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Abstract: Chronic kidney disease (CKD) is becoming a global burden, despite recent advances in
management. CKD can begin in early life by so-called “developmental programming” or “developmental
origins of health and disease” (DOHaD). Early-life insults cause structural and functional changes
in the developing kidney, which is called renal programming. Epidemiological and experimental
evidence supports the proposition that early-life adverse events lead to renal programming and make
subjects vulnerable to developing CKD and its comorbidities in later life. In addition to low nephron
endowment, several mechanisms have been proposed for renal programming. The DOHaD concept
opens a new window to offset the programming process in early life to prevent the development of
adult kidney disease, namely reprogramming. Here, we review the key themes on the developmental
origins of CKD. We have particularly focused on the following areas: evidence from human studies
support fetal programming of kidney disease; insight from animal models of renal programming;
hypothetical mechanisms of renal programming; alterations of renal transcriptome in response to
early-life insults; and the application of reprogramming interventions to prevent the programming of
kidney disease.

Keywords: chronic kidney disease; congenital anomalies of the kidney and urinary tract (CAKUT);
developmental origins of health and disease (DOHaD); Epigenetic regulation; nephron endowment;
oxidative stress; renin-angiotensin system; sex differences; sodium transporter; transcriptome

1. Introduction

Chronic non-communicable diseases (NCDs) are the leading cause of mortality in the world and
pose a great threat to human health [1]. NCDs can be driven by environmental insults in early life.
This has been given rise to the concept of “developmental programming” or the “developmental
origins of health and disease” (DOHaD) [2]. The term “developmental programming” refers to the
process by which an insult applied at a critical window of development causes long-term effects on
the structure or function of an organism [3]. Chronic kidney disease (CKD) has been recognized
as a major NCD [4]. Despite recent advances in CKD management [5], there is still a global rising
incidence and prevalence of CKD [4,6]. World Kidney Day 2016 focuses on childhood kidney disease
and the antecedents of adult disease that can begin in early life [7]. Development of the kidney can
be programmed in utero in response to an adverse condition. The human kidney does not start
to function until after birth and its maturation continues for months, and up to years, after birth.
Accordingly, the developing kidney is particularly vulnerable to adverse intrauterine and neonatal
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environments, causing permanent morphological changes and functional adaptation, that is, renal
programming [8]. Although a variety of organ systems can be programmed in response to early-life
insults, renal programming is considered key in the development of CKD and comorbid illness [9–15].
On the other hand, the DOHaD concept-based reprogramming strategies may provide a paradigm
shift in therapeutic approaches from adulthood to early life, before CKD is evident [15]. A better
understanding of the programming mechanisms in kidney development that lead to kidney disease
is essential to developing early reprogramming intervention to halt the globally growing epidemic
of CKD-related diseases. A schematic summarizing the links between early-life insults, mechanisms
underlying renal programming, and programmed kidney disease is presented in Figure 1.
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Figure 1. Schema outlining the early-life insults that induce renal programming and increase the
vulnerability to later superimposed renal injury, leading to chronic kidney disease (CKD) and
related comorbidity in later life. CKD can be attributed to multiple hits. A variety of early-life
environmental insults (e.g., undernutrition) can cause renal programming, which is associated with
low nephron endowment and other molecular mechanisms (e.g., oxidative stress). Renal programming
likely constitutes a first-hit to the kidney which makes the kidney more vulnerable to postnatal
insults (i.e., 2nd hit) to develop CKD in later life. The blue arrowhead indicates the application of
reprogramming strategies in early life may prevent the developmental programming of kidney disease.
SNGFR = single nephron glomerular filtration rate. GFR = glomerular filtration rate.

