv5 model”. Overall research methodology is presented in section “Classification and detection methodol-
ogy and materials”. A detailed explanation of the training experiments is discussed in section “Details explana-
tion of the training experiments”. Afterward, the results and discussions are explained in section “Result and 
discussion” and concluded in section “Conclusion”.

Experimental investigation of MWHI system
In the MWHI system, a wideband antenna is mandatory that must have the capability to operate a frequency 
band within the range of 1 GHz to 4 GHz with unidirectional radiation features18,19,25,26. A three-dimensional (3D) 
antenna was designed on cost-effective Rogers RT5880 substrate material having 1.575 mm thickness (Th), 2.20 
dielectric constant, and 0.0009 loss tangent (δ). The improved dimension of the antenna is 60 × 25 × 16.575 mm3. 
The power network analyzer (PNA) was used to measure the antenna’s S-parameters(|S11|). Figure 1a illustrates 
the measured and simulated |S11| parameters of the antenna. It is observed from Fig. 1a, the measured operat-
ing frequency band of the antenna is 1.31 GHz to 3.65 GHz, while the simulated frequency band is 1.21 GHz to 
3.67 GHz. It is noticeable that good agreement has been found in both measured and simulated outcomes except 
slightly shifting the resonances to the lower frequencies due to fabrication tolerance. After that, the antenna was 
verified with a Hugo head model by the CST 2019 simulation software and then measured with a fabricated 
tissue-mimicking head phantom to assess the performance steadiness of the fabricated antenna. Figure 1b depicts 
the measured and simulated |S11| parameters curve through the fabricated head phantom. It is seen from Fig. 1b, 
the |S11| of the antenna in head proximity keeps a good contract between the measured and simulated outcomes. 
In this research, a fabricated nine-antenna array was used in the developed MWHI framework19 for imaging, 
shown in Fig. 2a. Later, the system’s performance was validated by the fabricated tissue-mimicking head phantom 
model, including benign and malignant tumors as brain abnormalities. The system has a portable stand with a 
circular-shaped rotating disk (0° to 360°) and a stepper motor. All nine antennas were attached with the separate 
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nine antenna holders, and each antenna was set 40° apart from each other. The distance of each antenna from 
the center of the disk was 100 mm. The mounted array of the antenna rotates through the stepper motor from 0° 
to 360° around the fabricated tissue-mimicking head phantom. The S-parameters (scattering parameters) with 
a benign tumor are depicted in Fig. 2b, and with a benign and a malignant tumor is illustrated in Fig. 2c, when 
antenna 1 was excited, and others were received the scattered signals. The backscattered signals: S11, S21, S31……
S91 were collected in each 7.2° degrees rotation. Thus, in-total 8 × 9 × 50 locations were scanned, and then the 

Figure 1.   Measured and simulated outcomes of the 3D antenna: (a) |S11| parameters in open space, (b) |S11| 
parameters with the head phantom model.

Figure 2.   (a) Experimental MWHI system19, (b) S-parameters with a benign tumor, (c) S-parameters with a 
benign and a malignant tumor.
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M-DMAS (modified-delay-multiply-and-sum) image reconstruction algorithm19 was applied to the collected 
backscattered signals to reconstruct the brain images of the head regions.

A human brain consists of four tissue layers: (i) Dura, (ii) CSF, (iii) Gray matter, and (iv) White matter. The 
brain tissues and tumors (i.e., benign and malignant ) are fabricated according to the presented formula in50 to 
verify the performance. The 3D skull model is depicted in Fig. 3a. The approximate length (L), width (W), and 
height (H) of the 3D skull head model are 160 mm,120 mm, and 120 mm respectively. The internal structure 
of the blank model is shown in Fig. 3b. Fabricated tissues are inserted into the blank model which is illustrated 
in Fig. 3c. The tumors’ dielectric properties (i.e., permittivity and conductivity) are considered according to the 
presented value in51, which ensures the properties of the actual tumor. The fabricated brain tissues and tumors 
are measured by the dielectric probe kit KEYSIGHT 85070E and PNA. The measurement is performed within the 
frequency band of 1 GHz to 4 GHz. The measured dielectric properties of the tissues and tumors are presented 
in Fig. 4. The benign tumor is fabricated almost circular with a regular shape52. The considered diameters of the 
benign tumor are: D = 5 mm, 6 mm, 7 mm,10 mm, and 12 mm. On the other hand, the malignant tumor is fab-
ricated as an elliptical and triangle irregular shape52. The considered approximate lengths of the malignant tumor 
are: L = 10 mm, 12 mm, 13 mm, 15 mm, and 16 mm. Then, the tumors are inserted into the different locations 
in terms of depth of the fabricated 3D head skull model to verify the system performance. The internal depth 
of the model is different at different locations. For better understanding, the fabricated model’s actual geometry 
with tumor diversity (i.e., tumor size, location, and shape) is presented in Fig. 5a–f. The tumor locations in terms 
of depth in the model are presented in Table 1. It is observed from Fig. 5b–f, the location can be identified by 
applying the cartesian coordinate method in the 2D image presentation. For instance, the benign tumor location 
in image-1 is 30 mm up from the phantom’s ground, and the cartesian coordinate is (0, 10) in mm. However, the 
detailed diversity of tumors in terms of four (4) aspects: (i) tumor size, (ii) location, (iii) morphology (shape), 
and (iv) heterogeneity (i.e., permittivity and conductivity) is presented in Table 1. Also, the various combinations 
of tumor size, location, and shape are used in phantoms to verify the performance, which is shown in Fig. 5b–f.

Figure 6 illustrates the fabricated phantom, different tumor shape, size with location, and reconstructed head 
region images. Moreover, for imaging purposes, a benign tumor, a malignant tumor, double benign tumors, 

Figure 3.   (a) Full 3D head skull model, (b) Internal structure of the blank model, (c) Fabricated tissues in the 
blank model.

Figure 4.   Measured dielectric properties of the fabricated tissues: (a) permittivity, (b) conductivity.
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double malignant tumors, and a benign and a malignant tumor as brain abnormalities in various locations 
were used to generate four-hundred reconstructed samples as a sample image dataset. After that, the image pre-
processing and augmentation methods were applied to the sample dataset to create a training dataset as a final 
image dataset to train the deep neural network model. Furthermore, the YOLOv5 object detection models have 
been used to classify the tumors with objectness score rate automatically, and then identify the tumor position 

Figure 5.   Fabricated head phantom’s geometry with tumor size and locations: (a) Overall geometry, (b) With 
a benign tumor, (c) With a malignant tumor, (d) With two malignant tumors, (e) With two benign tumors, (f) 
With one benign and one malignant tumor.

