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Much of the fascination of the Wilms tumor protein (WT1) emanates from its unique roles in
development and disease. Ubiquitous Wt1 deletion in adult mice causes multiple organ
failure including a reduction of body fat. WT1 is expressed in fat cell progenitors in visceral
white adipose tissue (WAT) but detected neither in energy storing subcutaneous WAT nor
in heat producing brown adipose tissue (BAT). Our recent findings indicate that WT1
represses thermogenic genes and maintains the white adipose identity of visceral fat.Wt1
heterozygosity in mice is associated with molecular and morphological signs of browning
including elevated levels of uncoupling protein 1 (UCP1) in epididymal WAT. Compared to
their wild-type littermates, Wt1 heterozygous mice exhibit significantly improved whole-
body glucose tolerance and alleviated hepatic steatosis under high-fat diet. Partial
protection of heterozygous Wt1 knockout mice against metabolic dysfunction is
presumably related to browning of their epididymal WAT. In the light of recent
advancements, this article reviews the role of WT1 in the development of visceral WAT
and its supposed function as a regulator of white adipose identity.
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INTRODUCTION

Since the initial discovery that mice with homozygous disruption of the Wilms tumor gene 1
(Wt1) are embryonic lethal with a failure of kidney and gonad formation (Kreidberg et al., 1993),
the knowledge of the role of the WT1 in development has steadily increased. (Hastie, 2017). It is
now well documented that the importance of WT1 during embryogenesis extends far beyond the
genitourinary system and also includes the mesothelium (Kreidberg et al., 1993; Moore et al.,
1999), spleen (Herzer et al., 1999), adrenal gland (Moore et al., 1999), hematopoietic (Alberta
et al., 2003) and nervous system. (Wagner et al., 2002; Wagner et al., 2005). The WT1 gene
encodes a zinc finger protein with more than 30 mammalian isoforms resulting from the use of
variant transcriptional and translational start sites, alternative pre-mRNA splicing and RNA
editing. (Hastie, 2017). Non-mammalian vertebrates have only two WT1 isoforms, which differ
by the insertion/exclusion of three amino acids, lysine, threonine and serine (KTS), between zinc
fingers three and four. (Haber et al., 1991). WT1 (-KTS) molecules without the KTS tripeptide
insertion function as transcription factors, and much knowledge about the role of WT1 in
development and disease has been obtained from the identification of downstream target genes.
(Toska and Roberts, 2014; Hastie, 2017). By interacting with other protein binding partners,
WT1 is converted from an activator to a repressor of transcription. (Carpenter et al., 2004; Toska
and Roberts, 2014). Compared to the WT1 (-KTS) variants, WT1 isoforms harboring the
tripeptide insertion in their zinc finger domain have a higher RNA binding affinity and may
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operate predominantly through post-transcriptional
mechanisms. (Larsson et al., 1995; Niksic et al., 2004; Bor
et al., 2006). In addition, WT1 has been shown to regulate
chromatin switching between an active and repressed
configuration at the Wnt4 locus. (Essafi et al., 2011). Recent
findings indicate that WT1 is also involved in the epigenetic
control of gene expression. (Rampal et al., 2014; Wang et al.,
2015). A unifying concept of the biological processes that are
regulated by WT1 in different tissues has not evolved yet.
However, insights gained from Wt1 knockout mice and target
gene identification suggest that WT1 controls the reciprocal
switch between a mesenchymal and epithelial cellular state.
(Hohenstein and Hastie, 2006). In tissues undergoing
epithelial differentiation during development, e.g. kidneys
and gonads, WT1 promotes mesenchymal-to-epithelial
transition (MET). (Davies et al., 2004; Essafi et al., 2011). In
other tissues, such as embryonic heart and diaphragm, WT1 is
necessary for the reverse process, i.e. epithelial-to-
mesenchymal transition (EMT). (Martínez-Estrada et al.,
2010; Hastie, 2017). This mini-review is focused on the role
of WT1 in the development and maintenance of adipose tissue.