2. Evidence for Programming of Kidney Disease in the Human

Important support for the DOHaD concept came from observations on a cohort born during the
Dutch Hunger Winter 1944–1945 [16], which demonstrated that malnutrition during gestation has
long-lasting consequences for adult health. In the Dutch famine cohort, adults exposed to maternal
famine had albuminuria [17], a diagnostic criteria of CKD associated with reduced nephron number [5].
A low nephron endowment is considered a common denominator underlying the susceptibility to
kidney disease and comorbid illness [17,18]. In humans, nephrogenesis starts at gestational week 8–9
and ends at gestational week 36. Formation of a tree-like structure via the ramification of epithelial
tubules during kidney development is called branching morphogenesis [19]. In the mammalian
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kidney, branching morphogenesis leads to the formation of the urinary collecting system and nephrons.
Nephron endowment is largely determined through branching of the ureteric bud. Iterative branching
of the ureteric bud occurs approximately 15 times during kidney development, generating an average
~1 million nephrons, but varies over a more than 10-fold range [20]. Thus, defective branching
morphogenesis may lead to low nephron endowment and a broad range of clinical phenotypes,
namely congenital anomalies of the kidney and urinary tract (CAKUT).

Full-term infants usually get a complete endowment of nephrons. However, preterm infants
may develop low nephron endowment due to intra-uterine growth retardation (IUGR), compromised
pregnancy, inadequacy of postnatal nutrition, and treatment with drugs, such as NSAIDs, after birth [14].
A nephron deficit can lead to higher glomerular capillary pressure and glomerular hyperfiltration,
compensatory glomerular and tubular hypertrophy, consequently initiating a vicious cycle of further
nephron loss in later life [20]. Since CKD can be attributed to multiple hits [21], a programmed low
nephron endowment likely constitutes a first-hit to the kidney which makes the remaining glomeruli
more susceptible to environmental influences and increases the vulnerability to develop CKD when
facing renal injury in later life.

Numerous epidemiologic studies now support that low birth weight (LBW) and prematurity are
risk factors for kidney disease in later life [11,14]; importantly, both are the robust clinical surrogates
for low nephron endowment [17]. A meta-analysis of >2 million individuals reported that those with
LBW had a 70% increased risk for development of CKD [22]. A case-control study of ~2000 children
with CKD identified several prenatal and maternal factors, such as LBW, maternal gestational diabetes,
and maternal obesity, impact the risk of CKD [23]. Additionally, our recent case-control study of
>1.6 million infants found that risk factors for CAKUT include prematurity, LBW, maternal gestational
diabetes, maternal thalassemia/hemochromatosis, polyhydramnios or oligohydramnios, male, and
first parity [24]. Unlike adults, CAKUT is a major cause of CKD in children [7]. CAKUTs contain a
wide range of renal system structural malformations, characterized by varying deficits in nephron
number [25]. The low nephron endowment observed in CAKUT may attribute to the prevalence of
CKD in individuals with CAKUT.

Unfortunately, the number of nephrons cannot be determined in vivo thus far. Although the use of
ferritin-based nanoparticles as targeted magnetic resonance imaging (MRI) contrast agent to measure
nephron number in human kidneys has made some progress [26], the validation of non-invasive
method to evaluate nephron endowment in vivo deserve greater efforts. To date, the nephron
endowment can only be estimated via the surrogate markers. As reviewed elsewhere [17,18], clinical
surrogates for low nephron endowment include LBW, prematurity, short stature, low kidney mass and
volume, gene polymorphisms, maternal gestational hyperglycemia, and gender. Although numerous
nutritional interventions have been effective in reducing the risk of LBW and prematurity [14], their
impacts on nephron endowment and programming of adult kidney disease remain unclear.

A number of hypotheses, such as thrifty phenotype [27], predictive adaptive responses [28], and
catch-up growth hypothesis [29], have been developed to explain the epidemiological observations
of an association between early life insults and later chronic diseases. However, these hypotheses do
not suggest molecular mechanisms whereby the phenotype is generated. Despite the risk of kidney
disease has been assessed in a number of human studies, interventions necessary to prove causation
and to provide a reprogramming strategy remain unaware. It is for this reason that much of our
knowledge of the types of insults driving renal programming, the critical window of vulnerability for
insults, potential mechanisms of renal programming, and reprogramming strategy come from studies
in animal models.