Table 1.   The detailed diversity of the tumor(s) in terms of four aspects.

Phantom image Tumor type

Tumor Size D 
for Benign, L for 
Malignant (mm)

Tumor location 
in terms of depth 
(from ground to up) 
(mm)

Center location 
of tumor(s) 
in Cartesian 
coordinate (x, y) 
(mm) Tumor shape

Heterogeneity

Permittivity at 
2 GHz

Conductivity at 
2 GHz

Image-1 Benign D = 10 30 (0, 10) Circular with regular 
shape 22.65 0.965

Image-2 Malignant D = 12 55 (20, − 30) Elliptical with 
irregular shape 64.05 4.18

Image-3 Two Malignant D = 7 and L = 15 30 and 55 (15, − 50) and (0, 15)
One is elliptical, and 
the other is a triangle 
with an irregular 
shape

64.05 4.18

Image-4 Two Benign D = 5 and L = 7 40 and 35 (20, 15) and (30, − 7) Circular with regular 
shape 22.65 0.965

Image-5 One benign and one 
malignant D = 6 and L = 13 42 and 35 (12, 27) and (− 15, 

− 7)

One is circular with 
a regular shape, and 
the other is elliptical 
with an irregular 
shape

22.65 and 64.05 0.965 and 4.18
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from the produced reconstructed microwave brain images. The YOLOv5 models have been implemented and 
executed by the Python high-level language with a PyTorch machine learning library.

Background analysis of YOLOv5 model
Background of Yolov5 algorithm.  YOLO is the short term of "You look only once", and it is the deep 
learning-based object detection algorithm invented by Joseph Redmon et al.53. YOLOv554 is also a deep learning-
based object detection algorithm that improves the previous versions of YOLOv1 to YOLOv4, and it was recently 
released by the Ultralytics company54 on 27 May 2020. It is much faster and has a less computational architecture 
than the previous versions. The YOLOv5 model can balance detection accuracy and real-time performances. 
The YOLOv5 incorporates a one-stage deep convolutional neural network (DCNN) architecture that divides the 
images into a grid of cells. Straightly, each grid cell predicts a bounding box (BB) for object categorization. Every 
cell is liable to detect the target object as an item and expects BB with the confidence score (CS)53. In YOLOv5, 
the CS replicates whether a target object exists in a cell or not and predicts the object accurately. The CS is calcu-
lated by using the following Formula (1):

where Pr(Tobject) is the prediction of the target object ( Tobject ) and Pr(Tobject) ∈ {0, 1} , intersection over union 
( IoU  ) calculated by between the GT and PB. GT means Ground Truth, and PB means predicted box. It is 

(1)CS = Pr(Tobject)× IoU(GT , PB)

Figure 6.   Fabricated head phantom model with brain abnormalities and corresponding reconstructed EM 
brain images (a) Without tumor image, (b) A single benign tumor image, (c) A single malignant tumor image, 
(d) Two malignant tumors image, (e) Two benign tumors image, (f) One benign and one malignant tumor 
image.
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noticeable that, if no target object presents in the grid cell, the CS should be one (1); otherwise, the CS should be 
the IoU between the GT and PB. In addition, each cell predicts CL-class probabilities for identifying the objects. 
However, the predicted output tensor (POT) is expressed by using the Eq. (2) as follows:

Here, BB is the bounding box for each grid prediction, and it is considered as 3, the “5” denotes every pre-
diction box’s four coordinates [x, y, w, h], and one object confidence score (CS). In this instance, [x, y] denotes 
the middle position’s coordinates of the box, and [w, h] indicates the box’s width and height, respectively. CL 
represents the class probabilities. Hence an object can exist in numerous classes; thus, a single 1 × 1 convolutional 
layer, sigmoid, and Leaky ReLu activation functions are used in YOLOv5. In addition, the activation function 
Leaky ReLu is applied in intermediate or hidden layers, and the sigmoid function is involved in the ending pre-
diction layer. The CS of each class is projected by the Leaky ReLu, sigmoid activation function, and a threshold 
value responsible for identifying the target object. In YOLOv5, the Binary Cross-Entropy with Logistic Loss 
(BCELL) function from the PyTorch library is used for calculating the loss of class probability and target object 
scores55. The estimated loss integrates a sigmoid layer and a BCELoss function in a single class. The unreduced 
and multilevel classification loss functions in BCELL are expressed by the following equations55:

Here, N denotes the batch size, c represents the class number, (xi, yi) is the coordinate value of predicted boxes, 
the offsets of the center locations are presented by σ(xns) and σ(xns,c) , ns is the number of samples in the batch, 
pc denotes the weight of class c. If c = 1, it would be a single-label binary classification, and if c > 1, it would be a 
multi-label binary classification.

Non‑maximum suppression (NMS) technique.  An image contains multiple target objects, and the 
objects might be of different shapes and sizes. So, the target objects might be captured perfectly with a single 
bounding box. The YOLOv5 model creates more than one overlapping bounding box (BB) in a single image to 
detect target objects but needs to show only a single bounding box for each object in an image. Thus, we need 
a method that eliminates overlapping bounding boxes. Therefore, the Non-Maximum Suppression technique is 
applied to eliminate the overlapping problem, selecting a single BB out of more than one overlapping BB to iden-
tify the objects in an image. The NMS method removes the redundant identifications and determines the best 
match for ending identification. The NMS technique is presented in Algorithm 1. Besides, the YOLOv5 decides 
on GIoU loss56 as the BB regression loss function to solve the inaccurate calculation of non-overlapping BB and 
defined as following equation56:

where BGT represents the GroundTruth box,  PB represents the predicted box, CB represents the smallest box 
covering PB,BGT , and IoU = PB∩BGT

PB∪BGT
.

