Identification of Druggable Binding Sites and Small Molecules as Modulators

of TMC1

1

2

3

6

15

20

25 26 27

28 29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

- 4 Pedro De-la-Torre^{1,*,†,&}, Claudia Martínez-García^{2,†}, Paul Gratias^{1,†}, Matthew Mun¹, Paula Santana³,
- 5 Nurunisa Akyuz⁴, Wendy González⁵, Artur A. Indzhykulian^{1,*}, David Ramírez^{2,*}.

7 Affiliations:

- ¹Department of Otolaryngology Head and Neck Surgery, Harvard Medical School and Mass Eye and
- 9 Ear, Boston, MA, USA
- ²Departamento de Farmacología, Facultad de Ciencias Biológicas, Universidad de Concepción, Chile.
- ³Facultad de Ingeniería, Instituto de Ciencias Químicas Aplicadas, Universidad Autónoma de Chile,
- 12 Santiago, Chile.
- 13 ⁴Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- ⁵Center for Bioinformatics and Molecular Simulations (CBSM), University of Talca, Talca 3460000, Chile
- 16 *Correspondence should be addressed to:
- 17 dramirezs@udec.cl,
- 18 inartur@hms.harvard.edu,
- 19 <u>pedro delatorremarquez@meei.harvard.edu</u>
- [†]These authors contributed equally to this work
- 22 *Current address:
- 23 Facultad de Ciencias Básicas; Universidad del Atlántico; Barranquilla, Colombia.
- 24 Life Sciences Research Center, Universidad Simón Bolívar, Barranquilla, Colombia

ABSTRACT

Our ability to hear and maintain balance relies on the proper functioning of inner ear sensory hair cells, which translate mechanical stimuli into electrical signals via mechano-electrical transducer (MET) channels, composed of TMC1/2 proteins. However, the therapeutic use of ototoxic drugs, such as aminoglycosides and cisplatin, which can enter hair cells through MET channels, often leads to profound auditory and vestibular dysfunction. Despite extensive research on otoprotective compounds targeting MET channels, our understanding of how small-molecule modulators interact with these channels remains limited, hampering the discovery of novel drugs. Here, we propose a structure-based screening approach, integrating 3D-pharmacophore modeling, molecular dynamics simulations of the TMC1+CIB2+TMIE complex, and experimental validation. Our pipeline successfully identified several novel compounds and FDA-approved drugs that reduced dye uptake in cultured cochlear explants, indicating MET-modulation activity. Simulations, molecular docking and free-energy estimations allowed us to identify three potential drug-binding sites within the channel pore, phospholipids, key amino acids involved in modulator interactions, and TMIE as a flexible component of the MET complex. We also identified shared ligandbinding features between TMC and structurally related TMEM16 proteins, providing novel insights into their distinct inhibition. Our pipeline offers a broad application for discovering modulators for mechanosensitive ion channels.

INTRODUCTION

The sensory hair cells of the inner ear function as mechanoreceptors, converting various mechanical stimuli—including sound-induced vibrations, gravitational forces, and linear acceleration—into electrical signals, mediating our senses of hearing and balance. However, deficiencies or malfunctions in hair cells, stemming from genetic mutations^{1,2}, aging³, exposure to loud noise⁴, or drug-induced ototoxicity, often result in hearing loss. Notably, platinum-containing chemotherapeutic drugs^{5,6} and the aminoglycoside (AG) group of antibiotics are known ototoxic agents that cause hearing loss and balance dysfunction^{5,7}.

Recent studies suggest that non-AG antibiotics may also cause ototoxicity, although clinical reports of such cases are less frequent⁸. AG ototoxicity may occur due to several factors, including the administration of doses exceeding the therapeutic range, or the use of enantiomeric mixtures of AG⁹. Several mechanisms have been implicated in AG-induced hearing loss^{10–15}. It is widely recognized that AG uptake into hair cells primarily occurs through the mechanoelectrical transduction (MET) channels, a protein complex formed between the pore-forming TMC1/2 subunits^{16–20}, and other binding partners such as TMHS, CIB2, and TMIE²¹. Surprisingly, about 9000 dihydrostreptomycin (DHS) molecules per second are predicted to enter into hair cells in a voltage-dependent manner²², at therapeutic concentrations¹⁷.

MET channels are gated by force transmitted through tip-link filaments^{23,24} composed of cadherin-23 (CDH23)^{25,26} and protocadherin-15 (PCDH15)^{27–31}, also members of the MET complex. The resting tension applied by the tip link to the MET channel results in an increased open probability of MET channels at rest, enabling AG uptake^{31,32}. Consequently, disruption of tip links by calcium (Ca²⁺) chelators closes the MET channel, preventing AG uptake into hair cells²⁰. These findings inspired numerous studies aimed at identifying MET channel blockers for use as otoprotective compounds, predating the identification of molecules that form the MET channel complex^{19,33–38}. The identification of TMC1 as the pore-forming channel subunit has opened up new venues of research for identifying novel pharmacological agents capable of reversibly blocking the MET channel.

Similar to AG treatment, cisplatin causes permanent hearing loss in a significant portion of treated patients, due to its gradual accumulation in the cochlea over months to years³⁹. Given the impact caused by ototoxic side effects of both AG and cisplatin, the pursuit for identification of novel drugs to prevent the resulting hearing loss is ongoing^{33–35,40–42}. Currently, there are at least 17 clinical trials evaluating 10 different therapeutics to prevent aminoglycoside and/or cisplatin-induced ototoxicity⁴³. Recently, the Food and Drug Administration (FDA) approved sodium thiosulfate (STS) to reduce the risk of cisplatin-induced ototoxicity in pediatric patients^{44,45}, although its mechanism of action is not fully understood⁴⁶. Studies using animal models, however, suggest that STS does not protect hair cells against AG-induced cell death⁴⁷, and it remains unclear whether STS interacts with the MET channel^{48–52}. This underscores the need for structure-guided search for novel otoprotectants to mitigate ototoxicity mediated by the MET channel in order to prevent hearing loss in children and adults.

Multiple studies have focused on designing or structurally modifying small molecules to serve as potential otoprotectants against AG-induced hair-cell loss^{19,33–36,42,53,54}. However, their interactions within the TMC1 pore remain largely unknown, and whether these compounds share any common TMC1-binding mechanisms is not well understood^{17,18,55–59}. A previously reported molecule screen using a chemical library of 10,240 compounds, identified UoS-7692 and several others as potent MET blocker³³ (**Figure 1**). This compound demonstrated strong otoprotection against AG in zebrafish larval hair cells and in mouse

86 cochlear explants³³.

While experimental screening of relatively small libraries of compounds typically focuses on their *in vitro* and *in vivo* evaluation in hair cell-like cell lines, live zebrafish larvae or in mouse cochlear explants, this laborious and a relatively low-throughput approach limits exploration of the broad chemical space. Interestingly, no *in silico* data evaluating binding modes of known MET channel blockers within the TMC1 pore cavity has been reported to date. Therefore, conducting an *in silico* screen to evaluate the binding of potential MET channel blockers to TMC1, followed by more conventional *in vitro* experiments to confirm the *in silico* predictions, is an attractive strategy for discovering novel TMC1 modulators.