3. Animal Models of Renal Programming

A number of animal studies confirm the association between early-life insults, renal programming,
and subsequent CKD in adulthood. Here we summarize studies previously reviewed [9,10,15,18]
and highlight new data documenting renal programming associated with low nephron number
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(Table 1). Renal development in rodents, unlike in humans, continues up to postnatal week 1–2.
Therefore, adverse conditions during pregnancy and early lactation period may impair nephrogenesis,
leading to renal programming and adult kidney disease. As shown in Table 1, a variety of pre-, peri-,
and post-natal insults have been reported to cause renal programming and low nephron endowment.
These factors include maternal undernutrition, high-salt, low-salt, utero-placental insufficiency, ethanol
consumption, maternal inflammation, glucocorticoid exposure, vitamin A deficiency, iron deficiency,
drug use, and gestational diabetes [30–45].

Reduced nephron number can develop from birth through adulthood to old age in different
experimental models of renal programming. Insults need only last for a brief moment during
nephrogenesis, as little as 1–2 days, to cause a permanent reduced nephron endowment [34,37].
In rats, maternal administration of dexamethasone for 2 days results in a reduced nephron number in
adult offspring when administered on embryonic day 13–14 or 17–18 [37]. These finding indicate there
is a critical window of vulnerability for insult during kidney development. The main phenotype of
renal programming associated with low nephron endowment is glomerular hypertrophy. A reduction
of nephron number, in the absence of compensatory hypertrophy, would be expected to cause a
decreased glomerular filtration rate (GFR). As shown in Table 1, however, variations of GFR observed
in different models of renal programming can be reduced [33–36], unaltered [37,39–41,44], or even
augmented [42]. These data suggest that there is a differential degree of compensatory hypertrophy in
the setting of a low nephron endowment in various models of renal programming.

Table 1. Effects of early-life insults on renal programming with low nephron number in animal models.

Experimental Model Renal Phenotype Age at Evaluation of
Nephron Endowment Ref.

Uteroplacental insufficiency ↑ Apoptosis 1 day [30]

Vitamin A-deficient diet from 3 weeks before
mating throughout pregnancy Not evaluated 1 day [31]

Low sodium diet (0.07%) during pregnancy
and lactation Hypertension at 5 months 1 week [32]

High sodium diet (3%) during pregnancy
and lactation Glomerular hypertrophy, hypertension at 5 month 1 week [32]

Partial ligation of uterine ligation ↓ GFR, glomerular hypertrophy 2 weeks [33]

Ethanol (1 g/kg/day) at gestational day
13.5 and 14.5 ↓ GFR at 6 months 4 weeks [34]

Lipopolysaccharide (0.79 mg/kg/day) i.p. at
gestational day 8, 10, and 12 ↓ GFR 7 weeks [35]

Dexamethasone (0.1 mg/kg/day)
throughout pregnancy ↓ GFR, glomerular hypertrophy 2 months [36]

Dexamethasone (0.2 mg/kg/day) at
gestational day 15 and 16 or 17 and 18 ↔ GFR, unchanged glomerular morphology 2 months [37]

Low protein diet (8% protein)
during lactation Hypertension at 5 months 2 months [38]

Cyclosporine (3.3 mg/kg/day) from
gestational day 10 to postnatal day 7 ↔ GFR, glomerular hypertrophy 3 months [39]

50% caloric restriction during pregnancy
and lactation

↔ GFR, glomerular hypertrophy, hypertension,
tubulointerstitial injury 3 months [40]

Streptozotocin (STZ)-induced diabetes
during pregnancy ↔ GFR, hypertension, tuburointerstitial injury 3 months [41]

Multideficient diet during pregnancy ↑ GFR, glomerular hypertrophy 3 months [42]

Dexamethasone (0.1 mg/kg/day) from
gestational day 16 to 22. Hypertension 4 months [43]

Low protein diet (8.5% protein)
during pregnancy ↔ GFR, hypertension 5.5 months [44]

Iron restriction diet (3 mg/kg diet) from
1 week before mating and through pregnancy Glomerular hypertrophy, hypertension 18 months [45]

Studies tabulated according to age at evaluation. GFR = glomerular filtration rate. ↑ = increased. ↓ = decreased.
↔ = unaltered.
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On the other hand, nephron endowment can be unaltered [46], or even increased in response
to renal programming [47,48]. Thus, low nephron endowment, per se, does not appear to mediate
all programmed processes related to the development of kidney disease. These findings implicate
that the renal programming is not specific to a single factor (i.e., low nephron endowment) and other
mechanisms of renal programming demands further analysis.