(2)POT = BB× (5+ CL)

(3)L(xi , yi) = L = {ℓ1, ℓ2, ......ℓN }
T

(4)ℓns = −wns[yns. log σ(xns)+ (1+ yns). log(1− σ(xns))]

(5)Lc(xi , yi) = Lc = {ℓ1,c , ........ℓN ,c}
T

(6)ℓns,c = −wns,c[pcyns,c . log σ(xns,c)+ (1− yns,c). log(1− σ(xns,c))]

(7)LGIoU = 1− IoU +

∣

∣CB − PB ∪ BGT
∣

∣

|CB|
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Classification and detection methodology and materials
This section discusses the overall research methodology, dataset explanation, image pre-processing, augmentation 
techniques, YOLOv5 architecture with classification analysis, and detection procedure. The complete method-
ology of the classification and detection flow chart is portrayed in Fig. 7. This study utilized the reconstructed 
microwave (RMW) brain images collected from the experimental MWHI system. The processed images and their 
corresponding labeling of tumor objects in YOLO format are being used to train the YOLOv5 models. As men-
tioned earlier, the work used mainly different types of images such as (i) Non-tumor image (ii) a single benign 
tumor image, (iii) a single malignant tumor image, (iv) double benign tumors image, (v) double malignant tumors 
image, and (vi) a single benign and a single malignant tumor image. The work also explored different categories 
of reconstructed microwave head images to investigate the performance of the YOLOv5 models that can auto-
matically detect the tumors with location and classify the tumor(s) into two classes (i.e., benign and malignant).

Dataset explanation.  In this study, the original four-hundred RMW brain image samples were initially 
collected from the implemented MWHI system to create a sample dataset. The sample dataset contains one 
hundred samples for non-tumor images, seventy-five samples for every single benign tumor and single malig-
nant tumor image, fifty image samples for each double benign tumor(s), double malignant tumor(s), and single 

Figure 7.   Overall flow chart of the proposed methodology.
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benign and single malignant tumor. Every image size is 640 × 640 pixels, which is the input requirement for the 
proposed models. After that, the image pre-processing and augmentation techniques are applied to the sample 
dataset to generate a training dataset. The training dataset consists of 4400 images, where 80% used for train-
ing and 20% used to test the YOLOv5 model. Also, out of 80% of images, 20% were used for validation to avoid 
overfitting. For instance, the RMW brain image samples are illustrated in Fig. 8.

Image pre‑processing and augmentation techniques.  The image pre-processing technique is the 
first phase of a deep learning model due to its input image size requirements. For example, the deep learning-
based YOLOv5 object detection model requires input size. Thus, the images are pre-processed before train-
ing the network model. Initially, every image’s head region area is cropped, then the resize and normalization 
techniques are applied to the sample dataset. After that, the images are resized to 640 × 640 pixels to satisfy the 
input requirements of the YOLOv5 model. It is noticeable that the YOLOv5 model requires a large dataset to be 
trained efficiently to classify and detect the target tumor with locations in the RMW brain images. Since we have 
a four hundred image sample dataset, which is not suitable for training the model; thus, image augmentation 
techniques are applied to the sample dataset to generate a training dataset for effectively training the model. The 
image augmentation can enhance the classification and detection accurateness of the model by augmenting the 
existing image dataset rather than the collection of new samples. In addition, image augmentation can remark-
ably enhance the variety of data available for the training model and create a rich dataset from the insignificant 
image sample dataset for image categorization. This study utilizes eight different image augmentation strategies: 
rotation, scaling, translating, horizontal flipping, vertical flipping, width shifting, height shifting, and zoom-
ing to generate a training dataset. The rotation operation of images is accomplished by rotating anticlockwise 
and clockwise directions with an angle between 3° to 30°. As a result, the tumor objects are shifted at different 
positions in the images. Scaling is the reduction or magnification of the image frame size. So, using the scaling 
method, 2% to 15% image magnifications are used for augmentation. In addition, the translation technique 
translates the images vertically and horizontally by 3% to 10%. Moreover, 5% to 15% width and height shift-
ing are applied to the images for shifting the tumor objects. Also, the probability factor of 0.2 to 0.5 is applied 
for vertical and horizontal flipping purposes. Thus, the tumor objects have changed the position in the images. 
However, taking a single sample image from the four hundred samples, then applying all augmentation strategies 

Figure 8.   Randomly selected RMW brain image samples: (a) Non-tumor image, (b) With a benign and a 
malignant tumor image, (c) With double benign and double malignant tumor(s) image.
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separately to produce eleven augmented images at a time programmatically. As a result, obtained augmented 
number of images as a training dataset is 11 × 400 = 4400. The detailed dataset description is presented in Table 2. 
For instance, some augmented images are illustrated in Fig. 9.

Target object labelling.  Labeling tumor objects in the image dataset is necessary for training the YOLOv5 
models. The YOLOv5 object detection model is pre-trained on Microsoft Common Objects in Context 
(MSCOCO) dataset54. The dataset consists of 80 predefined classes, and the class names are stored in "yaml" file. 
But, our tumor object class names (i.e., benign and malignant) and dataset are not included in the predefined 
dataset of YOLOv5 model. Thus, we created a separate "yaml" class file and a YOLO tumor object labeling format 
file in this study. The "yaml" file consists of two classes: one is benign tumor class, and the other is malignant 
tumor class. On the other hand, the annotation process is applied to every image of the final image dataset to 
generate a tumor object labeling file as a YOLO format file. The YOLO format file is a text file with a similar 

Table 2.   Dataset description for training, testing, and validation.

Dataset
Number of original 
image samples Type of images Number of images Augmented images

Training dataset

Number of training 
images (80%)

Number of 
validation images 
(20%)

Number of testing 
images (20%)

Reconstructed 
microwave (RMW) 
brain images

400

Non-tumor 100 1100

3520 704 880

Single benign tumor 75 825

Single malignant 
tumor 75 825

Double benign 
tumor 50 550

Double malignant 
tumor 50 550

Single benign and 
single malignant 
tumor

50 550

Total 400 4400 3520 704 880

Figure 9.   Randomly selected images from the augmented training set: (a–c) Non-tumor, single benign, and one 
benign and one malignant tumor images, (d–f) Images after rotation by 30 degrees anticlockwise and clockwise 
for non-tumor, single benign, and one benign and one malignant tumor, (g–i) Images after 3% horizontal, 5% 
vertical and horizontal, 5% horizontal and 3% vertical translation for non-tumor, single benign, and one benign 
and one malignant tumor.
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name of each image that contains the tumor class id, tumor object’s center coordinates, object’s height, and 
object’s width (i.e., tumor labeling area). For tumor object labeling purposes, a graphical image annotation tool 
LabelImg is used to create an annotation file for every image. The tool uniformly labels each tumor object from 
the training and validation dataset. Finally, the training dataset and corresponding YOLO format files are used to 
train the network model. For instance, after annotation, the YOLO format file context is presented in the follow-
ing Fig. 10. The contents of the YOLO format file with a single benign tumor, single malignant tumor, and malig-
nant and benign tumor objects are depicted in Fig. 10. A txt file has three components for every target tumor 
object: tumor class id, center coordinates of the tumor bounding box (xo, yo), and tumor area (width, height). The 
id "0" represents the benign tumor class, and "1" represents the malignant tumor class. The YOLO format file of 
benign tumor, malignant tumor, malignant and benign tumor labeling information are portrayed in Fig. 10a–c.