The pharmacophore concept, defined as the set of structural features recognized at a receptor site or derived from the structure of a ligand, plays a crucial role in determining the bioactivity of a molecule 60,61. and serves as a valuable tool in drug discovery. However, the application of a ligand-base pharmacophore concept for discovering novel TMC1 modulators remains largely unexplored in the context of drug discovery, and the 3D-pharmacophoric and structural factors involved in TMC1-ligand interactions are not well understood. Given the structural diversity of compounds reported as potential MET channel blockers 19,33-38,54 (Figure 1), conducting a comprehensive study to analyze their shared ligand-based pharmacophoric features and their binding to TMC1 is essential to identifying or developing potent and selective MET channel modulators that could potentially serve as otoprotectants. Conversely, considering that TMC1 proteins share structural and sequence similarities with the TMEM16 and OSCA families of membrane proteins 18,55,62-65, potential ligand-based pharmacophores from molecules that modulate their function could also be employed to explore the polypharmacology of these related proteins.

In silico pharmacophore modeling^{66–69}, molecular docking^{70–77}, and binding free energy^{78–80} studies have emerged as powerful methods for discovering bioactive small molecules. These methods enable a deeper understanding of the key structural factors and mojeties required for hit-to-lead optimization with improved biological activities. Previously, we have successfully utilized these methods to design blockers for several ion channels as well as to design other small molecules of biological relevance^{81–84}.

- 111 In this study, we devised a versatile computational strategy to explore the binding modes of known TMC1 112 blockers and to identify novel modulators of TMC1. Our strategy combines in silico modeling with 113 experimental validation of compounds in mouse cochlear explants. First, we developed common 3D-114 ligand-based pharmacophore models for small molecules based on known MET channel blockers and 115 predicted their binding modes within the TMC1 druggable pore. These models enabled us to pre-select 116 258 candidate compounds from over ~22 million compounds (representing ~220 million conformers), 117 sourced from two distinct chemical libraries (non-FDA-approved and FDA-approved drugs).
- Using AlphaFold2-based structural predictions⁷² of the TMC1 protein in an open-like state⁸⁵, we conducted 118 119 a virtual screening (VS) of these 258 molecules, to predict their potential binding modes. Furthermore, we 120 compared 3D-pharmacophore features of TMC1 blockers with compounds modulating the activity of the 121 paralog TMEM16A protein, to identify potential structure-pharmacophoric relationships.
- 122 We then assessed the binding energies of the docking poses by predicting their binding-free energies 123 using molecular mechanics with generalized Born and surface area (MM/GBSA)⁸⁶ methods. From each 124 library, we selected the top 10 hits based on their predicted binding energies and structural diversity for 125 subsequent in vitro evaluation, ensuring their commercial availability for experimental testing. Next, the MET blocking capacity of each hit candidate was evaluated *in vitro* using the AM1-43⁵⁶ dve uptake assay 126 127 in mouse cochlear explants using live microscopy imaging. AM1-43, developed as a fixable analogue of FM1-43, functions in live tissue similar to FM1-43, and is often used for both, live and fixed tissue imaging. 128 Our screening pipeline successfully identified hit compounds that demonstrated a reduction of AM1-43 129
- 130 uptake in cochlear hair cells (Supp Figure 1).

94

95

96

97

98

99

100 101

102

103

104 105

106 107

108

109

110

140

- 131 In summary, we developed and experimentally validated, for the first time, a set of effective 3D-132 pharmacophore models and successfully utilized them to identify novel families of MET channel 133 modulators. We then predicted the binding of these compounds within the pore of the TMC1 channel and 134 presented a list of potential binding sites for both known and newly discovered modulators. This structural 135 modeling approach, including molecular dynamics (MD) simulations involving TMC1, CIB2, and TMIE 136 proteins, combined with experimental evaluation in hair cells, allowed us to reveal new putative binding 137 sites critical for ligand interaction within the TMC1 pore. Our in silico approach also predicted flexible 138 properties for TMIE in the MET complex, as well as potential shared pharmacophoric properties between 139
 - small molecules reported to interact with both TMC1 and TMEM16A proteins⁸⁷.

RESULTS

142

143

Building a good-quality structural model of TMC1 for virtual screening

- 144 Homology and experimental structural models for TMC1 and TMC2 have contributed to identifying a
- putative pore and providing insights into the ion permeation pathway 18,64,85,88. Cryo-electron microscopy 145 (Cryo-EM) structures of C. elegans (Ce) TMC1 have confirmed, at atomic resolution, structural similarities 146
- between TMCs and TMEM16, as well as the TMEM63/OSCA protein families^{55,62,64,89}. Specifically. TMC1 147
- assembles as a dimer with 10 transmembrane (TM) domains per subunit, similar to TMEM16 proteins⁶⁴. 148
- 149 while OSCA channels have an additional TM domain, totaling 11 per subunit⁶⁵.
- 150 In the absence of 3D-atomic structures of the mammalian MET-channel complex, we constructed a model
- 151 of the complex by assembling Mus musculus (Mm) TMC1 subunits with MmCIB2 and MmTMIE. MmCIB2
- 152 was included to increase the stability of the MET complex and preserve its influence in phospholipid
- dynamics and ion permeation^{21,90}. We utilized the Cryo-EM structure of the expanded CeTMC-1 complex 153
- (PDB ID: 7USW)⁵⁵ as a reference for structural alignment, and employed the *AlphaFold2* and *Maestro* 154
- 155 software⁹¹ for structural modeling. The assembled complex was compared to the CeTMC-1 cryo-EM
- 156 structure, confirming that the TM10 domain adopted the characteristic domain-swapped conformation⁵⁵,
- 157 which is a structural requirement for the proper oligomerization of MmTMC1 (Figures 1-2). Since some
- previous reported TMC1 simulations do not include TMIE^{21,90}, we decided to introduce this component⁵⁵ 158
- 159 in our modeled mouse MET-channel complex.
- 160 Next, the model was subjected to energy minimization, followed by embedding into a pre-equilibrated
- 161 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) phospholipid membrane and solvation with a
- 162 final ionic concentration of 0.15 M KCl (Figure 2) (See Methods). Subsequently, the system underwent
- 163 25 ns of restrained MD simulation. The Root Mean Square Deviation (RMSD), which measures global
- 164 structural changes across all backbone atoms, was monitored to assess conformational stability.
- 165 Equilibration was achieved after 2 ns of MDs, and the RMSD of all backbone atoms remained within 2 Å
- 166 distance for the entire complex throughout the remaining simulation time (Supp Figure 2A), indicating
- 167 stable conformation of the modeled structure.
- 168 When analyzing hetero-subunits independently, no major changes were observed along the 25 ns
- 169 trajectory, which is in agreement with the literature for MDs of membrane proteins^{92–94}. Both TMC1 and
- 170 CIB2 protomers remained stable during the 25 ns MDs, with RMSD values at ~2 Å. Some fluctuations
- were also observed in the C-terminal TMIE domain, with RMSD values within 4 Å along the trajectory. 171
- This behavior was likely attributable to the "elbow-like" linker⁵⁵ as a new flexible component of the MET 172
- 173 complex, allowing for the TMIE cytoplasmic helix to move more freely (Figure 2C, and Supp Figure 2A).
- 174 Root Mean Square Fluctuation (RMSF) analysis, which assesses local atomic fluctuations and flexibility.
- revealed that TMC1 chains exhibited fluctuations under 2 Å, similar to its paralog TMEM16A95 (Supp 175
- 176 Figure 2C). Even though TMIE has limited interactions with TMC1, its single pass N-terminal TM domain
- 177 fragment presented low fluctuations, likely because it is embedded within the bilayer membrane (Figure
- 178 2C and Supp Figure 2C). In contrast, the C-terminal cytoplasmic helix of TMIE displayed larger
- 179 fluctuations, likely because it is positioned outside the bilayer membrane and is exposed to solvent, hinging
- 180 about a flexible region (Figure 2C and Supp Figure 2C). Similarly, the CIB2 protomers displayed
- 181 comparable RMSF fluctuations in their N-terminal domains, likely due to the random-coil configuration of
- 182 these regions (Supp Figure 2C).
- 183 The spatial distribution of atoms within the MET complex was assessed using the radius of gyration (*Rg*)
- 184 measurements (**Supp Figure 2B**), and no major changes were detected, with Rg values remaining within
- 185 1 Å consistent with reports from other 100 ns simulations of membrane proteins. Thus, our results align
- with previously reported MD simulations of membrane proteins^{92–94,96}. To further ensure that the stability
- 186
- 187 of the MET complex was indeed achieved within 25 ns, we extended the simulation to 100 ns under 188 identical MD conditions, revealing no major structural changes (Supp Figure 2D-F). This stability can be
- 189 attributed, in part, to the constraints applied during the simulation, ensuring the stability of the ion channel,
- 190 and resulting in minimal, if any, conformational differences within the TMC1 protomers and its pores during

