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Abstract

Background: Ogataea polymorpha is a thermotolerant, methylotrophic yeast with significant industrial applications.
While previously mainly used for protein synthesis, it also holds promise for producing platform chemicals.
O. polymorpha has the distinct advantage of using methanol as a substrate, which could be potentially derived from
carbon capture and utilization streams. Full development of the organism into a production strain and estimation of
the metabolic capabilities require additional strain design, guided by metabolic modeling with a genome-scale
metabolic model. However, to date, no genome-scale metabolic model is available for O. polymorpha.

Results: To overcome this limitation, we used a published reconstruction of the closely related yeast Komagataella
phaffii as a reference and corrected reactions based on KEGG and MGOB annotation. Additionally, we conducted
phenotype microarray experiments to test the suitability of 190 substrates as carbon sources. Over three-quarter of
the substrate use was correctly reproduced by the model and 27 new substrates were added, that were not present in
the K. phaffii reference model.

Conclusion: The developed genome-scale metabolic model of O. polymorpha will support the engineering of
synthetic metabolic capabilities and enable the optimization of production processes, thereby supporting a
sustainable future methanol economy.

Keywords: Biotechnology, Genome-scale metabolic model, Metabolic reconstruction, Metabolic engineering,
COBRA, Methylotrophy

Background
Ogataea polymorpha (Hansenula polymorpha; Pichia
angusta) is a widely used yeast for biotechnological appli-
cations. It is environmentally ubiquitous and has been
isolated, among others, from orange juice, maize meal,
and insect guts [1]. The ability to metabolize methanol
stems from its close association to the phyllosphere [2].O.
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polymorpha has some unique features among methy-
lotrophic yeasts such as high growth rate, temperature
tolerance, and nitrate fixation [3] and has been optimized
to express peptides and proteins [4]. A particular benefit
for biotechnological applications is the lack of byproducts
even on high glucose feeds [4, 5]. Furthermore, the con-
version of methanol to succinic acid via methylotrophic
yeasts was found to provide a competitive alternative to
conventional petrochemical approaches in a computa-
tional comparison of various microbial carbon fixation
strategies [6].
Methylotrophy in yeast is restricted to a single multi-

genus clade, with its most prominent members being
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Komagataella phaffii, O. polymorpha, and Candida
arabinofermentans [7]. The phylogeny of methylotrophic
yeast is complex and subject to recent updates [8]. The
Ogataea strains most frequently mentioned in the liter-
ature are DL-1 (ATCC 26012), CBS4732 (ATCC 34438,
NRRL-Y-5445, TB-3) and NCYC 495 (ATCC 14754,
NRRL Y-1798) [1, 9, 10]. The genomes of all three strains
have been sequenced and annotated [1, 7, 10]. A genomic
comparison ofO. polymorphaDL-1 and K. phaffii showed
that they share three-quarters of enzymes whereas the
non-overlapping proteome contains mostly hypothetical,
uncharacterized proteins, indicating their close relation-
ship and overlapping metabolic features [10].
The methylotrophic model organism K. phaffii is one

of the few yeasts that have the ability to use methanol as
the only carbon source for energy production. K. phaffii
was developed into an effective producer of recombinant
proteins based on the strength of the native methanol-
responsive promoter expression system. The wealth of
knowledge has lead to the development of metabolicmod-
els on the genome level (GSMM) for simulation and
strain engineering [11, 12]. The most recent models are
iMT1026v3 and iRY1243 [13, 14]. Based on the close rela-
tionship among methylotrophic yeasts and the availability
of sequencing data in genomic databases, the develop-
ment of a GSMM for the metabolism of O. polymorpha is
desirable.
O. polymorpha and K. phaffii share many similar-

ities especially regarding their methanol metabolism.
However, several metabolic features are distinctive. O.
polymorpha is capable of growth at 50◦C and is therefore
one of the most thermotolerant eukaryotic microorgan-
isms [15]. In contrast to K. phaffii, O. polymorpha can fer-
ment xylose to ethanol [16] and can assimilate nitrate [17].
Moreover, high activity of the AOX promoter with glyc-
erol as the sole carbon source or under glucose starvation
is a unique feature ofO. polymorpha. In K. phaffii, activity
of AOX strictly depends on the presence of methanol [18].
Here, we present iUL909 as the first GSMM of

the biotechnological relevant methylotrophic yeast O.
polymorpha NCYC 495. The model is based on exist-
ing models for K. phaffii, extended by species-specific
substrate utilization identified in phenotype microarrays.
Model predictions of growth rates were found to represent
experimental growth in different conditions. We tested
the performance for overproduction of lactate, and succi-
nate with methanol and glucose as substrates for biotech-
nological applications and identified potential targets for
amplification of reaction activities.