Tumor‑Yolov5 architecture model.  The YOLOv5 architectural model is portrayed in Fig. 11. The archi-
tecture is divided into three parts: (i) Backbone, (ii) Neck, and (iii) Prediction. Firstly, the Bottleneck Cross 
Stage Partial Darknet (BCSPD) is the main backbone of the YOLOv5 framework. The input image dimension 
of YOLOv5 is 640 × 640 × 3 pixels. After feeding the images into the model, the output could be any combina-
tion of desired classes. The input image goes through the FOCUS module in the backbone. The FOCUS mod-
ule slices the input image into four small ones and then concatenates them together for convolutional opera-
tion. The 640 × 640 × 3 pixels image is divided into four small images with the dimension of 320 × 320 × 3, then 
that are concatenated into a 320 × 320 × 12 pixels feature map. Thereafter, 32 convolutional kernels operation, it 
becomes a 320 × 320 × 32 feature map. The CoBL module of the model is a fundamental convolutional module 
that epitomizes Conv2D + Batch Normalization (BN) + Leaky ReLu activation function. The BCSP mainly per-
forms the feature extraction on the feature map, extracting major information from the feeding images. It solves 
the repeated gradient information duplication in CNNs and integrates the gradient changes into the feature map, 
thus reducing the input parameters and size of the model. The BCSP consists of a residual unit and two 1 × 1 
Conv2D kernels. A residual unit contains the two CoBL modules and adder. The adder adds the features of the 
previous CoBL module and two CoBL modules output then sends local features to the one 1 × 1 Conv2D layer. 
The four models with different input parameters can be attained, namely YOLOv5s, YOLOv5m, YOLOv5l, and 
YOLOv5x by adjusting the width(w) and depth(d) of the BCSP module. Besides, the Spatial Pyramid Pooling 
(SPP) module integrates with the BCSP module in the backbone. The SPP module increases the receptive field of 
the network and acquires features of various scales. Secondly, YOLOv5 integrates the Path Aggregation Network 
(PANet) in the neck to enhance the information flow57. The PANet is based on the Feature Pyramid Network 
(FPN) structure that conveys robust semantic features from top to bottom. Also, FPN layers convey strong posi-
tioning features from bottom to top. In addition, PANet improves the propagation of low-level features and the 
utilization of accurate localization signals at the bottom layers. Thus, the location accuracy of the target object is 
enhanced. Thirdly, the prediction layer is also called the detection or YOLO layer, which generates three different 
feature maps. The feature map is used to attain multi-scale prediction58. As a result, the model can classify and 
detect small, medium, and large objects at the prediction layer, including a bounding box. The prediction process 
summary of the YOLOv5 model is discussed below:

Phase 1.  Initially, the 640 × 640 size of images is applied as an input to the backbone. After that, the images are 
sliced by the FOCUS module. After executing many convolutions set of operations and two times BCSP1 opera-
tions, the feature map goes to the second concatenation layer. On the other hand, after the one-time execution of 
BCSP1, two times of BCSP2, convolutions set of operation, and two times of upsampling, the feature map goes 
to the second concatenation layer. The second concatenation layer concatenates both of them. After execution of 
BCSP2 layers and 1 × 1 convolution operation, the 80 × 80 sized feature map (i.e., scale 1) is obtained.

Figure 10.   YOLO format file context: (a) For benign tumor as a single object, (b) For malignant tumor as a 
single object, (c) For malignant and benign tumor as two tumor objects.
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Phase 2.  In the second step, the 80 × 80 sized feature map from phase 1 is processed by one 3 × 3 convolutional 
kernel and goes to the third concatenation layer. Besides, the earlier second upsampling feature map is executed 
by one 1 × 1 convolutional kernel and goes to the third concatenation layer. Then, the third concatenation layer 
concatenates both of the layers. After finalizing the BCSP2 layer and one 1 × 1 convolution operation, the 40 × 40 
sized feature map (i.e., scale 2) is attained.

Phase 3.  In the third phase, the 40 × 40 sized feature map from phase 2 is processed by one 3 × 3 convolutional 
kernel and goes to the fourth concatenation layer. Besides, the earlier upsampling feature map is executed by 
one 1 × 1 convolutional kernel and goes to the fourth concatenation layer. Then, the fourth concatenation layer 
concatenates both of the layers. Later, by performing the BCSP2 and 1 × 1 convolution operation, the 20 × 20 
sized feature map (i.e., scale 3) is obtained.

Phase 4.  Finally, feature maps in different sizes (i.e., 80 × 80, 40 × 40, 20 × 20) are responsible for identifying the 
different sized tumor objects with a regression bounding box (BB). Henceforth, at every location, predicts three 
(03) regression bounding boxes for each feature map, thus creating the 3 × (80 × 80, 40 × 40, 20 × 20) = 25,200 
regression bounding boxes. Finally, the model predicts the location of the target tumor(s) with a bounding box 
with an objectness score.

Classification and detection process.  The YOLOv5 model is trained on MSCOCO dataset that com-
prises eighty (80) predefined object classes54. According to Eq. (2), the predicted output tensor (POT) dimension 
is 3 × (5 + 80) = 255. Here, "3" denotes the three bounding boxes (BB) for each grid cell prediction, "5" denotes 
the coordinates (xo, yo, w, h) of each prediction box and confidence score (CS), and "80" represents the prede-
fined object class (CL). In our study, we have two objects in the RMW brain images, one is a benign tumor, and 

Figure 11.   YOLOv5 architecture model.
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the other is a malignant tumor. Thus, we need to modify the classifier of the YOLOv5 model. So, according to 
Eq. (2), the predicted output tensor (POT) dimension is 3 × (5 + 2) = 21 in our case. Due to the modification of 
the model, we get some significant benefits: (i) reduce the number of network parameters, (ii) reduce the com-
putational overhead, (iii) enhance the detection accuracy, and (iv) increase the training and testing speed. After 
training the network, the testing, classification, and detection phases are started. The network model evaluates 
the testing dataset. Finally, the model classifies the tumor into benign and malignant classes. Also, it shows the 
location of the tumor(s) with a bounding box, including the objectness score.