- 191 25 ns vs 100 ns simulation periods (**Supp Figure 2G-J**). Notably, our HOLE⁹⁷ analysis demonstrated that
- the calculated average pore radius (± standard deviation) remained consistent, with no major changes in
- 193 the pore size distribution. This was assessed at 1 nanosecond intervals for the pore of chain A, and
- compared across the 25 ns and 100 ns trajectories (Supp Figure 2H).
- During the 25 ns MD simulations, various phospholipids were observed migrating into the pore, positioning
- their polar heads near the top and the bottom of the putative TMC1 pore cavity, with their hydrophobic
- tails directed towards the pore (Figure 2F, and Figures 4C, 4G-I). These lipid movements along the
- trajectory agree with the findings reported in the literature^{55,90}, where phospholipids were suggested to
- move dynamically between the TM4 and TM6 domains of TMC1^{21,90}, providing further insights into the
- structural dynamics and lipid-protein interactions within the TMC1 pore.
- 201 Furthermore, our analysis revealed the presence of several water molecules and potassium (K⁺) ions
- within the pore cavity during the MD simulation, indicating a hydrated pore (Figure 2F). These findings
- are in agreement with previous reports, which emphasize the importance of a hydrated environment in
- facilitating potential drug binding within the TMC1 pore^{18,21,55,57,88,90}, further supporting our structural model.
- The combination of MD simulations and channel pore analysis by HOLE⁹⁷, has facilitated the identification
- of three primary target regions within the two elongated TMC1 pores (Figure 2). Along the z axis, we have
- assigned these regions to an expanded top site located near the extracellular region, a narrowed middle
- site within the transmembrane segment, and a more expanded bottom site near the intracellular region
- 209 (Figure 2B). The target regions we identified are suitable for screening of druggable-binding sites within
- 210 the pore and can facilitate a comprehensive conformational search of both known and novel TMC1
- interacting molecules using molecular docking (**Figure 1**, and **Figure 2B-E**).

Identification of common pharmacophores for MET channel block.

- 213 In this study, we analyzed the chemical structures of known MET channel blockers and identified 3D-
- pharmacophoric features that contribute to their antagonistic activity (**Figure 1, Table 1, Supp Table 1**).
- 215 These 3D elements include specific functional groups, spatial arrangements, or physicochemical
- 216 properties that are essential for binding to the MET channel and modulation of its function. The 3D-
- 217 pharmacophoric models were then used to screen large chemical databases to identify new candidate
- compounds with similar pharmacophoric features. Suitable hit compounds were then tested *in vitro*.
- 219 We used the Pharmacophore Alignment and Scoring Engine (*Phase*)⁶⁸ software, an intuitive
- pharmacophore modeling tool (See *Methods*) to design 3D-pharmacophore models representing the main
- 221 structural features of known MET channel blockers. These 3D-pharmacophore features were extracted by
- assembling a training set consisting of 13 structurally diverse compounds, including UoS-7692³³, UoS-
- 223 3607³³, UoS-3606³³, UoS-5247³³, UoS-962³³, Proto-1⁹⁸, E6-berbamine⁵⁴, hexamethyleneamiloride³⁷,
- amsacrine³⁷, phenoxybenzamine^{37,99}, carvedilol-derivate 13⁵³, ORC-13661^{34,36}, and FM1-43^{58,59}, a
- 225 positively charged styryl dye often used to label hair cells and to check MET-channel function^{58,59} (**Figure**
- 226 **1** and **Supp Table 1**).

- These compounds coalesced into 10 predicted pharmacophores (Table 1 and Figure 3), which were
- 228 ranked based on their *PhaseHypoScore* values⁶⁸. The top-scoring pharmacophore, designated as APRR
- 229 (ID #1), achieved a PhaseHypoScore of 0.780. High PhaseHypoScore values indicate how well the
- pharmacophoric-feature vectors align with the structures of the compounds in the 3D-pharmacophore
- 231 model (See Methods). All 10 3D-pharmacophores along with their matching compounds, are reported in
- 232 Supp Table 2 and Supp Figure 3.
- 233 The APRR pharmacophore consists of four key features: one hydrogen bond acceptor group (A), one
- positively charged group (P), and two aromatic rings (R) (Figure 3A). Notably, this model matched 7 out
- of the 13 known MET blockers reported in the literature, which we used as a training set for this study
- 236 (Table 1, Figures 3A-I, and Supp Table 2). The remaining nine pharmacophores (ID #2 to #10) were
- 237 modeled with three pharmacophoric features, reaching *PhaseHypoScore* values between 0.340 and 0.762
- 238 (**Table 1**).

- 239 Most of these pharmacophore models shared at least one common aromatic ring (R), and one acceptor
- group (A), except for the PRR (ID #4) and HPP (ID #10) models. Furthermore, the top four
- pharmacophores: APRR, APR-1, APR-3, and PRR (IDs #1 to #4) contained one protonatable group (P),
- 242 matching 7 (APRR), 9 (APR-1), 8 (APR-3), and 7 (PRR) of the 13 known MET blockers, respectively. This
- suggests that a protonatable amine (positively charged N^+ group) is likely crucial for blocking TMC1
- activity, consistent with experiments reported in the literature^{33,53,57}.
- To validate our pharmacophore models, we tested their ability to discriminate between decoys and known
- MET channel blockers. We evaluated the performance of the models using the area under the curve (AUC)
- of the corresponding receiver operating characteristic (ROC) curve. The AUC value ranges from 0 to 1,
- 248 with 1 indicating ideal performance and 0.5 indicating random behavior. All AUC values for our models
- ranged from 0.86 to 0.99 (**Supp Table 3**), demonstrating that our pharmacophore models can accurately
- 250 classify compounds as active or inactive. Additionally, all the active compounds (known MET-channel
- blockers) were successfully identified by each pharmacophore model.
- We further evaluated the performance of each pharmacophore using the Güner-Henry (GH) scoring
- 253 method. This metric is a reliable indicator, because it incorporates both the percentage ratio of active
- 254 compounds in the hit list and the percentage yield of active compounds in a database. The number of
- active and decoy compounds for each pharmacophore, along with the characteristics for GH (eg,
- sensitivity (Se), specificity (Sp), enrichment factor (EF), percentage yield of active compounds (Ya), and
- 257 % yield of actives (% Yield) are listed in **Supp Table 3**. Eight out of the ten pharmacophore models have
- 258 a GH score higher than 0.7 indicating that these models are good and reliable $^{100-103}$. Some studies
- 259 consider a GH score greater than 0.5 to indicate a good model reliability 104, suggesting that
- pharmacophores ARR-1 (GH score = 0.675) and HRR (GH score = 0.664) are also valid models.