The main function of visceral (intra-abdominal) and
subcutaneous white adipose tissue (WAT) is energy storage in
the form of triglycerides. Interscapular brown adipose tissue
(BAT) powers energy expenditure by non-shivering
thermogenesis. The latter process requires uncoupling protein-
1 (UCP1), a pore-forming molecule in the inner mitochondrial
membrane of brown adipocytes that dissociates H+-fluxes from
ATP synthesis. (Chouchani et al., 2019; Ikeda and Yamada, 2020;
Bertholet and Kirichok, 2021). Marked differences exist between
visceral and subcutaneous WAT. While intra-abdominal obesity
correlates with increased mortality, subcutaneous WAT is
considered as being protective. (Wajchenberg, 2000; Pischon
et al., 2008; Manolopoulos et al., 2010). Unlike subcutaneous
fat deposition, visceral obesity is associated with chronic diseases
including type 2 diabetes, atherosclerosis and cancer. (Stefan,
2020). Intra-abdominal fat accumulation also has a chronic
inflammatory component with elevated serum levels of
cytokines, which may contribute to impaired metabolism in
obesity. (Silveira Rossi et al., 2021). It is still a matter of
debate whether adipose tissue inflammation is cause or
consequence of insulin resistance. (Burhans et al., 2018;
Shimobayashi et al., 2018). In general, subcutaneous WAT is
more sensitive to insulin than visceral WAT, and intra-
abdominal obesity correlates with insulin resistance. (Longo
et al., 2019). Several conditions may account for the
detrimental effect of intra-abdominal fat accumulation. The
“portal vein theory” proposes that free fatty acids and
cytokines released from visceral WAT are directly transported
to the liver, where they might cause organ damage. This
hypothesis is supported by data showing that transplanted
epididymal fat pads cause impaired glucose tolerance and
hepatic insulin resistance in recipient mice only when they
drain into the portal ciruculation. (Rytka et al., 2011). Due to
its anatomical localization, visceral WAT is exposed to potentially
harmful gut microbiota-derived products. (Geurts et al., 2014;
Hersoug et al., 2016). Among those, reabsorption of bacterial

lipopolysaccharides (LPS) across the intestinal mucosa and
subsequent uptake from the circulation by adipocytes can
promote a local inflammatory response. (Hersoug et al., 2016).
Furthermore, intrinsic differences may exist between
subcutaneous and visceral WAT depots. This view is
supported by transplantation experiments demonstrating that
subcutaneous but not visceral adipose tissue reduces body weight,
blood glucose and insulin levels in grafted mice. (Tran et al.,
2008). Moreover, single-cell RNA sequencing identified a class of
adipocyte progenitors that are unique to visceral adipose tissue
(Vijay et al., 2020), and developmental and functional
heterogeneities of (pre)adipocytes may exist even within a
single WAT depot. (Hwang and Kim, 2019; Lee et al., 2019;
Vishvanath and Gupta, 2019).

Visceral and subcutaneous WAT also differ in their browning
capacity. Browning describes the phenomenon that classical
thermogenic genes, e.g. UCP1, PRDM16 and PPARGC1A, are
switched-on in WAT upon exposure to appropriate stimuli such
as prolonged cold exposure and treatment with β3-adrenergic
agonists. (Herz and Kiefer, 2019; Moreno-Navarrete and
Fernandez-Real, 2019; Van Nguyen et al., 2020; Mu et al.,
2021). It is currently unclear whether WAT browning is due
to the recruitment of beige/brite (brown-in-white) adipocytes
capable of thermogenic gene expression from a distinct
population of progenitor cells and/or the interconversion of
mature white to beige adipocytes. (Barbatelli et al., 2010; Lee
et al., 2012). Ultimately, which one of the two routes is taken to
generate beige adipocytes in WAT may depend on multiple
conditions including the intensity of the underlying stimulus,
environmental factors, the genetic background and epigenetic
mechanisms. (Herz and Kiefer, 2019) The browning capacity
varies considerably between different WAT depots. Thermogenic
genes in mice can be induced more readily in subcutaneous than
visceral WAT. (Vitali et al., 2012; Jia et al., 2016) While it is still a
matter of controversy whether this is valid also for humans
(Sidossis et al., 2015; Zuriaga et al., 2017), WAT browning has
gained considerable interest for its potential use to tackle obesity
and metabolic disease. (Cheng et al., 2021; Wang andWei, 2021).