4. Mechanisms of Renal Programming

So far, a number of hypothetical mechanisms, including oxidative stress, alterations of
renin-angiotensin system (RAS) and sodium transporters, renal sympathetic activity, glucocorticoid effect,
epigenetic regulation, and sex differences have been reported to be associated with altered development
of kidney structure or function, that is, renal programming [8–15]. Each will be discussed in turn.

4.1. Oxidatice Stress

Oxidative stress, arising as a result of an imbalance between free radical production (e.g., reactive
oxygen species (ROS)) and antioxidant defenses. The normal redox status plays a key role in fetal
development. The development of embryo occurs in a relatively low-oxygen environment [49]. It is
highly vulnerable to oxidant injury. A number of animal models suggest oxidative stress involved in
renal programming, including caloric restriction [40], maternal diabetes [41], prenatal dexamethasone
exposure [43], high fructose intake [50], prenatal dexamethasone and postnatal high-fat diet [51],
preeclampsia [52,53], maternal smoking [54], and low-protein diet [55]. Additionally, emerging
evidence supports that NO-ROS imbalance is important for programmed hypertension [15,56]. Despite
current advances in understanding of how early-life redox imbalance impacts renal programming,
further studies are needed to establish the particular developmental window and kidney-specific
redox-sensitive signaling responsible for these redox changes [57].

4.2. Renin-Angiotensin System

The RAS is critical in mediating proper nephrogenesis and regulating renal physiology [58,59].
This system is comprised of different angiotensin peptides with diverse biological functions mediated
by distinct receptors. The classic RAS, defined as the angiotensin converting enzyme (ACE)-angiotensin
(Ang) II-angiotensin type 1 receptor (AT1R) axis, promotes vasoconstriction and sodium retention.
In contrast, the non-classical RAS composed of the ACE2-Ang-(1–7)-MAS receptor is a new opposing
axis, leading to vasodilatation [59]. Although both axes of the RAS have been examined on their
roles in fetal programming [60,61], studies to date have produced conflicting results with up- and
down-regulation of almost all components of the intrarenal RAS being reported [8]. There is a biphasic
response with reduced RAS expression at birth that becomes normalized with age. However, this
normalization in the adult may be inappropriately high and, hence, activating the classical RAS during
kidney development [8]. So far, there are a few studies showing that blockade of the classical RAS
in early life between 2–4 weeks of age can offset the effects of developmental programming [62–66],
supporting targeting on the RAS might be a reprogramming strategy to prevent programmed kidney
disease. Nevertheless, there remains a lack of definitive data on how and when to target components
of the RAS to prevent the programming of kidney disease and its related comorbidities.

4.3. Sodium Transporters

Renal reabsorption of sodium is a part of renal physiology. Renal transporters have been examined
in different models of renal programming, especially prenatal glucocorticoid exposure [36,37,43]
and low-protein diet [38,67]. These studies have demonstrated that prenatal insult-induced renal
programming is related to the increases of renal mRNA levels, protein abundance, and/or activity of
several sodium transporters including Na-K-2Cl cotransporter (NKCC2), type 3 sodium hydrogen
exchanger (NHE3), Na+/Cl− cotransporter (NCC), and Na+/K+ATPase α1 subunit (NaKATPase).
Similarly, we observed that maternal high-fructose diet plus postnatal high-salt diet increased renal
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levels of NKCC2, NHE3, and NCC in a two-hit model of renal programming [68]. Thus, renal
programming models, no matter whether there was prenatal or postnatal exposure, may elicit
inappropriate sodium reabsorption that increase the vulnerability to develop adult kidney disease. It is
noteworthy that serum- and glucocorticoid-inducible kinase (SGK1) contributes to the regulation
of almost all sodium transports, which can be activated by glucocorticoid signaling, as well as
by salt [69,70]. These data suggest that SGK1 may be a reprogramming target for the programmed
kidney disease.