Details explanation of the training experiments
The YOLOv5 model was implemented and executed on the anaconda distribution platform using the PyTorch 
machine learning library with Python 3.7 version. The experiments have been carried out on a 64-bit Windows 
10 operating system with 128 GB RAM and 64-bit Intel® Xeon®W-2016 @ of 3.30 GHz CPU. In addition, an 
11 GB NVIDIA GeForce GTX 1082Ti GPU has been used to enhance the network training performances. In 
this study, three versions of the YOLOv5 model: YOLOv5s, YOLOv5m, and YOLOv5l have been carried out to 
evaluate the tumor classification and detection performances. In the experiment, the training dataset and cor-
responding annotation tumor class files have been utilized for training all models. The training dataset consists 
of 4400 images and their related labeling files. Later, 80% of the total images were utilized for training and 20% 
for testing. From the 80% training dataset, 20% has been utilized for validation to avoid overfitting. After that, a 
modified "ymal" class file and pre-trained learning weights for all models have been employed during the training 
period. The models have been trained for 200 epochs with an initial learning rate of 0.01, and the batch size is 16. 
The stochastic gradient descent (SGD) optimizer has been applied to optimize the model outputs. The detailed 
training hyper-parameters for the models are presented in Table 3.

Performance evaluation metrics.  The tumor classification with detection performance of the YOLOv5 
network model is evaluated by the five-evaluation metrics such as (i) Precision (P), (ii) Sensitivity/Recall (R), 
(iii) Specificity (S), (iv) F1-score (Fs), and (v) Mean Average Precision (mAP). Precision represents the ability of 
a model that can detect only the relative tumor objects. On the other hand, recall/sensitivity means the ability of 
a model to find out all the relevant cases. The evaluation matrices are calculated by using the following equations:

where NTP represents the number of tumor images was identified as tumors, NFP represents the number of images 
was identified as tumor errors, NFN represents the number of images that were missed identified as tumors,NTN 
represents the number of images that were missed classified as the tumor, P(i) is the precision, and �R(i) is the 
change in recall from the ith detection.

(8)Precision (p) =
NTP

(NTP + NFP)

(9)Sensitivity/Recall (R) =
NTP

(NTP + NFN )

(10)Specificity (S) =
NTN

NTN + NFP

(11)1− Specificity(S) =
NFP

NTN + NFP

(12)Fs =
(2× NTP)

(2× NTP + NFN + NFP)

(13)mAP =

N
∑

i=1

P(i)×�R(i)

Table 3.   Training hyperparameters of YOLv5 models.

Name of the parameter Value Name of the parameter Value

Initial learning rate 0.01 Weight decay 0.0005

Learning factor 0.2 Warmup epochs 3.0

Momentum 0.937 Warmup momentum 0.8

Optimizer SGD Warmup initial bias learning rate 0.1

IoU training threshold 0.20 Box loss gain 0.05

Anchors 3.0 Anchor multiple thresholds 4.0
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Result and discussion
This section discusses the experimental investigation of the training and testing performances, tumor classifica-
tion, and tumor detection in RMW brain images by applying YOLOv5 models. The training dataset consists of 
4400 images, including benign and malignant tumor(s), where 80% of the total images were utilized for training 
and 20% for testing the models. In further, out of 80% training dataset, 20% of images were used for validation 
to avoid overfitting.

Training and validation performance analysis.  We have implemented three versions of the YOLOv5 
model: YOLOv5s, YOLOv5m, and YOLOv5l to investigate the training and validation accuracy and loss per-
formances by the different training datasets. It is seen that the YOLOv5l model showed the best performances. 
For simplicity, the training and validation accuracy graphs of the YOLOv5l model by applying different training 
datasets are illustrated in Fig. 12. It is observed from Fig. 12 when 1000 images were used as a training dataset 
then, initially, the training and validation accuracy was very low. But after 78 epochs, the model has achieved 
99.99% accuracy in both cases. Also, when training dataset size is increased gradually as 2000, 3000, and 3520 
(80%) to train the model, the training and validation accuracy is increased up to 99.99%, after 60, 35, and 22 
epochs, respectively. In contrast, the training vs. validation loss graphs of the YOLOv5l model is illustrated in 
Fig. 13. It is observed from Fig. 12 when 1000 images were used as a training dataset, then initially, the training 
and validation loss is very high. But after 72 epochs, the loss of the model is approximately 0. Also, when train-
ing dataset size increases as 2000, 3000, and 3520 (80%) to train the model, the training and validation losses 
are decreased. The loss of the model is approximately 0 after 22 epochs. The overall average accuracy and loss 
outcomes of the YOLOv5l model are shown in Table 4.

Investigation of tumor object classification and prediction.  Classification and prediction paramet-
ric analysis.  We have investigated two tumor classes (i.e., benign and malignant) performance and detection 
performances through the YOLOv5s, YOLOv5m, and YOLOv5l models by using the RMW brain image train-
ing dataset. Firstly, it investigates the precision, recall, training classification loss, and validation classification 
loss performance with respect to epochs for the three versions of the YOLOv5 model. Precision is the ability 
of a model to classify and predict only the target tumor objects. The precision curve of YOLOv5s, YOLOv5m, 
and YOLOv5l models is illustrated in Fig. 14a, where the training dataset is utilized. Figure 14a shows that the 
precision rate is initially very low in all models, but it increases with respect to increasing the epochs. In addi-

Figure 12.   Training vs validation accuracy of YOLOv5l model for different training dataset: (a) 1000 images, 
(b) 2000 images, (c) 3000 images, (d) 3520(80%) images.
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Figure 13.   Training vs validation losses of YOLOv5l model for different training datasets: (a) 1000 images, (b) 
2000 images, (c) 3000 images, (d) 3520(80%) images.

