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Managing disease incidences caused by plant viruses is crucial 
for securing global crop production. The generation and cultiva-
tion of resistant cultivars continue to be the most effective ways 
to control outbreaks and the spread of plant viruses in crop- 
growing areas. This approach, however, may not be practical for 
the long- term management of multiple virus diseases given the 
rapid mutations of the plant viruses that lead to the emergence 
of new resistance- breaking strains (Ahangaran et al., 2013; Choi 

et al., 2005; Chowda- Reddy et al., 2011; Gagarinova et al., 2008). 
The development of various techniques in plant virology within the 
past few decades may provide an alternative approach for more 
durable and effective management of plant virus diseases. One of 
the most promising strategies is manipulating the host factors re-
quired for plant virus infection (Hashimoto et al., 2016). A single 
host factor that affects multiple plant virus infections is favourable 
in this approach.
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Abstract
Infection of viruses from the genera Bromovirus, Potyvirus, and Potexvirus in Nicotiana 
benthamiana induces significant up- regulation of the genes that encode the HSP70 
family, including binding immunoglobulin protein 2 (BiP2). Three up- regulated genes 
were knocked down and infection assays with these knockdown lines demonstrated 
the importance of the BiP2 gene for potyvirus infection but not for infection by the 
other tested viruses. Distinct symptoms of cucumber mosaic virus (CMV) and potato 
virus X (PVX) were observed in the BiP2 knockdown line at 10 days postagroinfil-
tration. Interestingly, following inoculation with either soybean mosaic virus (SMV) 
or pepper mottle virus (PepMoV) co- expressing green fluorescent protein (GFP), 
neither crinkle symptoms nor GFP signals were observed in the BiP2 knockdown 
line. Subsequent reverse transcription- quantitative PCR analysis demonstrated that 
knockdown of BiP2 resulted in a significant decrease of SMV and PepMoV RNA ac-
cumulation but not PVX or CMV RNA accumulation. Further yeast two- hybrid and 
co- immunoprecipitation analyses validated the interaction between BiP2 and nuclear 
inclusion protein b (NIb) of SMV. Together, our findings suggest the crucial role of BiP2 
as a proviral host factor necessary for potyvirus infection. The interaction between 
BiP2 and NIb may be the critical factor determining susceptibility in N. benthamiana, 
but further studies are needed to elucidate the underlying mechanism.
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Plant viruses are obligate parasitic microbes with a relatively 
small genome that encodes only a limited number of proteins and 
thus they depend on host plant machinery to complete their infec-
tion cycles. The interaction between viral proteins and the host fac-
tors determines the ability of plant viruses to infect the host plants 
(Wang & Krishnaswamy, 2012). Given the nature of the interaction, 
host factors are categorized into “antiviral” and “proviral” factors. 
Antiviral factors are a group of host factors that inhibit the devel-
opment of virus infection. The most typical antiviral host factors 
are conferred by resistance (R) genes, autophagy- related genes, 
ubiquitination- related genes, or mRNA decay/silencing- related 
genes. The antiviral host factors may interfere with the viral infec-
tion cycle, limit or inhibit viral movement, and prevent the develop-
ment of infection in plants (Akhter et al., 2021; Garcia- Ruiz, 2019). In 
contrast, proviral host factors participate in processes essential for 
virus infection, that is, viral RNA translation, replication, or assembly 
of the virion (Garcia- Ruiz, 2019). Due to their importance in assisting 
viral replication and infection, proviral host factors have been tar-
geted for developing antiviral therapy as they may be shared among 
related viruses.

To date, comprehensive studies on antiviral host factors have 
been conducted. Studies on the dominant R genes elucidated nu-
merous host factors that confer resistance against pathogens, in-
cluding plant viruses. The Rsv(s) and Rsc(s) in Glycine max that confer 
resistance to soybean mosaic virus (SMV) (Hajimorad et al., 2018; 
Tran et al., 2018; Widyasari et al., 2020), and Pvr(s) that confers re-
sistance to pepper mottle virus (PepMoV) (Fang et al., 2021; Tran 
et al., 2015) are a few of the many dominant resistance host factors 
that recognize pathogen effectors and inhibit virus infection. In ad-
dition, apart from the dominant R genes, various independent genes 
are also involved in the resistance response against plant viruses. 
Host factors such as GmPP2C3a, GmPAP2.1, PSaC, and ATPsyn- α 
affect the resistance response against SMV infection by regulating 
innate and adaptive immune responses, including plant hormones 
and RNAi pathways (Bwalya et al., 2022; Seo et al., 2014; Widyasari 
et al., 2022).