WT1 is Required for the Development and
Maintenance of Visceral Fat Depots
Chau et al. were the first showing that the physiological
significance of WT1 is not restricted to embryogenesis but
spans the entire lifetime. (Chau et al., 2011). They used a
tamoxifen-inducible transgenic approach to demonstrate that
ubiquitous Wt1 deletion in mature mice causes acute multiple
organ failure including glomerular kidney injury, atrophy of the
exocrine pancreas and impaired erythropoiesis. (Chau et al.,
2011). Surprisingly, WT1-depleted adult mice also exhibit a
strongly reduced bone and fat mass, both tissues sharing their
origin from common mesenchymal stem cells. (Chau et al., 2011;
Favaretto et al., 2021). Fat loss in mice with induced Wt1
knockout affects both, the intra-abdominal WAT and the
interscapular BAT. (Chau et al., 2011). A recent study
confirmed the reduction of mesenteric fat in WT1 depleted
adult mice. (Wilm et al., 2021). Lineage tracing experiments in
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mice endorse the contribution of mesothelium-derived Wt1
expressing cells to all visceral WAT depots. (Chau et al.,
2014). Wt1 expressing cells do not contribute to the BAT
lineage, which originates from Myf5+ cells in the paraxial
mesoderm nor to subcutaneous WAT, whose developmental
origin is not well understood. (Chau et al., 2014). Hence, the
reduction of BAT mass in adult mice with induced Wt1 deletion
does not reflect a cell autonomous defect of brown (pre)
adipocytes, but is possibly related to the suppressed IGF-1
serum levels of these animals. (Chau et al., 2011). This
assumption, which has not been proven yet, is supported by
the atrophy of BAT following conditional deletion of the IGF-1
receptor in mouse adipose tissues (Boucher et al., 2016).

In all visceral WAT depots, WT1 can be detected in the
stromal vascular fraction (SVF) containing the fat cell
progenitors (preadipocytes), endothelial and immune cells.
Wt1 is not expressed in mature adipocytes. (Chau et al., 2014).
Importantly, the contribution of Wt1 expressing cells to visceral
WAT is not terminated at the end of gestation, but a subset of fat
appendages, particularly in the epididymal region, continue to
arise fromWT1-positive progenitor cells postnatally. (Chau et al.,
2014). It is tempting to speculate, whether WT1 determines the
fate of a subpopulation of progenitor cells in visceralWAT. (Chau
and Hastie, 2015). This idea is corroborated by the observation
that adipocytes derived from WT1-positve vs. WT1-negative
progenitor cells differ in their size and lipid droplet
distribution. (Chau et al., 2014). Furthermore, microarray
hybridization experiments identify WT1 as one out of only
three transcription factors showing a visceral fat-selective
expression profile in mice. (Cohen et al., 2014).

WT1-positive SVF cells can be induced to differentiate in vitro
not only to adipocytes but also to muscle cells and–to a lesser
extent–osteoblasts. (Chau et al., 2014). The osteoblast forming
capacity differs among visceral WAT depots suggesting
functional heterogeneity even within the subpopulation of
WT1-positive prognitors. (Chau et al., 2014) A recent lineage
tracing study by Wilm et al. shows that Wt1 expressing
mesothelial cells in adult peritoneum do not contribute to the
deeper stromal and parenchymal compartments in the abdominal
cavity, but rather constitute the progenitor niche for visceral
WAT. (Wilm et al., 2021) It is well documented that adult
mesothelial cells can undergo epithelial-to-mesenchymal
transition (EMT) under challenging conditions such as
peritoneal injury. (Han et al., 2019; Lho et al., 2021)
Considering the established role of WT1 in EMT (Martínez-
Estrada et al., 2010; Essafi et al., 2011; Hastie, 2017), one can
hypothesize whether WT1 enables progenitor cells in the
mesothelium to acquire a mesenchymal phenotype and
provide a pool of adipocyte progenitors. However, the
developmental origin of visceral fat from mesothelium has
been challenged by a recent study. Using single-cell RNA
sequencing, Westcott et al. show that WT1 is not restricted to
visceral adipose mesothelium but also expressed in a population
of Pdgfra+ and Sca-1+ preadipocytes in mice and humans.
(Westcott et al., 2021). These authors identify keratin 19
(Krt19) as a highly specific marker for adult mouse
mesothelium and demonstrate that Krt19+ cells do not

differentiate to adipocytes in vitro, nor do they contribute to
the pool of adipocytes in visceral fat depots in vivo. (Westcott
et al., 2021). Furthermore, studies incorporating single-cell RNA
sequencing in murine visceral WAT detected Wt1 in non-
mesothelial stromal cell polulations. (Burl et al., 2018; Hepler
et al., 2018). According to these data, Wt1 expressing
preadipocytes are distinct from Wt1 expressing mesothelial cells.