4.4. Renal Sympathetic Activity

In the rat, both afferent and efferent nerves are observed inside the developing kidney by
embryonic day 16 [71]. The nerves start to enter the kidney at late gestation, reach the outer
cortical renal arterioles at postnatal week 1–2, and continue to mature into postnatal life [72]. Hence,
a suboptimal environment during pregnancy and early lactation period may impact renal sympathetic
activity, as reported in a number of renal programming models [67,73,74]. On the other hand, renal
denervation can attenuate programmed hypertension in renal programming models with placental
insufficiency [74] and prenatal dexamethasone exposure [67]. In addition, renal sympathetic nerve
activity plays a crucial role in renin secretion and sodium reabsorption. Since the RAS cascade
starts with the release of renin, and because the RAS and sodium transporters are both important
mechanisms involved in renal programming, the interactions between renal sympathetic activity,
RAS, and sodium transporters leading to adult kidney disease awaits further elucidation. Our recent
study demonstrated that prenatal dexamethasone exposure increased renin (fold change = 2.41) and
(pro)renin receptor (fold change = 2.37) mRNA expression during nephrogenesis [75]. Additionally,
we found that maternal high-fructose-induced renal renin expression from one day (fold change = 3.05)
to three months (fold change = 3.38) of age [76]. These findings imply that renal sympathetic activity
and its downstream signaling may contribute to renal programming and kidney disease in later life.

4.5. Glucocorticoid Effect

Glucocorticoids are critical in normal development and organogenesis of the fetus. In normal
pregnancy, glucocorticoid levels are much lower in the fetal circulation compared to maternal
circulation at term [77]. The fetus is protected by the placental inactivation of active glucocorticoids via
the enzyme 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2). A variety of adverse conditions
in utero, such as maternal malnutrition [78], maternal stress [79], and preeclampsia [80] have
been reported to inhibit 11β-HSD2, resulting in fetal exposure to excess glucocorticoid. Although
the effects of glucocorticoid-mediated programming have been examined in several systems and
diseases [77,81–83], few studies have investigated the effects of glucocorticoids on the developing
kidney. We recently utilized RNA next-generation sequencing (NGS) to analyze the renal transcriptome
in the rat offspring at one and 16 weeks of age, to examine whether key genes and pathways are
responsible for prenatal dexamethasone-induced renal programming [75]. Prenatal dexamethasone
exposure results in alterations of 431 renal transcripts in the offspring at one and 16 weeks of age in
a consistent manner. We analyzed a panel of genes that has previously been reported to be relevant
to kidney development [84]. Among them, Gfra1 (encodes for glial cell line-derived neurotrophic
factor (GDNF) family receptor α 1) and Cdh6 (encodes for cadherin 6, a membrane protein) were
shared by one and 16 weeks of age. Gfra1, which is a member of the GDNF/Ret signaling controls
branching morphogenesis. Knockout of Gfra1 can cause the failure of ureteric bud outgrowth, leading
to renal agenesis [85]. Next, Cdh6 mediates cell–cell binding. The roles of Gfra1 and Cdh6 in the renal
programming and low nephron endowment await further elucidation.