The proviral host factors translation initiation factor (eIF[iso]4 E) 
and DEAD- box RNA helicase RH8 (Huang et al., 2010; Lellis 
et al., 2002) are two crucial factors that determine the susceptibility 

to plant viruses. The absence of host proviral factors reduces viral 
replication or infection (Garcia- Ruiz, 2018; Garcia- Ruiz et al., 2018; 
Hashimoto et al., 2016; Hofius et al., 2007). These factors, however, 
do not play an essential role in the translation of plant genes or the 
growth and development of plants (Garcia- Ruiz, 2018). These typi-
cal host factors might be attractive targets for gene manipulation to 
generate a broad- spectrum viral disease- resistant cultivar. Thus, the 
characterization of specific proviral host factors is crucial for con-
trolling plant virus diseases.

In this study, we characterized Nicotiana benthamiana's host fac-
tors that play a crucial role in plant virus infections. We evaluated 
the relative transcription levels of genes encoding a suppressor of 
the G2 allele of skp1 (SGT1), auxin response factor 1 (ARF1), bax 
inhibitor (BI), binding immunoglobulins 1 and 2 (BiP1 and BiP2), and 
heat shock protein 70 (HSP70) in N. benthamiana during infection 
by plant viruses from the genus Cucumovirus (Cucumber mosaic 
virus strain Fny, CMV- Fny), Potyvirus (Soybean mosaic virus strains 
G5H and G7H, SMVG5H/SMV- G7H; and Pepper mottle virus isolate 
134, PepMoV isolate 134), and Potexvirus (Potato virus X, PVX). We 
also evaluated the infectivity of plant viruses in the knockdown 
lines. Lastly, we determined the interaction between N. benthami-
ana's host factor and the viral protein that may be crucial for virus 
infection.

Evaluation of the gene transcription levels by reverse 
transcription- quantitative PCR (RT- qPCR; see Table S1 for the gene- 
specific primers used for analysis) following inoculation by CMV- 
Fny, SMV- G5H, SMV- G7H, and PepMoV isolate 134 demonstrated a 
significant up- regulation of genes encoding BiP1, BiP2, and HSP70. 
Infection with PVX significantly induced expression of BiP1 and 
BiP2 but not HSP70. Expression levels of genes encoding SGT1, 
ARF1, and BI were not affected by infection with CMV- Fny, SMV- 
G5H, SMV- G7H, PepMov isolate 134, or PVX (Figure 1a).

Among the plant viruses used in this study, only SMV is known 
to have a relatively narrow host range, mostly restricted to two spe-
cies of plants from the same genus, G. max and G. soja (Hajimorad 
et al., 2018). Hence N. benthamiana is not a natural host for SMV. 
Only SC7 (Gao et al., 2015) and N1 (Bao et al., 2020) strains of SMV 
have been reported to infect N. benthamiana. Interestingly, our study 
demonstrated the susceptibility of N. benthamiana to SMV strains 