WT1 Represses Thermogenic Genes
Recent studies demonstrate that WT1 represses a classical BAT
genetic signature in visceral WAT. Thus, SVF cells isolated from
visceral WAT of transgenic mice with adipocyte-specific deletion
of Wt1 express thermogenic genes including Ucp1, Prdm16 and
Cidea. (Cohen et al., 2014) PRDM16 is a transcriptional co-
regulator that controls the developmental switch between skeletal
muscle myoblasts and brown adipocytes from common Myf5+

progenitors. (Seale et al., 2008). Prdm16 is highly expressed in the
interscapular BAT and significantly elevated in subcutaneous
compared to visceral fat depots. (Cohen et al., 2014).
Adipocyte-selective deletion of the Prdm16 gene in mice
abrogates thermogenic gene expression in beige adipocytes,
while leaving the function of classical BAT intact. (Cohen
et al., 2014). When kept on high-fat diet, mice lacking
PRDM16 in their adipocytes acquire a phenotype of visceral
obesity with insulin resistance, hepatic steatosis and
subcutaneous macrophage infiltration. (Cohen et al., 2014).
Conversely, transgenic overexpression of Prdm16 driven by the
aP2-promoter in adipose tissues gives rise to beige adipocytes in
subcutaneous but not in epididymal WAT. (Seale et al., 2011).
Hence, it is unlikely that the lower levels of endogenous PRDM16
account for the poorer browning susceptibility of visceral vs.
subcutaneous WAT. Instead, yet unknown factors may exist in
visceral WAT that confer resistance to browning stimuli, and
WT1 might be one of those. The successive decline of Prdm16
transcripts in differentiating primary preadipocytes was
associated with increasing levels of Wt1 mRNA suggesting that
the browning inducer PRDM16 and WT1 are reciprocally
regulated. (Cohen et al., 2014). It would be worthwhile to
investigate in future studies whether PRDM16 functions as a
direct inhibitor of Wt1 expression during adipocyte
differentiation.

In the light of the above, we reasoned that WT1 might prevent
a thermogenic gene expression program in visceral WAT. We
addressed this issue by combining in vitro differentiation of
brown preadipocytes with in vivo analyses of WAT depots in
wild-type and heterozygous Wt1 knockout mice. Retroviral
delivery of WT1 repressed thermogenic genes upon in vitro
differentiation of immortalized brown preadipocytes.
(Kirschner et al., 2022). Likewise, overexpression of Wt1
reduced Ucp1, Ppargc1a, Cidea, Prdm16 and Cpt1b transcripts
in differentiating Sca1+:CD45−:CD31− preadipocytes isolated
from the interscapular BAT of mice. (Kirschner et al., 2022).
WT1 caused no changes of adipocyte-selective genes that are
expressed in both, white and brown fat cells. WT1 also did not
interfere with overall adipogenic differentiation assessed in terms
of intracellular lipid storage. (Kirschner et al., 2022). These
findings let us conclude that ectopic WT1 suppresses the
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genetic signature of brown adipocytes. This idea is strengthened
by the observation that adipocytes arising from WT1-positive
progenitors in epididymal WAT contain fewer but larger lipid
droplets in their cytoplasm (Figure 1). (Chau et al., 2014)