Pharmacophore-based virtual screening of hit compounds.

- Next, we employed Pharmacophore-Based Virtual Screening (PBVS), a computational method for
- screening large chemical databases to identify molecules that possess pharmacophoric features similar
- to a reference pharmacophore model⁶⁸. In this study, we screened for compounds that matched any of
- the 10 pharmacophore models we developed. We used two libraries of compounds as databases: Library
- 266 1, which contains over 230 million commercially available, non-FDA-approved compounds (ZINC20
- database)¹⁰⁵, and Library 2, which consists of 1,789 FDA-approved drugs (MicroSource Discovery
- 268 Systems)¹⁰⁶.

- 269 PBVS was carried out using two consecutive steps. In the first step, we used ZINCPharmer¹⁰⁷, a free
- 270 pharmacophore search software, to screen commercial compounds from the ZINC database¹⁰⁵. The
- 271 second step involved the Phase (see Methods), which employs a PhaseScreenScore function that
- evaluates both the quantity (partial compound matching) and quality of ligand feature matching. This
- evaluation includes site matching, pharmacophore feature alignment, and volume-scoring components for
- each compound 108.
- 275 The first step of our PBVS analysis involved inputting the 10 pharmacophore models into the
- 276 ZINCPharmer¹⁰⁷ (see **Table 1** and **Supp Figure 3**). We then selected the top 5,000 compounds with the
- lowest RMSD, indicating a good fit to the respective pharmacophore model, resulting in a total of 50,000
- 278 pre-filtered compounds (5,000 compounds × 10 pharmacophore models). After pharmacophore matching
- with ZINCPharmer, we selected only those compounds that matched with two or more pharmacophore
- 280 models to increase the reliability of our PBVS. This filtering resulted in 4,187 compounds from the ZINC
- database that matched with one or more pharmacophore models (**Supp Table 4**).
- Next, the 4,187 chemical structures were processed using the LigPrep¹⁰⁹ and Epik^{110,111} modules of the
- 283 Maestro software⁹¹ (See Methods) to structurally optimize the dataset and perform the second step of
- 284 PBVS with *Phase*. *LigPrep* module was used to generate 3D structures and optimize their geometry, while
- the Epik module predicted up to 10 different optimized structures (i.e. conformations) per each of the 4,187
- 286 compounds, accounting for protonation and ionization states, tautomers, and chiralities at specific pH

- levels (see *Methods*). This increased the total number to 4,501 processed molecules, including 314 additional conformational pairs, identified with different protonation or structural conformations.
- 289 Subsequently, we performed the second step of Phase-PBVS screening and calculated the highest
- 290 PhaseScreenScore values from the 4,501 processed molecules corresponding to each of the 10 pharmacophore models. Of the 314 additional molecules that represented various confirmations of the
- pharmacophore models. Of the 314 additional molecules that represented various confirmations of the original compounds, we selected the best *PhaseScreenScore* value across all conformations for each
- compound, reducing the library down to 4,187 optimized molecules (Supp Table 4).
- 294 The results were ranked based on their *Total-PhaseScreenScore* (*TPS*_s) ranging in values between 1.157
- and 21.512. These values were then used to calculate the docking threshold (D_T), set to TPS_S score values
- above the mean plus two standard deviations (Mean + 2 SD), as a requirement for selecting compounds
- for final molecular docking (see *Methods*, Equation 1). Of the 4,187 optimized compounds from Library 1,
- 298 many aligned with multiple pharmacophore models (Supp Figure 4A): 1,625 compounds matched six of
- the ten different pharmacophores, while 16 optimized compounds matched only two pharmacophores.
- 300 After applying the D_T threshold, 207 effective compounds were selected for molecular docking to predict
- their binding modes (**Supp Figure 4B**).
- 302 A similar second Phase-PBVS screen was performed for compounds from Library 2 using Phase. First,
- 303 the 1,789 FDA-approved drugs underwent ligand optimization (including the assignment of charges,
- determination of protonation states, tautomer, and chirality determination) using LigPrep¹⁰⁹ and Epik^{110,111}
- 305 modules of the *Maestro* software⁹¹ (see *Methods*). This resulted in a total of 2,628 optimized drug
- 306 molecules, including 839 additional confirmations, reflecting different protonation states, conformers,
- 307 stereoisomers, and enantiomers for each compound. All 2,628 optimized drug molecules were used for
- 308 PBVS to determine their *PhaseScreenScore* and *TPS*_S values. For the 839 additional molecules, the best
- 309 PhaseScreenScore value was selected, reducing the library down to the 1,789 structurally optimized drug
- 310 molecules (**Supp Table 5**).
- 311 Among the 1,789 structurally optimized drugs, 906 matched to one or more pharmacophore models: 332
- matched one of the ten different pharmacophores, 574 aligned with two or more pharmacophores, and 26
- of those optimized drugs matched all ten pharmacophores (Supp Figure 5C, and Supp Table 5).
- 314 Conversely, the remaining 883 drugs were excluded by the PBVS as they did not match any
- 315 pharmacophores. The *TPS*_S values for the matching drugs ranged between 0.419 and 18.593 (**Supp**
- **Table 5**). Subsequently, we calculated the docking threshold (D_T) values to select compounds that will
- pass for the next step of molecular docking, identifying 53 effective compounds (**Supp Figure 4D**). In this
- 318 second step of PBVS, the optimized molecules from Library 1 exhibited higher *PhaseScreenScore* results
- compared to those from Library 2 (Supp Figure 4). This is likely because, unlike Library 1, Library 2 is
- 320 smaller and was not pre-screened using ZINCPharmer in the first step of PBVS. In contrast to the ZINC
- database, the smaller size of the FDA-approved dataset made it computationally feasible to screen all
- 322 compounds directly.

- 323 A closer examination of the structural features of each pharmacophore model and the matching selected
- 324 compounds from Libraries 1 and 2 suggests that the best-scoring ligands adhere to three or four common
- 325 point-pharmacophoric features. In Library 1, the APRR model was the highest-ranked pharmacophore
- model for the compound ZINC26876007, with a *PhaseScreenScore* of 2.449 (**Supp Table 4**). In Library
- 327 2, carvedilol was the highest-ranked compound, scoring best with both, the APR-1 model
- 328 (PhaseScreenScore = 2.301) and the APRR model (PhaseScreenScore = 1.736) (Supp Table 5). The
- 329 identification of carvedilol as a potential compound further validates our PBVS design, as carvedilol was
- previously reported as a MET channel blocker^{37,53}, despite not being included in our training set of
- compounds used to design the pharmacophores (**Supp Tables 1-2**).

Predicting binding sites of known MET blockers within the pore region of TMC1

- Next, we used molecular docking and molecular mechanics with MM-GBSA methods to predict the binding
- 334 sites and affinities of 16 known MET blockers within the pore region of TMC1 (See *Methods*).