4.6. Epigenetic Regulation

Epigenetics refers to alterations in gene expression that are not explained by changes in
the DNA sequence. Unlike genetic information, epigenetic events are reversible and respond to
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environmental insults. The three major epigenetic factors are as follows: DNA methylation, histone
modification, and microRNA (miRNA)-mediated silencing [86]. Global methylation patterns have
been studied in several programming models, such as maternal low-protein diet [87], maternal tobacco
use [88], and micronutrient deficiency [89]. However, little attention has been paid to the kidney,
except one recent study showed that maternal folic acid supplementation did not alter global DNA
methylation in offspring kidney [90]. Next, histone acetylation is one of the most frequent epigenetic
modifications. Histone acetyltransferases (HATs) and histone deacetylases (HDACs) determine
histone acetylation and deacetylation, respectively. Our previous work demonstrated that HDAC
inhibition by trichostatin A prevented dexamethasone-induced programmed hypertension in a rat
model of neonatal dexamethasone exposure [91]. Given that HDAC inhibitors have been proposed
to test the therapeutic effects in the pre-clinical model of CKD [92], further studies are warranted to
examine their reprogramming effects on the developmental programming of CKD. Aside from DNA
methylation and histone modification, miRNAs may also play a key role in the fetal programming [93].
Recent microarray studies demonstrated that maternal nutrient restriction can permanently alter the
expression of a variety of miRNAs in the aortas of rat offspring [94]. Another study showed renal
miRNA modulation in the protein restriction model of fetal programming [95]. Moreover, circulating
hypoxia-regulated miRNAs were increased in pregnant women with fetal growth restriction [96].
The roles of DNA methylation, histone modification, and miRNAs altering the expression of genes
involved in the renal programming remain to be identified, but are the subject of great interest.

4.7. Sex Differences

There is increasing evidence that sex differences exist in the fetal programming of kidney disease
and hypertension [97,98], showing that males are more vulnerable than females. In fact, several
hypothetical mechanisms of renal programming, such as the RAS [99] and oxidative stress [100], have
been reported to respond to environmental stress in a sex-specific manner. Additionally, the renal
transcriptome is sex-specific [101,102]. In a prenatal dexamethasone exposure model [102], we found
prenatal dexamethasone exposure induced sex-specific increases in blood pressure in male, but not
female, adult offspring. We also observed sex-specific expression of Agt, Agtr1a, and Agtr2 in the RAS,
which was not altered by dexamethasone exposure. Our data suggest that the resistance of female
offspring to prenatal dexamethasone-induced programmed hypertension is related to a lower Agt
mRNA expression. Furthermore, another line of evidence supports the impact of sex differences on
renal programming; namely, for maternal high-fructose intake altered renal transcriptome of both sexes
at one week of age, female offspring are more fructose-sensitive [66]. This is in accord with literature
documenting that more genes in the placenta were affected in females than in males under different
maternal diets [103,104]. However, whether the increased female sensitivity to insults is beneficial
or harmful for programming of female fetuses remains unclear. Thus, better understanding of the
sex-dependent mechanisms that underlie renal programming will help develop a novel sex-specific
strategy to prevent programmed kidney disease and comorbid illness in both sexes.

However, there is still lack of animal studies addressing multiple mechanisms simultaneously
to explore their interrelationship and relative importance in different models of renal programming.
Investigation of a wide spectrum of mechanisms and assessment of reprogramming therapies in animal
models before applying their discoveries to humans is still a faraway goal.

5. Changes in Renal Transcriptome in Response to Early-Life Insults

Although several hypothetical mechanisms discussed above have been proposed to explain renal
programming in diverse programming models, none of them are able to define the common genes
and pathways that drive the programmed process. So far, only a few genome-wide studies have been
conducted to identify the changes of renal transcriptome exposed to different early-life insults [105–109].
Since nephrogenesis completes at postnatal week 1–2 in rodents, analyzing the renal transcriptome
right after the completion of nephrogenesis might aid in identifying the primary programmed changes
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in response to environmental insults. Therefore, we used NGS techniques to quantify the abundance of
RNA transcripts in two-week-old offspring kidneys that had maternal exposure to caloric restriction,
STZ-induced diabetes, high-fructose consumption, and high salt intake [109]. We identified 809,
965, 356, and 272 differentially expressed genes (DEGs) in the models of caloric restriction, diabetes,
high-fructose, and high salt, respectively. Although a total of 16 DEGs were shared among four
different models, to the best of our knowledge, none of them have shown a direct relationship with
programming of kidney disease.