Results and discussion
Here, we report on the construction of a genome-
scale metabolic model of the methylotrophic yeast O.
polymorpha named iUL909. iUL909 was generated on

the basis of an existing metabolic model of K. phaffii
iMT1026v3 [13, 14]. Gene identifiers from K. phaffii in
iMT1026v3 were replaced by those of homologs from
O. polymorpha. The model was validated against physio-
logical data from substrate utilization tests with pheno-
type microarrays and shake flask experiments, as well as
growth rates from the literature. We further simulated the
production of industrially relevant molecules to identify
future biotechnological applications. The validity of the
SBML model was tested with Memote [19].

General properties of iUL909
The close relationship among methylotrophic yeasts is
reflected by a high overlap of homologs between O.
polymorpha and K. phaffii [7]. The details of our recon-
struction and a comparison with the reference GSMMs
are shown in Fig. 1 and Table 1. We mapped genes from
K. phaffii to O. polymorpha using a homolog-search (see
Material and Methods section) which failed to find 84
genes (see Additional file 3). However, we added 114 new
reactions and 39 new genes (see Additional file 3) from
two sources: (i) additionally annotated GPRs from the
iRY1243 GSMM, and (ii) genes identified for reactions
required for the metabolization of carbon substrates iden-
tified with the Biolog® Phenotype microarray. iRY1243
differs from the reference model iMT1026v3 only in reac-
tions associated with transcription/translation, signaling
and protein turnover. Since iUL909 covers only metabolic
reactions it was not amended with these additional reac-
tions from iRY1243. Overall, the common origin and high
overlap of the three GSMMs is visible from the compara-
ble number of the compartmentalized reactions (Fig. 1).

Comparison of iUL909 with iMT1026
The O. polymorpha GSMM reproduces experimental
growth rates with growth parameters from iMT1026.
All growth parameters were taken from the reference
model iMT1026v3, namely growth- and non-growth-
associated maintenance energy (GAM, NGAM) as well
as the biomass reaction [13]. The substrates tested were
methanol, glucose, and glycerol, industrially relevant
sources for which literature values of growth rate and sub-
strate uptake rate are available [5, 20–22]. The Pearson
correlation coefficient of 0.9996 between predicted and
experimental growth rate supports using GAM, NGAM
and biomass equation from iMT1026v3 (Fig. 2). In par-
ticular, the growth characteristics on methanol reported
by Van Dijken et al. [20] for O. polymorpha (Fig. 2, cir-
cles) is reproduced, underscoring the similarity of biomass
composition and methanol metabolism between O.
polymorpha and K. phaffii.
Notwithstanding the high degree of similarity between

K. phaffii and O. polymorpha there were 84 genes in
iMT1026 without a detected homolog in O. polymorpha.
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Fig. 1 Venn diagrams of compartment specific reactions overlap. The genome-scale metabolic model (GSMM) of K. phaffii iMT1026 [13] was used as
a reference to construct the GSMM for O. polymorpha because of metabolic and phylogenetic similarities (see text). iMT1026 was further adapted for
biotechnology in the GSMM iRY1243 [14]. The reactions are fully overlapping for the compartments Golgi, nucleus, endoplasmatic reticulum and
vacuole

Because many reactions were catalyzed by alternative
enzymes, the gene-protein-reaction relationships (GPR)
was still satisfied for 62 genes, but 22 gene products
were sole catalysts for the associated reactions (see Addi-
tional file 3). These 22 reactions lacked a GPR, caused by
gene function replacement or loss. Replacement is likely
when upstream and downstream reactions are annotated,
loss (or misannotation in iMT1026) is likely for orphan
reactions without connections to the metabolism. Among
those orphan reactions, nine were deleted because they
could not carry flux. For example, a potential misanno-
tation was identified for 4α-hydroxytetrahydrobiopterin
dehydratase (EC number 4.2.1.96) in iMT1026 for which
neither KEGG nor the model itself would allow metabo-
lite flux. However, thirteen reactions were retained
because they were metabolically well connected, and
their deletion would result in reaction gaps. For exam-

ple, the identities and the location of all non-proton
pumping mitochondrial NADH dehydrogenase system
is currently not sufficiently well known. We decided
to retain dehydrogenase reactions from the reference
model iMT1026. More experiments and data will guide
improvements regarding the actual electron and proton
homeostasis.