- 335 This set included 13 blockers used in the training set for building 3D-pharmacophore models (Figure 1,
- Supp Table 1), as well as three known potent MET blockers: benzamil^{33,38,112–114}, tubocurarine^{19,114}, and
- 337 DHS^{17,22,115,116}. These three additional blockers are potent MET blockers but were not included in the
- training set due to chemical similarities with other blockers, such as functional moieties found in E6-
- berbamine and hexamethyleneamiloride (Figure 1A).
- 340 To explore the conformational space of the TMC1 pore, we performed docking simulations using our
- 341 modeled open-like mmTMC1 structure in complex with CIB2 and TMIE. We used HOLE analysis to identify
- 342 and characterize the pore, allowing us to precisely target the transmembrane region for docking
- simulations (**Figure 2**). A gridbox of $41_x \times 41_y \times 41_z$ Å³ was positioned to cover the pore region. The
- placement of the grid box is based on solid experimental evidence indicating that the pore of TMC1 is a
- pathway for both ion and small molecule uptake into hair cells. Thus, the grid box effectively encompassed
- the chemical space of the TMC1 pore, making it suitable for molecular docking. Docking simulations were
- carried out with the membrane bilayer from equilibrated 25 ns MDs. During the docking process, ligands
- were allowed to move freely without constraints (**Figure 2**).
- 349 Two phospholipid molecules (referred to as POPC-A and POPC-B) were identified near the top (residues
- R523 and N404) and the bottom (residues T416, D419, R543, and D569) regions of the pore. These
- 351 phospholipids were observed to enter the pore cavity and form a sidewall between TM4 and TM6 along
- 352 the pore region (Figure 2F, Figure 4C, and Figure 5G-I), potentially modulating the accessibility and
- binding of small molecules with their polar and hydrophobic moieties.
- 354 Using the standard precision (SP) scoring function to enrich the conformational sampling of the
- compounds within the TMC1 pore, we predicted a total of 178 docking poses for the abovementioned 16
- 356 MET blockers. Each blocker generated up to 10 poses, including the R and S stereoisomers for
- 357 tubucurarine and phenoxibenzamine. These poses were evaluated using the *Emodel* score¹¹⁷ (see
- 358 *Methods*), which reflects the quality of each cluster of poses.
- 359 All compounds successfully docked in three main areas of the pore, which we have named the top, middle,
- and bottom sites (**Figure 2B** and **Figure 4**). At the **top site**, key residues involved in binding include F451,
- E520, R523, S527, and the phospholipid POPC-B. At the **middle site**, important residues include M407,
- 362 S408, M412, N447, D528, T531, T532, and R601. At the **bottom site**, key residues identified are T535,
- D569, and the phospholipid POPC-A. A detailed list of key binding residues and their interactions with the
- 364 blockers, including benzamil, tubocurarine, and DHS are presented in **Supp Table 6.**
- 365 FM1-43 Predictions
- FM1-43, a positively-charged fluorescent dye commonly used to test for functional MET channels^{57–59},
- displayed interactions across all three regions of the TMC1 cavity, particularly with residues of the TM4
- and TM5 helices (Figure 5A). At the top site of the pore (depicted in *gold*), FM1-43 is positioned between
- $_{369}$ F451 and N404 and exhibits a 4.14 Å cation– π interaction between its positive triethylammonium group
- and F451 (**Figure 4D** and **5A**). This group is also surrounded by the negatively charged residues E458
- and E520, engaging in a zwitterionic-hydrogen bond network (referred to as the ZN1 site) formed by D239,
- R523 and the polar head of POPC-B at the entrance of the pore (Figure 5A and Supp Figure 5).
- Additionally, hydrophobic interactions with M403 and M407 further stabilize FM1-43 in this region.
- Within the middle site of the pore (Figure 4, shown in light gray), the hydrophobic aromatic core of FM1-
- 375 43 interacts with the tail of POPC-B, which further stabilizes the ligand within the cavity. The benzene
- group of FM1-43 forms close hydrophobic contacts with residues G411 (TM4), L444 (TM5), as well as
- 377 V574 and L575 (TM7). At the bottom of the pore (**Figure 4**, shown in *light red*), the positively charged
- 378 dibutylamine group is positioned near the polar head of POPC-A, pointing towards residue D569. Since
- both the docking and MM-GBSA methods use a dielectric field to implicitly simulate water molecules, we
- 380 acknowledge the possibility that water molecules may participate in the binding interactions of the
- dibutylamine group with D569 and POPC-A if simulated with explicit solvent (**Supp Figure 5**).
- Notably, docking results predicted that the positively charged atoms of FM1-43 are located inside the pore,
- while some structural moieties are docked outside the HOLE-pore contour, closer to the phospholipid wall.

- This suggests that ions and ligands may follow distinct permeation pathways while sharing common key
- amino acid residues involved in both cation and ligand binding (**Supp Figure 6**).

386 <u>Tubocurarine Predictions</u>

- The alkaloid tubocurarine exhibited interactions at the middle and bottom sites of the pore (**Figure 4F** and
- 388 **4I**). Like FM1-43, tubocurarine displayed analogous interactions around the TM4, TM6, and TM7 domains
- of TMC1. The positive dimethyl-ammonium group of the tetrahydroisoquinoline moiety is positioned near
- residues S408 and N447, and a hydrophobic interaction was observed with residue F579 (TM7) within the
- 391 middle site of the pore (**Figure 5C**). The phenolic group linking the two tetrahydroisoguinoline scaffolds
- forms a hydrogen bond with residue T535 and is in close contact (4.12 Å) with T531 on TM6. T535 is
- adjacent to a second identified zwitterionic-interaction zone, composed by D528, T531, T532, R601, and
- N580, which we refer to as the ZN2 site (**Supp Figure 5**).
- 395 In the bottom site, the protonatable amine of the second methyl-tetrahydroisoquinoline scaffold forms a
- dual salt bridge with D569 at a distance of 4.22 Å, and a hydrogen bond with the phosphate group of
- 397 POPC-A at 2.82 Å, a component of a third zwitterionic-interaction network (ZN3) (Figure 5H). The
- 398 distances were measured between heavy atoms and the polar N⁺ group.

399 Benzamil Predictions

- 400 Benzamil primarily engages in significant interactions at the bottom site (depicted in *light red*) of the pore
- 401 cavity. The amine group at position 3 of the pyrazine ring forms dual hydrogen bonds with D528 and T532
- on TM6. These residues, along with R601 (TM8), N598, and N580 (TM7), constitute the ZN2 site, which
- effectively clamps and stabilizes the pocket formed between TM6, TM7, and TM8 (**Figure 5B** and **Supp**
- 404 **Figure 5**). The 6-chloropyrazine ring is located near residue N573 (TM7) and Q609 (TM8). The N-
- benzylcarbamimidoyl group interacts with residue M412, the site of the M412K Beethoven mutation on
- 406 TM4¹¹⁸, as well as with the hydrophobic tail of POPC-A, forming van der Waals interactions.
- In addition, the positively charged amidino group forms a salt bridge with D569 (2.82 Å) and a hydrogen
- 408 bond with the phosphate head of POPC-A (3.1 Å). This phosphate head further establishes a hydrogen
- 409 bond with T416, thereby expanding the ZN3 interactions at the bottom site (Figure 5G and Supp Figure
- 410 5). Our results indicate that the ZN1, ZN2, and ZN3 interaction zones play crucial roles in ligand binding
- 411 and TMC1 stabilization at the top (along with F451), middle, and bottom sites of the TMC1 pore,
- 412 respectively.
- Notably, these zwitterionic zones contain known residues implicated in ion permeation, such as D528 and
- 414 D569, which are essential for ligand binding, blocking the TMC1 pore, as well as TMC1 protein
- expression^{85,119,120}. In addition, our results suggest that residues T532 and T535 are essential for hydrogen
- bonding interactions with benzamil and tubocurarine, respectively.