To identify potential WT1 target genes, we silenced
endogenous Wt1 in murine epididymal SVF cells by RNA
interference. Knockdown of Wt1 reduced Aldh1a1 and Zfp423
transcripts in these cells. On the other hand, both RNAs
increased significantly upon forced expression of WT1 in
brown preadipoytes. (Kirschner et al., 2022). Targeted
inactivation of Aldh1a1 and Zfp423 has been reported to
induce thermogenic genes in WAT of mice. (Kiefer et al.,
2012; Shao et al., 2016; Hepler et al., 2017). ALDH1A1
catalyzes the oxidation of retinaldehyde (Rald) to retinoic
acid, and Aldh1a1 deficiency causes accumulation of Rald in
WAT. (Ziouzenkova et al., 2007; Molotkov and Duester, 2003).
Rald stimulates the expression of Ucp1 and other thermogenic
genes in white fat cells by activating the retinoic acid receptor
(RAR) (Figure 2). (Kiefer et al., 2012) The transcription factor
ZFP423 represses thermogenic genes by inhibiting the activity
of the transcriptional co-regulator EBF2. Mechanistically,
ZFP423 recruits the NuRD co-repressor complex that
prevents EBF2 from activating thermogenic genes
(Figure 2). (Shao et al., 2021) Disruption of the ZFP423-
EBF2 protein interaction induces a shift in PPARγ
occupancy of thermogenic genes and elicits widespread
WAT browning in adult mice (Figure 2). (Shao et al., 2016;
Shao et al., 2021) ChIP-sequencing analysis of genomic WT1
binding sites in mouse embryonic kidneys classify Zfp423
among the top 1,000 genes (p-value 4.7 × 10–23). (Motamedi
et al., 2014). These data suggest that WT1 stimulates Aldh1a1

and Zfp423 expression in epididymal SVF cells either directly
or through indirect mechanisms. By increasing ALDH1 and
ZFP423 levels, WT1 presumably represses a genetic program
of classical BAT in white preadipocytes. Notably, inactivation
of Aldh1a1 and Zfp423 in mice causes WAT browning not only
in intra-abdominal but also in subcutaneous fat depots
indicating that these molecules do not convey a specific
action of WT1 in visceral WAT. (Kiefer et al., 2012; Shao
et al., 2016; Shao et al., 2021). Genome-wide approaches
combining RNA deep sequencing with ChIP sequencing
technology might give a more complete picture of the
transcriptional events that are regulated by WT1 in visceral
fat cell progenitors.

Heterozygous Wt1 Knockout Mice Show
Improved Glucose and Lipid Metabolism
Using mice with a heterozygous Wt1 gene, we next examined
whether WT1 inhibits thermogenic gene expression also in
visceral WAT in vivo. Unlike the embryonic lethal full
knockout, Wt1 heterozygous mice are viable and lack
obvious developmental abnormalities. (Kreidberg et al.,
1993). Strikingly, Wt1 heterozygosity is associated with
molecular and morphological signs of browning including
elevated UCP1 levels in epididymal WAT (Figure 1).
(Kirschner et al., 2022) No differences in thermogenic gene
expression in interscapular BAT and subcutaneous WAT, i.e.
in WT1-negative fat depots, are detectable between wild-type
and heterozygousWt1 knockout mice. (Kirschner et al., 2022).
These findings suggest that WT1 is necessary for maintaining a
white adipose identity in epididymal WAT. Notably, β3-

FIGURE 1 | Proposed role ofWT1 in visceral white adipose tissue (WAT). WT1 expressing cells (blue) derived from the coelomic mesothelium possibly contribute to
the visceral fat depots, which are covered with a mesothelial cell layer. (Chau et al., 2014). HeterozygousWt1 knockout mice showmorphological and molecular signs of
browning in their visceral (epididymal) WAT. (Kirschner et al., 2022). It is currently unknown whether epididymal WAT browning is restricted to adipocytes originating from
WT1 expressing progenitor cells (blue) as drawn in the figure, or also includes WT1-negative cells (pink). The marked multilocular fat deposition in beige adipocytes
is drawn for the sake of clarity but not seen in heterozygousWt1 knockout mice. (Kirschner et al., 2022). Adapted with modifications from ref. (Chau and Hastie, 2015).
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adrenergic stimulation increases thermogenic gene expression
to a similar extent in wild-type and heterozygous Wt1
knockout mice suggesting that WT1 does not limit the
overall browning capacity of epididymal WAT. (Kirschner
et al., 2022).