Additionally, we found a number of significantly related Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathways in the offspring kidneys (Table 2). Among them, the peroxisome
proliferator-activated receptor (PPAR) signaling pathway and the glutathione metabolism pathway
were shared by three different programming models. Even though the PPARs have been implicated in
kidney disease and hypertension [110,111], there remains a lack of definitive data on how and when
to prevent the developmental programming of kidney disease via targeting on PPARs in early life.
Glutathione (GSH) is the major intracellular antioxidant [112]. Our previous study demonstrated
that N-acetylcysteine can increase GSH and reduce oxidative stress to prevent the development of
hypertension in different models of renal programming [51–53]. Additional studies are required to
unravel the impacts of the glutathione pathway on oxidative stress and programmed kidney disease.

Notably, the arachidonic acid metabolism pathway is involved in maternal high-fructose
intake-induced renal programming. Our recent studies indicate that early postnatal treatment targeting
the arachidonic acid metabolism pathway by using a soluble epoxide hydrolase (SEH) inhibitor
12-(3-adamantan-1-yl-ureido)-dodecanoic acid (AUDA) ameliorates programmed hypertension in
both programming models of maternal high-fructose consumption and prenatal dexamethasone
exposure [113,114]. It would be interesting to understand whether SEH inhibition also prevents
programmed kidney disease in other models of programming.

Table 2. Significantly regulated Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways in
the two-week-old offspring kidneys of maternal caloric restriction, diabetes, high-fructose, and high
salt intake.

Caloric Restriction Diabetes

Ribosome Ribosome
Cell cycle ABC transporters

Oocyte meiosis Complement and coagulation cascades
DNA replication Spliceosome

Fatty acid metabolism Antigen processing and presentation
Tryptophan metabolism Prostate cancer

Homologous recombination Drug metabolism
Progesterone-mediated oocyte maturation Histidine metabolism
Valine, leucine, and isoleucine degradation Metabolism of xenobiotics by cytochrome P450

Prostate cancer ECM-receptor interaction
PPAR signaling pathway Tryptophan metabolism
Glutathione metabolism Glutathione metabolism

Arginine and proline metabolism PPAR signaling pathway

High fructose High salt

PPAR signaling pathway Cell adhesion molecules (CAMs)
Butanoate metabolism Complement and coagulation cascades

Arachidonic acid metabolism Hematopoietic cell lineage
Fatty acid metabolism Systemic lupus erythematosus

Glutathione metabolism Intestinal immune network for IgA production
Metabolism of xenobiotics by cytochrome P450 Graft-versus-host disease

Tyrosine metabolism Allograft rejection
Drug metabolism
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Furthermore, we analyzed a panel of genes relevant to kidney development [84,106]. As shown in
Table 3, a total of four, 12, three, and two DEGs involved in nephrogenesis were identified in the models
of caloric restriction, diabetes, high-fructose consumption, and high salt intake, respectively. Among
them, Gdnf was commonly shared by the four different models. The Gdnf gene encodes for glial cell
line-derived neurotrophic factor (GDNF), which is required for the morphogenesis of the ureteric
bud during kidney development [115]. Additionally, we observed that Fgf2 and Osr1 were shared
by caloric restriction and maternal diabetes, while Six1 was shared by diabetes and high-fructose
intake. Whether these genes are commonly related to low nephron endowment in response to different
prenatal insults awaits further evaluation.

Table 3. Fold changes in significantly differentially expressed genes involved in kidney development in
the kidneys of offspring at two weeks of age exposed to maternal caloric restriction (CR), streptozotocin
(STZ)-induced diabetes, high-fructose (HF) diet, and high salt (HS) intake.

Gene ID Gene Symbol CR STZ HF HS

Expansion and survival of renal stem cells
ENSRNOG00000012278 Fgf10 0.52 0.38 0.55 0.87

Formation and extension of the primary nephric duct
ENSRNOG00000012819 Gdnf 2563 1508 1836 1362
ENSRNOG00000008430 Spry3 ND 123 1.04 278
ENSRNOG00000022777 Six1 1.58 0.4 2.64 1.55
ENSRNOG00000026053 Grem1 0.57 0.47 1.21 0.83