Table 4.   Overall outcomes of training versus validation accuracy and loss.

Training dataset
Average training accuracy 
(%)

Average validation 
accuracy (%) Average training loss (%) Average validation loss (%)

1000 96.02 94.98 2.18 3.08

2000 96.95 96.45 2.05 2.29

3000 97.77 97.34 1.02 1.01

3520 (80%) 99.94 99.68 0.0416 0.0918

Figure 14.   Tumor classification and detection analysis curve with respect to epochs: (a) Precision (P), (b) 
Recall/sensitivity (R), (c) Mean average precision(mAP).
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tion, the precision rate of the YOLOv5s model is varied between 76 and 87%, whereas the rate of YOLOv5m is 
varied between 79 and 90%, and the rate of YOLOv5l is varied between 84 and 96%. As a result, the benign and 
malignant tumor classification and prediction rates of the YOLOv5l model are higher than the other two models.

On the other hand, recall is the ability of a model to find out all the relevant tumor classes. The recall curve 
of the three models is depicted in Fig. 14b, where the training dataset is employed. From Fig. 14b, it is examined 
that the recall rate is initially low (51% to 81%) for the YOLOv5s and YOLOv5m models, but it is 66% to 97% 
for the YOLOv5l model. It is also observed that the recall rate increases with respect to increasing the epochs. 
Moreover, the recall rate of the YOLOv5s model is varied between 81 and 91%, whereas the rate of the YOLOv5m 
is varied between 86 and 96%, and the rate of the YOLOv5l is varied between 90 and 98%. Thus, the target tumor 
classification and prediction performance of the YOLOv5l model is higher than the other two models. Besides, 
the mean average precision (mAP) for all models is observed, and it is shown in Fig. 14c. It is seen that the 
mAP of the YOLOv5l model is also higher than the YOLOv5m and YOLOv5s models. The overall investigation 
outcomes are presented in Table 5.

Secondly, precision, recall, F1 score, and PR curve (Precision × Recall) are also investigated with respect to 
confidence score. The precision curve is illustrated in Fig. 15a. From Fig. 15a, it is observed that at the begin-
ning, the precision is very low for all models, but the precision of benign tumor and malignant tumor classes are 
gradually increased with an increasing confidence score. Moreover, all class precision is 100%, when confidence 
scores are 0.926, 0.923, and 0.896 for YOLOv5s, YOLOv5m, and YOLOv5l models, respectively. So, it should be 
noted that all class’s precision of YOLOv5l is higher at a reasonable confidence score (0.895) compared to other 
models. On the other hand, the recall curve is illustrated in Fig. 15b.

In Fig. 15b, it is examined that at the starting, the recall for benign and malignant tumor class is 99% for all 
models, but the recall is gradually decreased with respect to increasing confidence score up to 0.80. Although the 
recall of all classes for all models is 0% when confidence scores are between 0.85 to 1, the recall for the benign and 
malignant tumor class of the YOLOv5l is higher than that of the other two models. In addition, another paramet-
ric F1 score is examined. The F1 curve is depicted in Fig. 15c. The F1 score is calculated based on precision and 
recall. Figure 15c shows that F1 scores are 86%, 86%, and 87% in all classes, when confidences are 0.707, 0.624, 
and 0.706 for YOLOv5s, YOLOv5m, and YOLOv5l, respectively. Thus, it should be noted that the F1 score of all 
classes for the YOLOv5l is maximum at a moderate confidence score (0.706) compared to the other two models. 

Table 5.   Overall performance results of the different models.

Training 
models Weight size

No. of training 
image dataset

Accuracy (A) 
(%)

Precision (P) 
(%) Recall (R) (%)

Specificity (S) 
(%) F1 score (%) mAP (%)

Train 
classification 
loss

Validation 
classification 
loss

YOLOv5s 15 MB

1000 86.85 85.59 88.52 87.50 85.60 86.11 0.00568 0.0220

2000 88.45 88.17 88.20 89.10 89.90 89.35 0.00543 0.0190

3000 89.65 89.45 88.92 89.32 89.55 89.27 0.00522 0.0188

3520 (80%) 91.77 91.15 90.97 91.61 91.65 91.20 0.00521 0.0185

YOLOv5m 43 MB

1000 89.62 89.17 88.48 89.57 88.92 88.29 0.00460 0.0191

2000 90.66 90.41 89.98 90.23 90.19 90.12 0.00450 0.0185

3000 91.25 91.13 91.15 91.18 91.12 91.10 0.00450 0.0171

3520 (80%) 93.62 93.65 93.42 93.51 93.60 93.45 0.00442 0.0159

YOLOv5l 95 MB

1000 91.35 91.22 90.81 91.19 91.24 91.25 0.00331 0.0169

2000 92.44 92.18 91.93 92.14 92.15 92.17 0.00320 0.0160

3000 94.95 94.28 94.18 94.20 94.39 94.48 0.00313 0.0145

3520 (80%) 96.32 95.17 94.98 95.28 95.53 96.12 0.00290 0.0130

Figure 15.   Benign and the malignant tumor classification performance curve with respect to confidence score: 
(a) Precision (P), (b) Recall (R), (c) F1 score.
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Furthermore, the Precision × Recall curve is investigated to evaluate the performance of the tumor detection of 
the YOLOv5 models when the confidence score changes for each class. It helps to assess tumor prediction abil-
ity when the precision maintains a significant value with the increase in the recall. The Precision × Recall curve 
of YOLOv5s, YOLOv5m, and YOLOv5l is portrayed in Fig. 16a–c, respectively. It is observed from Fig. 16 that 
better performance outcomes are displayed closer to the right corner in the Figures. The cross values for benign 
tumor class are 94.2%, 96.0%, and 96.0% for YOLOv5s, YOLOv5m, and YOLOv5l models, respectively, whereas 
the cross values for malignant tumor class are 89.7%, 88.7%, and 90.9% for YOLOv5s, YOLOv5m, and YOLOv5l 
models, respectively. The mAP of all classes for YOLOv5s, YOLOv5m, and YOLOv5l models are 91.9%, 92.4%, 
and 93.5% at the rate of 0.5, respectively.