417 DHS Predictions

- 418 LigPrep and Epik predicted two main charged forms of DHS, consistent with structures reported in the
- 419 literature 121,122. One form, referred to as DHS 2+, carries two positive charges due to the protonation of the
- 420 two guanidinium groups in the streptidine moiety (**Figure 6A-D**). The second form, DHS 3⁺, has an
- additional positive charge from the protonated *N*-methyl-*L*-glucosamine moiety (**Figure 6E-F**).
- 422 DHS 2⁺ displayed interactions towards the middle and bottom sites of the TMC1 pore (**Figure 6B-C**). Like
- most of the middle-site interactions analyzed above, the neutral *N*-methyl-*L*-glucosamine moiety of DHS 2⁺
- formed double hydrogen bonds with D528 on TM6, and the backbone carbonyl of S408 on TM4 at the
- 425 middle site. Within the bottom site, the hydroxyl and the guanidinium groups of the streptidine moiety show
- 426 direct interactions with N573 on TM7, D540 on TM6, and the negatively charged head of POPC-A (Figure
- 427 **6D**).
- 428 Similarly, DHS 3⁺ displayed direct interactions with residues D528, S408, D540, N573, and the
- 429 phospholipid head of POPC-A. Additionally, the streptose moiety formed hydrogen bonds with the
- backbone carbonyl groups of G411 on TM4 and G572 on TM7. One guanidinium group of the streptidine

431 pointed towards T416, forming direct interactions with the backbone carbonyl of M412 on TM4, while the 432 second quanidinium group interacted with the backbone carbonyl of E567 (Figure 6E-F).

433 434

435

436

437 438

439

440

441

446

451

453 454

455

456 457

458

459

476

477

478

Our findings propose DHS-TMC1 interactions through residues G411, G572, S408, D540, N573, and E567. These newly predicted interacting residues, along with the well-characterized M412, T416, and D528 interaction sites of DHS^{88,115}, further validate our docking predictions and provide strong confidence in the predicted docking poses of other compounds studied in this work. Furthermore, our predictions also suggest that phospholipids may play a key role in DHS binding. Overall, our results for DHS interaction within the TMC1 pore are consistent with previously reported results obtained using in vitro electrophysiology data^{88,115}, thereby reinforcing the validity of our predictions (**Figure 6**).

Phospholipid effect on ligand binding affinities in the TMC1 pore: MM-GBSA rescoring analysis.

442 During the MD simulations, phospholipids (specifically POPC-A and POPC-B) were found to form a lipidic 443 "sidewall" between two transmembrane domains, TM4 and TM6. This close proximity to the pore raised 444 the question of whether the presence of these phospholipids influences the binding affinity of blockers to 445 the TMC1 protein.

447 of the 16 MET blockers to the TMC1 protein in the absence of phospholipids. We calculated the relative 448 binding free energies (ΔG_{bind}) for the ligands (the known 16 blockers, listed in Supp Table 7) also using 449 MM-GBSA. We then investigated whether interactions with POPC-A and POPC-B affected the TMC1-450 ligand binding energies (**Supp Table 7**). ΔG_{bind} calculations performed both with and without phospholipids indicated that the presence of POPC-A and POPC-B generally leads to more thermodynamically favorable 452 ΔG_{bind} energy values for most of the compounds tested.

To investigate this, we first re-scored the docking results using MM-GBSA to predict the binding strength

Among the compounds, FM1-43⁵⁷⁻⁵⁹ (**Figure 4D** and **Figure 5A**) and E6-berbamine⁵⁴, which have distinct structural scaffolds yet fitting similar pharmacophores (Figure 1, Figure 3, Table 1, and Supp Table 2) exhibited the strongest binding affinities with and without phospholipids (Supp Table 1 and Supp Table 7), consistent with their reported channel blocking potencies^{54,57–59}. While hexamethyleneamiloride showed a slightly higher ΔG_{bind} value, UoS-7692 displayed a less negative ΔG_{bind} value, possibly due to the presence of the two fluorine substituents in acetophenone moiety at meta and para positions. Overall, our molecular docking and MM-GBSA analyses suggest that phospholipids may enhance the strength of TMC1-blocker interactions.

460 461 Binding modes and affinities of newly identified hit compounds within the TMC1 pore. 462 We next implemented the same in silico strategy to the compounds obtained from PBVS in the two 463 libraries: 464 Library 1 (non-FDA-approved compounds): Our initial analysis focused on the best 200 compounds from 465 Library 1 with the lowest MM-GBSA ΔG_{bind} values, without considering phospholipids. However, only 45 of these compounds were commercially available for subsequent in silico experiments (Supp Table 8). 466 Using the Tanimoto-similarity coefficient (see *Methods*) we identified structurally diverse compounds. 467 468 resulting in 15 different molecular clusters (See cluster IDs in Supp Table 8). From these, we selected hit 469 compounds based on binding affinities from clusters that included 3 or more compounds. Specifically, 470 three hits with the lowest ΔG_{bind} values (without phospholipids) were selected as representatives from 471 clusters 1.1 and 1.2, while one hit was selected to represent clusters 1.3 to 1.6 (Supp Table 8).

472 Library 2 (FDA-approved drugs): Among the 53 compounds analyzed from Library 2, all of which were 473 commercially available, the Tanimoto-structural diversity analysis provided 10 different molecular clusters 474 (see cluster IDs in Supp Table 8). One compound with the lowest ΔG_{bind} value (MM-GBSA without 475 phospholipids) was selected from each cluster for further evaluation.

We subsequently verified whether the selected hits identified through MM-GBSA and Tanimoto analysis without phospholipids also exhibited thermodynamically favorable MM-GBSA ΔG_{bind} energies in the presence of phospholipids. As with the known blockers (Supp Table 7), MM-GBSA results in the presence

- of phospholipids generally showed improved ΔG_{bind} energies for hit compounds from both libraries. This
- 480 confirmed that the selected hits after MM-GBSA and Tanimoto analysis were consistently top ranked in
- both MM-GBSA subgroups, with and without phospholipids (**Table 2**). Ultimately, 10 hits were selected
- from each library for experimental evaluation in cultured cochlear explants (**Table 2**, **Figures 7-8**).
- Next, we analyzed the binding interactions for selected newly identified compounds within the TMC1 pore,
- focusing on their binding within the top, middle, and bottom sites of the pore, as guided by HOLE analysis
- and molecular docking (**Figure 2B** and **Figure 5**). Below, we describe interactions for some representative
- 486 molecules.