Initiation of metanephric development
ENSRNOG00000003807 Wnt9b 0.75 1.27 0.49 0.85
ENSRNOG00000015982 Wnt11 1.18 3.37 1.29 1.3
ENSRNOG00000007002 Lif 0.36 0.64 0.95 1.12
ENSRNOG00000017392 Fgf2 2.07 2.9 1.54 0.82
ENSRNOG00000020792 Etv4 0.94 2.66 1.7 1.53

Mesoderm patterning
ENSRNOG00000004210 Osr1 0.27 0.46 0.61 0.57
ENSRNOG00000021276 Bmp2 1.72 2.39 0.86 1.05
ENSRNOG00000000556 Nodal ND ND ND 242

Nephron development
ENSRNOG00000004517 Igf1 0.55 0.44 0.77 0.64
ENSRNOG00000004346 Notch3 1.18 2.09 0.83 1.06

ND = not detectable; Significant results are highlighted in bold.

Our data indicate that a diverse range of early-life insults can generate differentially programmed
processes. Since we only analyzed one time point at the completion of nephrogenesis in this
study, further studies are warranted to examine the renal transcriptome at different developmental
windows to provide us the whole picture of sequential changes of renal programming in response to
early-life insults.

6. Reprogramming Strategy to Prevent the Programming of Kidney Disease

With an understanding of the effects that renal programming have on the development of adult
kidney disease, the invention of reprogramming strategy is a key priority. Reprogramming strategies
need to be directed toward the types of early-life insults or mechanisms of renal programming. Early
interventions to offset the programming of kidney disease might include a balanced diet for pregnant
women with nutritional excesses or deficiencies, identification of individuals at risk of kidney disease
based upon early screening of maternal and birth characteristics, or therapeutic approaches during
early childhood to target gatekeeper or related programming processes.
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There are already examples of these kinds of reprogramming interventions in animal models.
Several pathogenic mechanisms involved in renal programming, as we discussed above, can be the
target for early intervention. Previous studies indicate that early treatment with α-tocopherol [116],
quabain (an inhibitor of NaKATPase) [117], or retinoid acid [118] ameliorates reductions in nephron
endowment in different programming models. We recently reviewed a numbers of reprogramming
interventions that have been directed at restoring the balance of NO and ROS [15]. These interventions,
including arginine, citrulline, vitamin C, vitamin E, melatonin, and lazaroid (an inhibitor of lipid
peroxidation) have been used to prevent the oxidative stress-related adverse effects in a variety
of programming models. Although ACE inhibitors and angiotensin receptor blockers (ARBs) are
contraindicated during pregnancy, blockade of RAS in young offspring from ages 2 to 4 weeks can be
preventive against the fetal programming of hypertension in animal models of programming [62–66].
These protective effects are not only directed upon the RAS, but also through regulating sodium
transporters. As we mentioned earlier, renal denervation is effective to target renal sympathetic activity
as a reprogramming therapy in both programming models of placental insufficiency and prenatal
dexamethasone exposure [67,74]. Importantly, even these mechanisms are not primary causal factors,
and these reprogramming interventions seem applicable to a wide spectrum of programming models.

7. Conclusions

The global burden of CKD continues to increase, despite treatment advances [4–6]. CKD affects
millions of people all over the world, including many children who are at risk at an early age. In 2016,
World Kidney Day is dedicated to kidney disease in childhood [7]. The opportunity is here; should
we be starting earlier? Major progress has been made in research on renal programming in animal
studies, but many challenges still lie ahead. This review has summarized major mechanisms relevant
to renal programming published in the literature, but it is still not complete. What is missing from
the literature is a greater understanding of how renal programming interacts with extrarenal factors
and responds to challenges in later life to induce CKD. A deeper understanding of the critical window
for reprogramming interventions is also required. Future programming research should aim at filling
the translational gap between animal models and clinical trials. Research into the preventions and
treatments of CKD that begin early in life will have a lifelong impact and profound savings in disease
burden and financial costs.
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NGS Next-generation sequencing
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PPAR Peroxisome proliferator-activated receptor
RAS Renin-angiotensin system
ROS Reactive oxygen species
SEH Soluble epoxide hydrolase
STZ Streptozotocin
11β-HSD2 11β-hydroxysteroid dehydrogenase type 2
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