Inhibition of beige fat cell function by adipocyte-specific
deletion of Prdm16 in mice causes severe metabolic disorder
with insulin resistance and diet-induced fatty liver disease.
(Cohen et al., 2014). This observation prompted us to examine
whether differences in glucose and lipid metabolism exist
between wild-type and heterozygous Wt1 knockout mice.
Compared with their wild-type littermates, Wt1 mutant
mice exhibit significantly improved whole-body glucose
tolerance and much weaker hepatic steatosis when kept on
a high-fat diet for 11 weeks. (Kirschner et al., 2022). Superior
metabolic function is observed also in other genetic mouse
models of enhanced WAT browning including deletion of
Ago1 in vascular endothelial cells (Tang et al., 2020),
ROCK2 depletion (Wei et al., 2020), and adipose-specific
knockout of Hoxc10. (Tan et al., 2021). We therefore
assume that improved metabolic health of heterozygous
Wt1 knockout mice is related to the activation of a
thermogenic program in their visceral WAT. However,
other cell types and tissues might be involved as well.

Notably, Wt1 expressing cells delaminating from the
coelomic epithelium contribute to the pool of stellate cell
progenitors in mouse liver. (Ijpenberg et al., 2007). Hepatic
stellate cells are the major storage site of retinyl esters in the
body. (Haaker et al., 2020). Following hepatic injury, retinol is
released from these cells and partially converted to retinoic
acid (RA) by the enzymatic activity of retinaldehyde
dehydrogenases (RALDH). (Haaker et al., 2020).
Interestingly, Aldh1a2, the predominant isoform that
encodes RALDH2 in embryonic tissues, is a direct
downstream target gene of WT1 in developing epicardial
cells. (Guadix et al., 2011). Retinoid signaling is important
for normal liver function, and serum levels of retinol and RA
are reduced in non-alcoholic fatty liver disease. (Saeed et al.,
2017). Mice heterozygous for Rdh10, a gene encoding retinol
dehydrogenase, develop glucose intolerance and severe hepatic
steatosis under high-fat diet. Their phenotype can be rescued
by treatment with all-trans RA. (Yang et al., 2019). These data
raise the possibility that impaired retinoid signaling of hepatic
stellate cells contributes to the metabolic abnormalities of
heterozygous Wt1 knockout mice. The generation of
transgenic mouse lines with conditional Wt1 deletion in
progenitor cells of visceral WAT and hepatic stellate cells
can shed some light onto this issue.

FIGURE 2 | Transcriptional pathways along which WT1 may repress thermogenic genes in visceral WAT. In wild-type mice (+/+), WT1 increases the expression of
Aldh1a1, which catalyzes the oxidation of retinaldehyde (Rald) to retinoic acid (RA) (A). Reduction of Aldh1a1 in visceral WAT of heterozygousWt1 knockout mice (+/−)
causes accumulation of retinaldehyde (Rald), which stimulates thermogenic gene expression via retinoic acid receptor (RAR) activation (B). (Kiefer et al., 2012) WT1 is
also required for normal expression of the transcription factor Zfp423 in visceral WAT. Zfp423 recruits the NuRD co-repressor complex and thereby prevents the
transcription factor EBF2 from activating thermogenic genes (C). (Shao et al., 2021). Zfp423 is reduced in visceral WAT of mice with a singleWt1 allele (+/−). (Kirschner
et al., 2022). As a consequence, interaction of PPARγ with EBF2 shifts the occupancy to thermogenic gene promoters and induces thermogenic gene expression (D).
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CONCLUSION, PERSPECTIVES AND OPEN
QUESTIONS

Visceral WAT is a prime example for the complex role of WT1
reaching from embryogenesis to adulthood. Recent data suggest
that WT1 is necessary for maintaining white adipose identity in
visceral WAT. (Kirschner et al., 2022). Further studies including
genome-wide single cell sequencing technologies may help to
identify WT1 downstream target genes and elucidate the
molecular mechanisms by which WT1 represses browning
processes in visceral WAT. Strikingly, glucose and fat
metabolism are better preserved in Wt1 heterozygous than in
wild-type mice under high-fat diet. (Kirschner et al., 2022).
Circumstantial evidence suggests that improved metabolic
function of heterozygous Wt1 knockout mice is due to the
expression of Ucp1 and other thermogenic genes in their
visceral WAT, a phenomenon referred to as browning. This
hypothesis needs to be proven by generating and
characterizing mouse lines with selective deletion of Wt1 in
white preadipocytes. These transgenic mice might also be
useful for identifying WT1-dependent transcriptional networks
in fat cell development. Another important issue is to clarify
whether WT1 determines the white adipocyte fate also in visceral

WAT in humans. If so, this could fuel further studies aiming to
establish WT1 as a potential therapeutic target in metabolic
disorders.
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