F I G U R E  1  Expression levels of Nicotiana benthamiana host factors upon infection with potato virus X co- expressing GFP (PVX::GFP), 
cucumber mosaic virus strain Fny (CMV- Fny), pepper mottle virus isolate 134 co- expressing GFP (PepMoV isolate 134::GFP), and soybean 
mosaic virus strains G5H and G7H co- expressing GFP (SMV- G5H::GFP, SMV- G7H::GFP), and knockdown of BiP1, BiP2, and HSP70. (a) BiP1, 
BiP2, and HSP70 were significantly up- regulated upon infection of CMV- Fny, PepMoV isolate 134::GFP, and SMV strains G5H or G7H. PVX 
infection also significantly induced up- regulation of BiP1 and BiP2 but not HSP70. Meanwhile, the expression level of SGT1, ARF1, and BI were 
not affected by viral infections. (b) The infectivity of SMV strains G5H and G7H in N. benthamiana. GFP expression represents SMV infection 
observed on the upper noninoculated leaves at 14 days after sap inoculation or agroinfiltration. The reverse transcription (RT)- PCR using 
SMV coat protein (CP)- specific primer indicated the presence of virus in the upper noninoculated leaves, evident by bands of 740 bp PCR 
product on the agarose gel. The RT- quantitative PCR analysis demonstrated a significantly higher accumulation of viral RNA in the inoculated 
plants than in the mock control. Plants infected by SMV strain G5H showed a relatively higher accumulation of viral RNA than those infected 
by SMV strain G7H. (c) The phenotype of knockdown lines by virus- induced gene silencing (VIGS). (d) The expression level of BiP1, BiP2, and 
HSP70 in the knockdown lines. Values in (a), (b), and (d) are means ± SD from three independent experiments. Asterisks indicate significant 
differences and “ns” indicates the nonsignificant difference between virus- inoculated plants and mock control or between knockdown lines 
and nonsilenced control (*p ≤ 0.05 or **p ≤ 0.01, according to analysis of variance with Tukey's HSD post hoc test; Abdi & Williams, 2010)
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G5H and G7H. Sap inoculation or Agrobacterium- mediated inocu-
lation of SMV strains G5H and G7H co- expressing green fluores-
cence protein (GFP) resulted in an expression of green fluorescence 
on the inoculated and upper noninoculated leaves, visualizing the 
presence and movement of the SMV strains G5H and G7H in N. ben-
thamiana (Figure 1b, upper left panel). Reverse transcription- PCR 
(RT- PCR) using an SMV coat protein (CP)- specific primer pair con-
firmed the SMV strains G5H and G7H infections in the inoculated 

plants, evident by the 740 base pairs (bp) product (Figure 1b, lower 
left panel). Consistently, evaluation of the viral RNA accumulation 
by RT- qPCR showed a significantly higher accumulation in the SMV 
strain G5H-  and G7H- inoculated plants than in the mock control. 
However, the accumulation of viral RNA levels was observed to 
be higher in the plants inoculated with SMV strain G5H than G7H 
(Figure 1b, right panel). Hence, we chose SMV strain G5H for fur-
ther analysis.
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Given that infection by CMV- Fny, SMV- G5H, PepMoV or PVX 
induced significant expression of genes encoding BiP1, BiP2, and 
HSP70 (Figure 1a), we assumed that these host factors might be in-
volved in the virus infection cycle. We therefore generated a single 
knockdown line for each BiP1, BiP2, and HSP70 by a tobacco rattle 
virus (TRV)- based virus- induced gene silencing (VIGS) system and 
delivered them into N. benthamiana by Agrobacterium- mediated 
inoculation (Table S2). At 10 days postagroinfiltration (dpai) of the 
knockdown constructs, we observed a distinct crinkle symptom in 
the silenced plants. In contrast, this typical symptom was not ob-
served in the nonsilenced control (Figure 1c). The photobleaching 
symptom in the phytoene desaturase (PDS) knockdown line was 

used as a phenotype control to ensure that the TRV- based VIGS 
system effectively down- regulates the target genes (Figure 1c). 
Subsequently, quantification of gene expression levels by RT- qPCR 
confirmed the down- regulation of BiP1, BiP2, and HSP70 expres-
sion levels up to 65%, 73%, and 75%, respectively, in BiP1, BiP2, 
and HSP70 knockdown lines compared to the nonsilenced control 
(Figure 1d). Interestingly, at 14 dpai of knockdown constructs, we 
observed a severe wilting symptom in the HSP70 knockdown line, 
while neither BiP1 nor BiP2 knockdown lines showed any similar 
symptom (Figure 2a).