Substrate identification with biolog plates
Substrate tests with phenotype-microarray plates were
conducted to compare predictions of the reference
GSMM of K. phaffii iMT1026 with the actual growth phe-
notype of O. polymorpha. Biolog’s Phenotype Microar-
ray™ plates test was used to analyze the metabolic
utilization of 190 carbon substrates (see Material and
Methods section). Table 2 shows the overlap and dif-
ferences between experiment and simulation run with

Table 1 Feature comparison of the O. polymorpha GSMM with respect to the reference GSMM of K. phaffii

iUL909 iMT1026v3 iRY1243

Genes 909 1026 1243

Metabolites 1639 1706 1740

Reactions 2263 2237 2407
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Fig. 2 Comparison of experimental and simulated growth rates. Comparison of experimentally measured and simulated growth rates on methanol,
glucose, and glycerol. Experimental data were taken from literature [5, 20–22]. Biomass composition, growth-, and non-growth associated
maintenance (GAM, NGAM) are based on [13] for the respective substrate

the K. phaffii GSMM iMT1026. Correct growth phe-
notypes were predicted in 77% cases (13 positives and
134 negatives). In eight cases no growth was experimen-
tally measured, whereas it was predicted by the simula-
tion. Substrates of this class comprised mainly organic
acids associated with the TCA cycle (see Additional
file 2). We tested growth separately in shake flask exper-
iments and observed growth after two days for all of
the eight substrates (Additional file 2). We hypothesize,
that the base medium of the Biolog Phenotype Microar-
ray™ was inappropriate for supporting growth with the
eight substrates and/or that the cultivation time was
too short for achieving adaptation of O. polymorpha to
the specific environmental condition. Indeed, we verified
growth support in shake flask experiments (Additional
file 2). There are possibly additional false-negative results
among the 134 substrates identified by the Biolog Phe-
notype Microarrays as non-growth supporting, if, simul-
taneously, the reference model iMT1026v3 would falsely
lack the corresponding metabolic activities. Comparing
our growth phenotypes with literature reports [9], we
confirmed 17 out of 19 common substrates. As addi-
tional carbon sources, we identified raffinose and maltose
(see Additional file 2).

Substrates with positive growth not predicted by sim-
ulations were added to the genome-scale reconstruction
of O. polymorpha. As Table 2 shows, O. polymorpha
grew on 35 substrates although simulations with iMT1026
predicted no growth. Of these previously unsuspected
metabolized substrates, we added 27 substrates to the
reconstruction iUL909. The remaining eight substrates
were omitted because the annotation of metabolic path-
ways was unlikely. For example alanine amide has no
associated pathway, whereas the degradation pathways
for fucose and dulcitol involve galactose, which did not
display growth in our test and was shown to be not
metabolized by O. polymorpha [8]. We omitted gentio-
biose because we only observed weak growth, although
as a D-glucose disaccharide vigorous growth would be
expected. O. polymorpha grew on L-leucine, and the
model had all pathways required for metabolic activity,
but a successful growth simulation was technically not
achieved.

Gene annotation and pathway correction
New metabolic features were added and existing re-
actions corrected. All genes in the reconstruction
iUL909 were checked in the methylotroph gene order

Table 2 Confusion matrix overview of the growth overlap between O. polymorpha in Biolog’s Phenotype Microarray™ plates test and
prediction according to the iMT1026v3 GSMM for K. phaffii

iMT1026 growth iMT1026 no growth

Experiment growth 13 35

Experiment no growth 8 134
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Fig. 3 Reaction activation candidates. Reactions to be activated according to FSEOF for overproduction of lactate (green) and succinate (blue).
DHAP: Dihydroxyacetonephosphate, GAP: Glyceraldehydephosphate, GSH: Glutathione, Pyr: Pyruvate, AcCoA: Acetyl-CoA, Cit: Citrate, Icit: Isocitrate,
αKG: αKetoglutarate, Suc: Succinate, OA: Oxaloacetate