Tumor classification loss analysis.  The investigation of tumor class loss significantly predicts tumors’ detection 
score in the RMW images. So, the tumor classification loss is investigated during the model’s training. Two clas-
sification losses (i.e., training and validation classification losses) are observed by exploiting the image training 
dataset. The training classification loss of the tumor objects with respect to the epochs is illustrated in Fig. 17a. 
At the starting of the training phase, the training classification loss is relatively high (i.e., 0.25) for three models. 
But the training classification loss is gradually decreased when increasing the iteration. We used 200 epochs for 
training and validation classification in the investigation to get better classification outcomes. The training clas-
sification loss is comparatively high for the YOLOv5s model and low for the YOLOv5l model. After completing 
200 epochs, the train classification losses are 0.004, 0.003,0.002 for YOLOv5s, YOLOv5m, and YOLOv5l, respec-
tively. These incidences are found due to the variation of pre-trained weights of the YOLOv5 models. The best 
weight is used to train and test all models. The YOLOv5l model has large pre-trained weights from the other two 
models and takes slightly more time than other models to train the model. But the YOLOv5l model revealed a 
better result than other models.

In contrast, the validation classification loss of the tumor objects with respect to the epochs is illustrated 
in Fig. 17b. The validation classification loss is relatively high at the initial of the validation, such as 0.033 for 
YOLOv5s, 0.023 for YOLOv5m, and 0.016 for YOLOv5l models. However, after five epochs, it abruptly decreased 
to 0.014, 0.012, and 0.006 for YOLOv5s, YOLOv5m, and YOLOv5l, respectively. Afterward, it is also investigated 
that after completing 200 epochs, the validation classification losses are 0.022, 0.015, and 0.012 for the YOLOv5s, 
YOLOv5m, and YOLOv5l, respectively. But the losses for all models are slightly increased when increasing the 
epochs. It is noticeable that the YOLOv5l model showed better outcomes from the other two models. Finally, 

Figure 16.   Precision × recall analysis curve for three models: (a) For YOLOv5s, (b) For YOLOv5m, (c) For 
YOLOv5l.

Figure 17.   Tumor classification loss: (a) Training classification loss, (b) Validation classification loss.



19

Vol.:(0123456789)

Scientific Reports |         (2022) 12:6319  | https://doi.org/10.1038/s41598-022-10309-6

www.nature.com/scientificreports/

it is decided the YOLOv5l model exhibited better for tumor classification and detection results. The overall 
investigation outcomes are presented in Table 5.

Receiver operating characteristic (ROC) analysis.  The receiver operating characteristic (ROC) curve is an essen-
tial performance metric used in multi-class classification problems. The ROC is used to visualize the perfor-
mance of a classification model across all thresholds. It also shows the capability of distinguishing between 
classes. The pixel-wise ROC curve with the area under the curve (AUC) for brain tumor detection and clas-
sification of three YOLOv5 models across all thresholds is depicted in Fig. 18. Figure 18a presented the ROC 
with AUC for benign tumor classification and observed that the YOLOv5l model performs better. The cal-
culated AUC for benign tumor classification by the YOLOv5s, YOLOv5m, and YOLOv5l models are 81.56%, 
83.25%, and 85.65%, respectively. Figure 18b presented the ROC with AUC for malignant tumor classification 
and observed that the YOLOv5l model performs better. The calculated AUC for malignant tumor classification 
of the YOLOv5s, YOLOv5m, and YOLOv5l models are 87.45%, 89.47%, and 91.36%, respectively. The overall 
investigation outcomes by the all models are presented in Table 5.

Tumor classification and detection performances.  This section discusses the tumor classification and 
detection performances by the trained YOLOv5s, YOLOv5m, and YOLOv5l models. For performance investiga-
tion, we have been utilized our testing image dataset in different cases: (i) with one benign tumor, (ii) with one 
malignant tumor, (iii) with two benign tumors, (iv) with two malignant tumors, and (v) with one benign tumor 
and one malignant tumor. The confusion matrix of the best model YOLOv5l is presented in Fig. 19. It is real-
ized from the confusion matrix; the model classified the tumor objects into two predicted classes and detected 
the benign and malignant tumors effectively in RMW brain images. In this investigation, 2080 benign and 1780 
malignant tumor instances existed in the training dataset. It is observed from the confusion matrix 4% benign 

Figure 18.   Receiver operating characteristic (ROC) curve with AUC for brain tumor detection and 
classification: (a) For benign tumor, (b) For malignant tumor.

Figure 19.   Confusion matrix of the YOLOv5l model.
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tumor out of 100% is miss classified as malignant tumors, and 1% of malignant tumors out of 100% is miss classi-
fied as benign tumors. The experimental tumor detection outcomes by the YOLOv5s, YOLOv5m, and YOLOv5l 
are depicted in Figs. 20, 21, and 22, respectively. For simplicity, the detection results of twelve images (non-tumor 
and tumor-based) are illustrated in this paper. All models have automatically detected the tumors accurately 
with a predicted bounding box including objectness score, and classified the tumors into two classes (benign 
and malignant). But it is noticeable that the YOLOv5l model showed better performances than the YOLOv5s 
and YOLOv5m models. The detection accuracy of the YOLOv5l model has increased 2% to 30% compared to the 

Figure 20.   Tumor classification and detection results of the YOLOv5s model.
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other two models for different cases. The overall comparison results of YOLO models are presented in Table 6. 
The performance comparison results of YOLOv5l with the other five state-of-the-art object detection models are 
presented in Table 7. Finally, it is decided that the YOLOv5l model performs better than other YOLOv5 models 
and state-of-the-art models. This detection algorithm can be reliable in microwave head imaging systems to 
automatically detect and classify tumors.