Binding immunoglobulin proteins (BiPs) are members of the heat 
shock protein 70 (HSP70) family. BiPs are relatively conserved across 

F I G U R E  2  The phenotype of Nicotiana benthamiana at 14 days following transient knockdown of BiP1, BiP2, and HSP70 by virus- 
induced gene silencing (VIGS), and the protein sequence alignment of BiP1 and BiP2. (a) Knockdown of HSP70 caused severe wilting 
in N. benthamiana, whereas neither knockdown of BiP1 nor of BiP2 caused the same symptom. (b) The alignment of the BiP1 and BiP2 
sequences shows differences in several amino acids, particularly in the N terminal. The different amino acids are indicated. (*) denotes a 
conserved sequence; (:) denotes conservative mutations; (.) denotes semiconservative mutation; () denotes nonconservative mutation
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the evolutionary kingdom and among eukaryotes (Herath et al., 2020). 
Unlike other eukaryotes, plant BiP is encoded by multiple genes 
(Denecke et al., 1991; Herath et al., 2020). BiPs have numerous bio-
logical functions in plants. BiPs are primarily involved in the matura-
tion and folding of the nonglycosylated protein (Hendershot, 2004), 
regulating stress transducer as part of its role in the unfolded pro-
tein response (UPR) (Bertolotti et al., 2000), and play a crucial role 
in the defence against various stresses such as drought stress, os-
motic stress or endoplasmic reticulum (ER) stress caused by pathogen 
infection (Alvim et al., 2001; Reis et al., 2011; Valente et al., 2009). 
During plant- pathogen interactions, BiPs were reported to be tar-
geted by PsAvh262, an effector of Phytophthora sojae, to suppress ER 
stress- triggered cell death and facilitate P. sojae infection in soybean 
(Jing et al., 2016). Overexpression of BiP in N. benthamiana hindered 
the triple gene block protein 3- induced hypersensitive response and 
enabled systemic movement of PVX (Ye et al., 2011).

In our study, the alignment of BiP1 and BiP2 sequences demon-
strated differences in several amino acids (Figure 2b) that may lead 
to a diversity of natural functions of these two proteins. Because 
the knockdown of either BiP1 or BiP2 did not alter plant vigour, un-
like HSP70 (Figure 2a), whose absence had a significant impact, we 
assumed that the biological functions of BiP1 and BiP2 are redun-
dant in regulating plant fitness. However, the differences in amino 
acids in BiP1 and BiP2 may cause differential pathogenicity- related 
functions.

To confirm our hypothesis, we challenge- inoculated the BiP1 and 
BiP2 knockdown lines and the ADP- ribosylation factor 1 gene (ARF1) 
knockdown line with the PVX co- expressing GFP, CMV- Fny, PepMoV 
isolate 134 co- expressing GFP, and SMV strain G5H co- expressing 
GFP. Subsequently, we observed the phenotypic symptoms and the 
GFP expression that visualized virus infection and movement, and 
quantified the viral RNA accumulation.

At 10 days after challenge inoculation by Agrobacterium- mediated 
inoculation (i.e., 20 dpai of the knockdown construct), we observed 
a GFP fluorescence signal that visualized PVX infection in the inoc-
ulated and upper noninoculated leaves of the nonsilenced control 
as well as in the BiP1, BiP2, and ARF1 knockdown lines (Figure 3a). 
Similarly, following inoculation with CMV- Fny, all nonsilenced con-
trol and knockdown lines showed distinct mottling and curling symp-
toms (Figure 3b), whereas in the BiP1 knockdown line inoculated 
with SMV strain G5H or PepMoV isolate co- expressing GFP, the flu-
orescence signal that visualized virus infection and movement was 
observed at a superficial level compared to the nonsilenced control 
or ARF1 knockdown line (Figure 3c,d, TRV::BiP1 panel, white arrows 
indicate the GFP expression). The BiP2 knockdown line, however, 
did not display any GFP fluorescence signal that visualized PepMoV 
or SMV infection on the inoculated or upper noninoculated leaves 
at 10 days after challenge inoculation (Figure 3c,d, TRV::BiP2 panel). 
Subsequently, evaluation of the viral RNA accumulation by RT- qPCR 
validated these results. No statistical difference in the viral RNA 
accumulation was observed in the BiP1, BiP2, or ARF1 knockdown 
lines compared to the nonsilenced control at 10 days after challenge 
inoculation with PVX or CMV- Fny (Figure 3e). These data suggest 

that the absence of one of these factors did not affect the infectiv-
ity of PVX or CMV. Although a positive role of ARF1 for red clover 
necrotic mosaic virus infection in N. benthamiana has been reported 
(Hyodo et al., 2013), our study demonstrated that the knockdown 
of ARF1 did not affect infection of PVX, CMV, PepMoV, and SMV in 
N. benthamiana (Figure 3).