browser (MGOB) [23] and KEGG [24]. We accessed
the UniProt TrEMBL [25] sequence source of O.
polymorpha 1 which listed 5167 proteins with only 422
EC number associated enzymes (Additional file 1). Due
to the incomplete enzyme coverage by the UniProt anno-
tation we relied on KEGG and the MGOB, and could
functionally annotate > 97% of the genes. We identified
enzymes within the biotin pathway converting 8-amino-
7oxononanoate to 7,8-diaminononoate while using S-
adenosylmethionine as a co-substrate. To reconstitute the
co-substrate we hypothesized that activity of S-adenosyl-
4-methylsulfanyl-2-oxobutanoate transaminase (EC num-
ber 2.6.1.12) would be present. We corrected the equation
of over 30 reactions, for example fatty acid synthesis and
uridine kinase reactions were corrected to maintain pro-
ton balance. There are still 59 unbalanced reactions due
to multiple allowed charges in BIGG database and com-
plex interrelations. Overall, the mass and charge balance
is correct for more than 96% of all reactions as testified by
theMemote report (see GitHub repository) and allows for
faithful simulations.
The largest connected path we added was connected

with the metabolism of erythritol. iUL909 contains four
successive reactions that represent the further process-
ing of erythritol. Erythritol is phosphorylated by a kinase
to D-erythritol-1-phosphate, which in turn is converted
to L-erythrulose-1-phosphate by means of a dehydroge-
nase and an epimerase. The L-erythrulose-1-phosphate is
then split into dihydroxyacetone phosphate and formalde-
hyde. These cytosolic reactions were necessary to enable
the observed growth on the sugar alcohol erythritol. The
hydrolysis of many sugars with growth in the phenotype
assays is catalyzed in our reconstruction by the maltase
enzyme (EC-number 3.2.1.20). Maltase is known to dis-
play broad substrate specificity, which was also shown
explicitly forO. polymorpha [26]. Two reactions were inte-
grated which describe the activities of transketolase and
transaldolase in the peroxisome of O. polymorpha. These

1accessed on 07/31/2018

enzymes are essential for the alcoholic fermentation of
xylose [27].

Computational strain engineering tests
Overproduction of important platform chemicals can be
achieved with a limited number of genetic manipulations.
We chose lactate and succinate as target compounds from
methanol and glucose, and applied the FSEOF approach
to identify reactions whose increased activity stimulates
target production [28]. The optimized synthesis in iUL909
for lactate is routed via methylglyoxal generated from
dihydroxyacetone phosphate [29]. Hence, stimulation of
the glyoxalase system is predicted to enhance production
(Fig. 3, green). Succinate production was increased in sil-
ico when the reactions of the lower glycolysis were more
active, e.g., glyceraldehyde-3-phosphate dehydrogenase,
pyruvate kinase, and pyruvate carboxylase (Fig. 3, blue).
The strategies are similar for glucose and methanol. It is
interesting to note that low uptake rates of methanol were
more sensitive to reactions of the Xyl5P-pathway in the
peroxisome. The strategy of reductive TCA cycle stimula-
tion by anaplerotic reactions was experimentally shown to
increase succinate production [30].
iUL909 fulfills key standards for reconstructed mod-

els and was tested with Memote and the SBML validator
[19, 31]. The SBML validator identifies a valid SBML Level
3v1 file, with flux balance constraints (FBC) in version
2. The detected warnings relate to missing initial con-
centrations. The total Memote score is 45% (see Fig. 4,
and the GitHub repository for the test result file). This
is significantly improved with respect to the reference
reconstruction for K. phaffii with a score of only 24%.

Conclusions
A genome-scale metabolic model of O. polymorpha was
constructed using homolog identification based on the
existing GSMM of K. phaffii. The resulting GSMM
iUL909 was further tailored for appropriate substrate uti-
lization on the basis of phenotypic microarray and shake
flask experiments. Although biomass composition and
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Fig. 4Memote scores of iUL909 regarding quality of reactions, metabolites and annotation degree. The quality of the reconstruction is in total
evaluated with 45% (see also GitHub repository result file). The y-axis represents different model aspects pertaining to structural correctness and the
degree of annotation. The consistency is evaluated according to stoichiometric consistency, mass and charge balance, metabolite connectivity and
correct exchange reaction definitions. Because approximately 3% of the reactions are not fully balanced, the stoichiometric consistency is reduced
and results in a 60% consistency performance. Annotations for metabolites, reactions and SBO-terms were added, however, the gene annotations
available in the excel sheet could not integrated to the SBML file. Nonetheless, iUL909 was evaluated nearly double the annotation quality
compared to the reference GSMM of iMT1026

energetic parameters were adopted from K. phaffii, the
resulting growth predictions were in good agreement
with chemostat experiments for various industrially rel-
evant substrates. The biotechnological applicability was
explored by testing overproduction of lactate, succinate,
showing that high productivity can be achieved with lim-
ited geneticmanipulation. Thus, ametabolicmodel is now
available for further strain engineering.