- Posaconazole is predicted to establish key contacts within the TMC1 pore (Figure 5D). Its molecular
- length, measured using *Maestro* software package, suggested an extensive length of 28 Å (end-to-end
- distance), allowing posaconazole to interact across the pore. At the top site, the triazole ring forms a
- 490 hydrogen bond with N404 and polar interactions with the phosphate head of POPC-B at the ZN1 site. In
- the middle region, the dichlorophenyl-furan moiety of posaconazole stacks against M403, M407, and
- F451. The aromatic rings display van der Waals interactions with residues on TM5, TM6, and TM7 where
- the positively charged piperazine ring forms a salt bridge with D528 (3.02 Å) in the ZN2 site. At the bottom
- site of the pore, the triazinone ring forms a hydrogen bond with N573 and the hydroxyl group interacts with
- 495 D540 in the ZN3 pocket.
- 496 Another non-FDA-approved compound, ZINC24739924, docked at the bottom site of the pore, forming
- 497 close contacts with residues of TM8 (Figure 5E). The benzotriazinone moiety of ZINC24739924 stacks in
- 498 the ZN3 pocket between the polar head of POPC-A, T535, D540, and N573. The charged triazine group
- 499 makes close contacts with D540, F568, and N573. In addition, the positively charged amine forms a
- 500 hydrogen bond with the phosphate group of POPC-B, while the benzyl moiety forms van der Waals
- contacts with M412 and the tails of both POPC-A and POPC-B, stabilizing the ligand (**Figures 5E** and **5I**).
- Furthermore, the trifluoro-methoxy substituent exhibits polar interactions with T535 (3.16 Å) of the ZN3
- site. A similar binding pattern was observed for another novel TMC1 modulator, ZINC58438263, which
- has a 3-methyl-anisole moiety and binds to the ZN3 site of TMC1 (**Supp Figure 5**).
- 505 Finally, the FDA-approved drug cepharanthine shared similar interactions to its homolog alkaloid
- tubocurarine within the top, middle, and bottom sites of the TMC1 pore (**Figure 5F**). Similar to FM1-43,
- 507 molecular docking and HOLE showed that its positively charged nitrogen is located within the predicted
- pore radius of TMC1 (**Supp Figure 6**). At the top site, the methoxybenzene moiety displays hydrophobic
- interactions with N404 and polar interactions with S408 (3.98 Å) on TM4. In the middle site, the aromatic
- 510 rings stacked towards the TM4, TM5, and TM7 domains, positioning the methylated methoxy-
- 511 dihydroisoguinoline and the dioxolane moieties between the TM5 and TM7 helices near residues L444
- 512 (TM5) and F579 (TM7). The second protonated dihydroisoguinoline is positioned towards the TM4 helix
- close to M412 (3.44 Å), G411 (3.73 Å), and the hydrophobic tail of POPC-B (3.49 Å). Unlike tubocurarine,
- 514 cepharanthine did not form a direct interaction between its protonated amine and D569 or the polar head
- of POPC-A. However, it is possible that water molecules could facilitate these interactions at the
- 516 cytoplasmic region of the ZN3 pocket (**Figure 5F**).

Identification of key residues modulating TMC1-ligand interactions

- 518 We conducted a comprehensive structural analysis of residues within a 5 Å radius of each docked
- 519 compound within the pore cavity to identify key TMC1-ligand interactions. This analysis included 16 known
- MET channel blockers, and 20 hit compounds from *Libraries* 1 and 2 (**Supp Table 7**, **Table 2**, **Figure 7**),
- 521 totaling 36 compounds. We examined all TMC1 residues lining the pore based on their contact frequency
- 522 with the ligands, as determined by our docking and MM-GBSA pipeline analysis. Residues were
- 523 categorized as high-contact (contact frequency >0.5) or low- contact (contact frequency <0.5), indicating
- whether more than 50% or less than 50% of evaluated ligands interacted with each residue, respectively
- (Supp Figure 7, with residues scoring above or below the *red dashed line*).
- Notably, several previously characterized residues known to influence TMC1 channel function, such as
- 527 *Mm*TMC1 M412, D528, T531, and D569^{18,90,115,119,124–127}, were identified as high-contact-frequency

- 528 residues in this study, suggesting their accessibility for ligand interactions. More importantly, we also
- identified a set of novel residues with contact frequencies exceeding 0.5, indicating their likely involvement
- in modulating TMC1-ligand interactions. These residues include M407, S408, G411, P415, T416, I440,
- 531 L444, N447, L524, T532, T535, G572, N573, A576, F579, M583, and R601.
- Additionally, both POPC phospholipids showed the highest contacts frequencies, suggesting that they
- 533 may play a significant role in modulating TMC1 function. In summary, our pipeline, which combines
- 534 molecular docking with MM-GBSA, effectively predicts high-contact-frequency residues that are likely to
- modulate TMC1-ligand binding across the three druggable binding sites along the TMC1 pore.

Validation of novel TMC1 modulators in cochlear hair cells using AM1-43 dye loading assay.

- To validate our *in silico* findings, we conducted a fluorescent dye loading assay using the FM1-43
- analogue, AM1-43, to assess the ability of newly identified compounds to block the MET channel in murine
- 539 cochlear hair cells. When briefly introduced into the bath solution, these large, positively charged
- 540 fluorescent dyes enter hair cells through MET channels, which are open at rest. As such, FM1-43 and
- 541 AM1-43 are commonly used as indicators of MET channel activity, allowing us to evaluate the
- 542 effectiveness of each compound in interacting with the pore and modulating the dye loading through the
- 543 MET channel (Figure 8).
- For these experiments, cochlear explants from postnatal day 3 (P3) mice were cultured for two days in
- vitro at 37 °C and 8% CO₂. The explants were then exposed to either AM1-43 alone (positive control,
- supplemented with 2% DMSO) or in combination with the compound for 60 seconds, following a prior 60-
- second pre-incubation with the compound. After rinsing off excess dye and neutralizing background
- fluorescence with the 4-sulfonate calix[8] arene sodium salt (SCAS) quencher, live imaging of the explants
- was conducted using confocal microscopy.
- 550 The fluorescence intensity levels of outer hair cells were individually quantified using the Cellpose
- algorithm¹²⁸ and normalized to the average values measured from explants treated with AM1-43 only,
- separately for each experimental session. As an additional control, we incubated some cochlear explants
- with 100 µM tubocurarine or benzamil, two well-established potent MET channel blockers known to largely
- prevent FM1-43 uptake^{19,112,114} (see *Methods*). All compounds tested *in vitro* were applied at a
- standardized concentration of 100 µM (**Figure 8**).
- Of the 20 structurally diverse hit compounds (**Table 2**), representing 10 compounds from each library, only
- 15 were tested ex vivo due to commercial availability. Most compounds (7 out of 15) showed a significant
- reduction in the AM1-43 dye loading through the MET channel (Figure 8 and Supp Figure 8). We used
- an arbitrary 60% cut-off threshold as indicative of an effective blockage, with the control values
- representing 100% fluorescence levels (**Supp Figure 8**).
- 561 From *Library 1*, the compounds ZINC24739924 (56.25 ± 21.29%), ZINC12986242 (46.1 ± 14.28%),
- 562 ZINC12430014 (60.94 ± 15.64), ZINC58438263 (46.8 ± 18.59%), showed significant reductions of AM1-
- 43 uptake. From *Library 2*, posaconazole (60.02 ± 19.12%), pyrithioxine (also called pyrithioxin or pyritinol)
- $(53.52 \pm 30.18\%)$, and cepharanthine $(48.09 \pm 20.72\%)$ exhibited the most promising results. Despite
- being less effective. ZINC06530230, nefazodone, indinavir, lapatinib, and ceforanide still significantly
- reduced AM1-43 loading. Interestingly, amitraz from *Library 2* appeared to have the opposite effect,
- increasing AM1-43 loading into OHCs (122.4 \pm 21.64%; **Supp Figure 8**).
- We selected representative compounds that interact within the top, middle, and bottom sites of the TMC1
- pore for illustration (**Figure 5**): posaconazole, cepharanthine, and ZINC24739924, three effective blockers
- 570 that reduced hair cell MET-mediated AM1-43 dye loading by approximately 50% (Figure 8, and Supp
- Figure 8). Overall, our ex vivo results align with our in silico predictions, indicating that compounds that
- were predicted to be thermodynamically favorable to interact within the TMC1 pore showed moderate but
- 573 significant reductions of AM1-43 loading when tested in cochlear hair cells. Further in vitro evaluation with
- additional biological replicates and single-cell electrophysiology is needed to carefully assess the potency
- of each hit compound. Thus, this ex vivo results support the efficacy of our in silico pipeline in identifying

576 novel MET channel modulators within a chemical space of millions of compounds and understanding their 577 potential binding interactions within the TMC1 pore.