Meanwhile, SMV strain G5H or PepMoV isolate 134's RNA level 
in BiP1 or BiP2 knockdown lines was significantly lower than in the 
nonsilenced control, with BiP2 knockdown lines appearing to have 
zero RNA accumulation on leaf tissue samples (Figure 3e). Together 
these results suggest that BiP1 and BiP2 are necessary for SMV and 
PepMoV infection in N. benthamiana. Moreover, assuming that the 
absence of BiP2 completely inhibits SMV and PepMoV infections 
in N. benthamiana, BiP2 may possess a more significant function in 
the infection of potyvirus, the largest group of plant- infecting RNA 
viruses. Many are widely regarded as the most economically import-
ant viral pathogens (Yang et al., 2021), making BiP2 a good candidate 
for gene modification to generate resistant cultivars against multiple 
plant viruses.

To corroborate the participation of BiP2 in the infection cycle 
of potyvirus, we performed an in vitro protein– protein interaction 
assay by yeast two- hybrid (Y2H), observing the cellular expression 
of BiP2 by tagging it with reporter genes for visualization, and by 
transiently expressing on the N. benthamiana, and conducted co- 
immunoprecipitation (Co- IP). N. benthamiana is a non- natural host 
for SMV, yet SMV strain G5H can infect this plant. We assumed that 
interaction between SMV proteins and the host factors is the crucial 
determinant for a successful SMV infection in the nonhost plants. 
We therefore decided to use SMV viral proteins to further investi-
gate the interaction between potyvirus viral proteins and BiP2.

In vitro interaction demonstrated that BiP2 interacted with nu-
clear inclusion protein a (NIa) and nuclear inclusion protein b (NIb). 
The yeast colony co- expressing BiP2 and SMV protein grew better 
when the BiP2 was co- expressed with NIb, suggesting a stronger 
interaction between BiP2 and NIb (Figure 4a). Furthermore, we ex-
pressed the BiP2 tagged with mCherry and NIb tagged with GFP 
in the N. benthamiana cells and confirmed the cellular expression 
of either BiP2 or NIb. We observed a stronger GFP and mCherry 
signal in the fusion proteins (mCherry- BiP2 or GFP- NIb) than in the 
free GFP or mCherry (Figure 4b,c, left panel). Subsequently, we pu-
rified the plant total protein and performed western blot analysis 
to detect the fusion proteins. Western blot analysis confirmed the 
expression of BiP2 or NIb with their respective fluorescence marker 
in the N. benthamiana cell (Figure 4b,c, right panel, size of the fusion 
proteins is indicated). Furthermore, we also confirmed in vivo inter-
action between N. benthamiana BiP2 and SMV NIb by Co- IP analysis 
(Figure 4d and S1).