Methods
Cultivation experiments
The substrate utilization tests were conducted with the
Biolog’s Phenotype Microarray™ plates P1 and P2 with a
total of 190 carbon sources. The medium was prepared
with the manufacturer’s inoculation medium IFY-0 and
the dye mix H according to the guideline. The organism
was cultivated in the microarrays in the Growth Pro-
filer (EnzyScreen BV, Heemstede, Netherlands) at 37°C
and 150 rpm, growth and respiratory activity was moni-
tored by measuring the optical density (OD) at 490 nm for
dye reduction and 750 nm for biomass in a plate reader
(Synergy MX, BioTek Instruments Inc., USA) at 0 h and
72 h.
To discriminate growth from non-growth, we consid-

ered the distribution of the OD increase for each plate
at 490 nm and derived a suitable cut-off. The majo-

rity of the OD increases clustered in a normal distribu-
tion at the lower OD-end, followed by a long tail with
larger OD increases. The tail of the distribution char-
acterizes explicit substrate respiration, while the normal
distribution contains metabolized as well as non-utilized
substrates. To identify metabolized substrates within the
normal distribution, we first separated the normal distri-
bution from the tail with the clear positive substrates. This
was achieved by removing all values above the arithmetic
mean within a plate. Then, a normal distribution was fit-
ted over the remaining measurements, and one standard
deviation above the mean was used as the cut-off for
metabolized substrates (see Additional file 2). Moreover,
growth was associated with a substrate only when at least
50% of replicates surpassed the threshold (duplicates for
PM1, triplicates for PM2).
Separate-shake flask experiments were performed for

the carbon substrates succinate, α-ketoglutarate, α-
ketobutyrate, citrate, fumarate, L-malate and for the car-
bohydrates D-xylose and D-ribose that failed to grow in
the phenotype assays. The cultivation took place in CM2-
medium [30] and OD was tested after two, seven and
thirteen days (see Additional file 2).

Computational genome comparison
The O. polymorpha genome sequence used for the



Liebal et al. BMC Biotechnology           (2021) 21:23 Page 7 of 8

model construction was based on [7] for strain NCYC
495 retrieved from Uniprot [25]. The K. phaffii GSMM
iMT1026 [13] was used as reference model for the O.
polymorpha reconstruction. Replacement of gene-
protein-reaction (GPR) relationships was conducted
by identification of homologs among K. phaffii and O.
polymorpha. We used the genome sequence of K.
phaffiiGS115, the foundation of iMT1026, extracted from
UniProt. The homologs were identified using the soft-
ware package ProteinOrtho using the default parameter
settings for homolog detection [32]. ProteinOrtho reports
a single best homolog candidate for a K. phaffii input
protein sequence. K. phaffii GPRs were replaced by the
O. polymorpha homolog, while maintaining isoenzyme
and multi-protein complex GPRs, which was possible for
908 GPRs. In the case of failed homolog mappings, man-
ual Blast searches were conducted, and for the reactions
of the central carbon metabolism manual comparison
of gene annotations were performed with the JGI linked
KEGG database of O. polymorpha [33] and the MGOB
database [23].
The MGOB shows the local genomic organization

among methylotrophic yeasts. K. phaffii MGOB-IDs of
reactions in the central carbon metabolism were derived
by querying the MGOB database with KEGG gene IDs.
The MGOB-IDs were then used to locate the genes in
their genomic context. The alignment with the homologs
of all methylotrophic yeasts withinMGOB provided infor-
mation on annotation including subcellular localization.
In this way, we could characterize 518 additional genes
compared to UniProt. The model completeness and qual-
ity was tested with Memote [19]. SBML Level and Version
tags were additionally validated with the SBML validator
(http://sbml.org/Facilities/Validator).

Flux balance analysis
Simulations of the GSMM were performed with
COBRAv3 on Matlab and with COBRApy. A Jupyter
Notebook guide for the simulation of iUL909 and
reproduction of experimental data as in Fig. 2 can be
downloaded from GitHub (https://github.com/iAMB-
RWTH-Aachen/Opol-GSMM). Flux scanning based on
enforced objective flux (FSEOF) [28] was performed in
Matlab using the functions of COBRA toolbox to identify
the targets for overexpression. Briefly, FSEOF was carried
out in two stages. In the first stage, the maximum prod-
uct flux (lactate or succinate) was computed by setting
the biomass flux to zero and maximizing the objective
function for product formation. In the second stage, the
product flux was enforced in steps, and the biomass
growth was set as an objective function and maximized.
Reactions fluxes increasing monotonically represent
targets for over-expression.
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