This research has generated the head phantom images and investigated tumor detection performance through 
the YOLOv5 algorithms. Since the proposed imaging system can be reliable in real-time application due to its 

Figure 21.   Tumor classification and detection results of the YOLOv5m model.
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portability, non-invasive, safety, and low-cost features. Practically, the real data will be collected to produce 
brain images from the system. After that, the tumor(s) will be automatically identified and classified through 
the YOLOv5l algorithm in a real-time application. Thus, it is necessary to investigate whether the YOLOv5l 
algorithm will detect the tumor in in-vivo images (i.e., real images) instead of phantom images. However, the 
clinical trial is necessary to inspect the image generation and detect the tumors in an actual application. Due to 
covid-19 pandemic and clinical trial permission limitation during research, we could not perform the physical 
experiment to create real images called in-vivo images. But we have analyzed the real brain tissue-mimicking head 

Figure 22.   Tumor classification and detection results of the YOLOv5l model.
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called “Hugo” model with the antenna array through the simulation via CST-2019 software instead of physical 
experiment. The head model is imported from the CST 2019 software. The simulated performances instead of a 
real investigation can be reliable to the in-vivo collected images. The Hugo head model consists of six brain tissue 
layers acting as the real brain tissues. The permittivity and conductivity of the layers are the same as the real brain 
tissues50,51. The tumor(s) are placed in different locations with different sizes and shapes in the “Hugo” model to 
examine the image generation performance. All benign and malignant tumor(s) are placed at 60 mm depth from 
the top of the head model. The considered diameters of the benign tumor are D = 10 mm,12 mm,13 mm, and 
14 mm, with circular shapes. On the other hand, the considered lengths of the malignant tumor are L = 15 mm 
with triangle-shaped, and 18 mm with an elliptical shape. The electrical properties of the Hugo head tissue (i.e., 
considered as a real head)18,19 and fabricated head phantom tissues are presented in Table 8. The overall simu-
lation-based imaging system with a Hugo head model including tumor(s) and nine antenna array is presented 
in Fig. 23. However, simulated data as an alternative to real data are collected from the simulation system, and 
then an image reconstruction algorithm is applied to generate brain images. After that, the pre-trained YOLOv5l 
algorithm’s weights were applied for testing and detecting the tumors in the simulated reconstructed brain images. 
The difference between resultant simulated images (i.e., the alternative to the in-vivo image) and phantom images 
are illustrated in Fig. 23. It is observed that both images are almost similar with tumor locations. The proposed 

Table 6.   Overall comparison of tumor detection and classification with objectness score by the YOLOv5 
models.

Image no.

Tumor classification Objectness detection score

Benign tumor 1 Benign tumor 2
Malignant 
tumor 1

Malignant 
Tumor 2 YOLOv5s YOLOv5m YOLOv5l

1 No No No No No score No score No score

2 No No No No No score No score No score

3 No No No No No score No score No score

4 Yes No No No 0.52 0.66 0.82

5 Yes No No No 0.79 0.79 0.81

6 No No Yes No 0.90 0.92 0.93

7 No No Yes No 0.86 0.88 0.91

8 Yes Yes No No 0.79 and 0.82 0.83 and 0.83 0.84 and 0.84

9 Yes Yes No No 0.79 and 0.81 0.81 and 0.82 0.83 and 0.84

10 Yes No Yes No 0.80 and 0.86 0.81 and 0.87 0.81 and 0.88

11 No Yes No Yes 0.79 and 0.91 0.82 and 0.93 0.84 and 0.94

12 No No Yes Yes 0.86 and 0.87 0.88 and 0.84 0.90 and 0.85

Table 7.   Performance comparison outcomes of the YOLOV5l and state-of-the-art object detection models.

References Model Name Accuracy (A) (%) Precision (P) (%)
Recall/Sensitivity 
(R) (%) Specificity (S) (%) F1 score (%)

44 Faster R-CNN 91.96 91.45 90.95 91.87 91.39
45 Mask R-CNN 91.72 91.58 90.86 91.37 91.38
47 F-CNN 91.97 91.18 90.45 90.65 90.49
46 Residual R-CNN 89.96 89.68 89.69 89.15 89.28
14 YOLOv3 92.97 92.75 92.67 92.81 92.89

Proposed YOLOv5l 95.32 95.17 94.98 95.28 95.53

Table 8.   Electrical properties of brain tissues in Hugo head model and fabricated head phantom model.

Name of the tissues

Hugo head model Fabricated head phantom model

Relative permittivity at 
2 GHz Conductivity at 2 GHz

Relative permittivity at 
2 GHz Conductivity at 2 GHz

Dura 52.12 1.23 47.93 ± 1.523 1.66 ± 0.003

CSF 68.64 2.413 63.78 ± 2.041 2.719 ± 0.412

Gray matter 52.73 0.942 47.74 ± 1.023 1.38 ± 0.012

White matter 38.89 0.591 35.98 ± 1.245 0.765 ± 0.045

Benign tumor 25.45 0.568 22.65 ± 1.222 0.970 ± 0.122

Malignant tumor 68.14 3.956 64.05 ± 2.107 4.18 ± 0.074
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YOLOv5l has been detected the tumor(s) with appropriate locations including bounding box in both images. 
So, from the comparison results, we can realize that the proposed YOLOv5l model can be a reliable to detect the 
tumors in collected in-vivo images.

Figure 23.   Differences between phantom images and simulated images as an alternative to the in-vivo images: 
(a) Non-tumor images, (b)With a single benign tumor, (c) With a single malignant tumor, (d) With two benign 
tumors, (e) With one benign and one malignant tumor.
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Conclusion
A deep learning-based YOLOv5 object detection model is employed in portable microwave head imaging 
(MWHI) system to automatically detect and classify brain abnormalities. A 3D wideband nine antenna array 
and tissue-mimicking head phantom with the non-tumor, benign and malignant tumor are used in the devel-
oped MWHI system to reconstruct the brain images and verify the system performances. The generated image 
dimension is 640 × 640 pixels. Four hundred sample images with non-tumor and tumor(s) are collected from 
the developed MWHI system. After that, images are pre-processed and augmented to create a training dataset 
consisting of 4400 images and then utilized for training, validation, and testing the YOLOv5s, YOLOv5m, and 
YOLOv5l network models. The model consists of CoBL module, BCSP module, Leaky ReLu activation function, 
and many 3 × 3 and 1 × 1 convolutional layers. These modules and functions optimize the network, reduce the 
inference time, increase computational speed, and diminish the size of the feature map on three scales. Three 
scales are responsible for detecting a small, medium, and large sized tumor in the RMW images. The models are 
investigated by employing a testing dataset and verifying the outcomes. The YOLOv5l model performed better 
than the YOLOv5s, YOLOv5m, and state-of-the-art object detection models regarding tumor classification and 
detection. The YOLOv5l model showed high accuracy, precision, recall, specificity, F1 score, and mAP with low 
loss. However, the Yolov5l model effectively detected the target tumor(s) with an appropriate location with a 
bounding box and scored and classified tumors into benign and malignant classes. Finally, it is decided that the 
YOLOv5l model can be reliable for automatic tumor detection and classification in microwave brain imaging 
systems.
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