The NIb of potyvirus is the RNA- dependent RNA polymerase 
(RdRp) responsible for viral genome replication and plays a critical 
role in diverse virus– host interactions (Shen et al., 2020). The NIb 
is an active recruiter interacting with many proviral host factors to 
promote viral infection (Shen et al., 2020). Studies on the NIb of 
turnip mosaic virus (TuMV) demonstrated the interaction of NIb 
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F I G U R E  3  Symptoms and viral RNA accumulation level in the nonsilenced Nicotiana benthamiana and in plants knocked down by TRV::00, 
TRV::ARF1, TRV::BiP1, and TRV::BiP2, which were inoculated with PVX co- expressing green fluorescent protein (GFP), CMV- Fny, PepMoV 
isolate 134 co- expressing GFP, and SMV co- expressing GFP. (a) A GFP signal visualizing PVX infection in all inoculated plants. (b) All plants 
inoculated by CMV- Fny developed a distinct mottling symptom. (c) and (d) A GFP signal visualizing infection of PepMoV isolate 134 and SMV 
strain G5H at moderate intensity in BiP1 but not in the BiP2 knockdown lines. A white arrow points to the GFP signal. (e) Accumulation of 
viral RNA in the nonsilenced and knockdown lines infected by plant viruses. Values are means ± SD from three independent experiments. 
Asterisks indicate significant differences and “ns” indicates the nonsignificant difference between nonsilenced control and knockdown lines 
(*p ≤ 0.05 or **p ≤ 0.01, according to analysis of variance with Tukey's HSD post hoc test; Abdi & Williams, 2010)
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with the heat shock cognate protein 70- 3 (Hsc70- 3) and poly(A)- 
binding protein (PABP) that promotes viral infection. The association 
of Hsc70- 3 and NIb could occur in membrane- derived replication 
complexes (Dufresne, Thivierge, et al., 2008; Dufresne, Ubalijoro, 
et al., 2008). Correspondingly, a study on the NIb of another po-
tyvirus, potato virus Y strain necrotic tuber necrosis (PVYNTN), 
demonstrated its interaction with Hsc70, resulting in susceptibility 
to PVYNTN (Kozieł et al., 2021). Given that interaction between NIb 

and host factors primarily results in infection, there is a high possibil-
ity that NIb is recruiting these host factors into the viral replication 
complex (VRC) for virus multiplication (Shen et al., 2020). Viral 6K2 
protein facilitates the development of VRCs by remodelling the ER 
for this purpose (Wei et al., 2010). The recruitment of NIb into the 
VRC may not be through direct interaction with 6K2 but most prob-
ably via its interaction with the VPg domain of 6K2- VPg- NIaPro (Li 
et al., 1997, 2020). Hence, SMV NIb, which interacts with BiP2 of 

F I G U R E  4  Cellular expression and 
interaction of BiP2 and NIb. (a) Yeast 
two- hybrid analysis of BiP2 and 11 
viral proteins of SMV strain G5H. 
(b) Expression of BiP2 tagged with 
mCherry in the Nicotiana benthamiana 
cell and the western blot result with 
the size of the fusion protein as 
indicated. (c) The expression of NIb 
tagged with green fluorescent protein 
(GFP) in the N. benthamiana cell and 
the western blot result showing the 
size of the fusion protein as indicated. 
(d) Co- immunoprecipitation analysis 
demonstrated a direct interaction 
between N. benthamiana BiP2 and SMV 
NIb
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N. benthamiana, may also be recruited into the VRC via interaction 
with the VPg domain of 6K2- VPg- NIaPro to initiate replication and 
translation. Nevertheless, our inability to incorporate the ER marker 
for visualization and to demonstrate the interaction between the 
NIb- BiP2 complex with the VPg domain of 6K2- VPg- NIaPro is the 
main limitation for determining the underlying recruitment mecha-
nism of NIb- BiP2 complex to the VRC.

Lastly, given that BiPs are highly conserved in many species, we 
extended our study by characterizing the homology and expres-
sion level of gene encoding BiP2 in G. max, a natural host of SMV. 
A phylogenetic gene sequence analysis demonstrated the presence 
of a gene encoding BiP2 in G. max (Figure S2). Homologue genes 
may share many similarities in biological properties and functions 
(Brigandt & Griffiths, 2007), which in our study may be related to 
the BiP2 functions in the potyviruses, particularly the SMV infection 
cycle. We further confirmed this causality by RT- qPCR and validated 
the expression level of BiP2 in G. max following infection of SMV 
strains G5H and G7H. The result of RT- qPCR analysis demonstrated 
a significant up- regulation of BiP2 in SMV- infected G. max compared 
to the mock control (Figure S3), indicating that BiP2 in G. max is also 
regulated by potyvirus infection.

In summary, our study provides information on the proviral host 
factors (BiP2) that play a crucial role in potyvirus infection; hence 
BiP2 may be a promising candidate for gene manipulation to gener-
ate a broad- spectrum viral disease- resistant cultivar. Nevertheless, 
further studies are needed to elucidate the mechanism underlying 
the recruitment of the BiP2- NIb complex into the VRC and its con-
tribution to viral multiplication.
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