Cepharanthine's dual role in TMC1 and TMEM16A modulation suggests shared pharmacophores.

Because of the structural and evolutionary relationship between the TMC and TMEM16 families of proteins 18,62,63,129, the structure and electrophysiological properties of TMEM16 proteins have garnered significant interest in studies involving TMCs. Interestingly, cepharanthine, one of the most potent FDA-approved drugs identified in this study for reducing the AM1-43 loading into cochlear hair cells (**Figure 8**), has also been previously reported to inhibit TMEM16A^{87,130}. Therefore, we investigated whether inhibitors of both TMC1 and TMEM16A proteins share common pharmacophoric features.

23, Zafirlukast, Niclosamide, Evodiamine, Tannic acid, theaflavin, E_{act}, and F_{act})^{87,130} against the 10 TMC1 pharmacophores (**Table 1**, and **Supp Figure 3**). Our results indicate that both cepharanthine and theaflavin share the same APRR pharmacophore (theaflavin matches with 9 pharmacophores). Although theaflavin lacks a protonatable amine, *Epik* predicted a protonated carbonyl group instead (**Supp Figures 9A-D**). Additionally, the ARR-2 pharmacophore exhibited similar vector features between cepharanthine

To do this, we used Phase to virtually screen 10 known modulators of TMEM16A (MONNA, Ani9, TMinh-

and Ani9, a known inhibitor of TMEM16A (Ani9 matches with 6 pharmacophores) (**Supp Figures 9E-H**).

Our predicted docking poses for cepharanthine indicate that it binds primarily at the middle and bottom sites of the *Mm*TMC1 pore, with some interactions at the top site near N404 (**Figure 5F**, **6E-H**, and **Supp Figures 9E-G**). However, previous studies have predicted and tested cepharanthine and theaflavin

binding to TMEM16A specifically towards the top site of the pore^{87,130}.

To better understand these discrepancies, we performed a comparative structural analysis between our open-like state of the *Mm*TMC1 model and the reported *Mm*TMEM16 structure (PDB code: 5OYB)¹³¹ (**Supp Figures 9I-L**). As reported in the literature, the *Mm*TMEM16 structure was used to predict the binding mode of cepharanthine and theaflavin only at the top site of the pore region^{87,130}, equivalent to the top site within the TMC1 pore (**Supp Figures 9I-L**). Preciously reported docking-guided site-directed mutagenesis experiments and *in silico* MD simulations have shown that mutations at the upper binding pocket of *Mm*TMEM16A attenuate the ability of cepharanthine and theaflavin to inhibit *Mm*TMEM16A currents^{87,132}.

The predicted *Mm*TMEM16A upper-binding pocket and the reported mutations can explain the decreased affinity of cepharathine and theaflavin if they only bind at the extracellular pocket of TMEM16A¹³². However, it is possible that open conformations of the *Mm*TMEM16 pore might expose druggable sites at the middle and bottom areas of the pore, as we predicted for TMC1 in this study (**Figures 4-5**, and **Supp**

However, it is possible that the predicted docking poses for *Mm*TMEM16A at its upper pocket site may have been influenced by a closed conformation of *Mm*TMEM16A and/or restricted by the use of smaller

611 gridboxes 87,132 during docking sampling. Consequently, the conformational space explored in

612 *Mm*TMEM16A might not have sampled potential druggable sites of cepharanthine and theaflavin within 613 the middle and bottom sites of the pore^{87,132}, as predicted for TMC1 in our study. This is consistent with

recent reports of open conformations of *Mm*TMEM16A and newly identified druggable pocket binding sites

615 across the pore 133,134 .

DISCUSSION

578

585

586

587 588

589

590

595

596

597

598

599600

601

602

603604

605

606

607

608

616

TMC1 is a nonselective cation channel which primarily mediates the influx of Ca²⁺ and K⁺ into hair cells in response to mechanical stimulation. Unlike other cation channels, TMC1 lacks a conventional cylindrical pore selectivity filter⁸², instead featuring a long-curved pore cavity that may be partially exposed to the plasma membrane^{21,55,90}. This structure allows TMC1 to be significantly permeable to bulky organic molecules, such as FM1-43^{57,58}, AGs¹⁷ and other large compounds. In fact, compounds as large as 3 kDa

- dextrans have been shown to permeate through TMC1¹³⁵. However, the atomic-level interactions of these compounds within the MET channel pore remains poorly understood.
- TMC1's permeability to aminoglycosides underscores its relevance in the context of aminoglycoside-
- 625 induced ototoxicity, a major concern in hearing health. Advancing our understanding of how these
- 626 compounds interact within the TMC1 pore could lead to the identification of novel otoprotective solutions
- to mitigate AG-induced hair cell damage.
- The main objective of this study was to identify the common structural features of known MET blockers
- and use this information to develop a pipeline for discovering novel MET modulators. Additionally, we
- aimed to explore how these modulators might interact within the TMC1 pore. To achieve this, we employed
- a comprehensive in silico approach that included 3D-pharmacophore modeling, AlphaFold2 modelling,
- 632 molecular docking, Tanimoto similarity analysis, and MM-GBSA ΔG_{bind} analysis. We screened two
- 633 compound libraries and identified 10 novel non-FDA-approved compounds and 10 FDA-approved drugs
- as candidates from a pool of over 230 million compounds. Seven of the 15 experimentally tested
- compounds showed a significant reduction in AM1-43 dye loading into hair cells (Figure 8 and Supp
- 636 **Figure 8**), validating our approach.
- Our in silico findings demonstrate that TMC1 possesses an enlarged cavity with druggable ligand-binding
- sites, capable of accommodating small molecules^{55,136}. We estimate that the pore's narrowest dimension
- 639 is approximately 4.5 Å diameter, which is larger than previously reported pore sizes (Figure 2B). This
- enlarged cavity provides multiple binding sites in the top, middle, and bottom regions of the TMC1 pore,
- which can accommodate a variety of ligands.
- A key outcome of this study is the development of universal 3D-pharmacophore models for MET blockers.
- These models can be used to screen millions of compounds *in silico* for further *in vitro* testing in hair cells.
- To our knowledge, this is the first *in silico* pipeline that combines molecular pharmacophore modeling, MD
- simulations, docking, and MM-GBSA analysis to identify novel MET channel modulators. Furthermore,
- this study also identified novel atomic details of ligand interactions within the TMC1 pore, revealing a
- synergistic combination of amino acids that form distinct druggable-binding sites at the top, middle, and
- bottom sites of the TMC1 pore cavity.
- Based on the docking poses of FM1-43 and AM1-43 (Figure 5A, and Supp Figure 5), we infer that the
- tight packing of both the triethylammonium and the dibutylamine groups at the top binding site of the TMC1
- pore, along with the presence phospholipids molecules, may explain why bulkier molecules such as FM3-
- 25 fail to block MET currents⁵⁸. Additionally, this tight packing could contribute to the slower permeation
- of these bulkier molecules compared to the fast uptake of FM1-43 in hair cells⁵⁹.
- The results presented in this work strongly support the idea that the ligands bind to key residues within
- the TMC1 pore, including M412, D528, T531, and D569. These residues have been shown influence both
- 656 the blocking effects of certain compounds (e.g., DHS, FM1-43) and the ion permeability of
- TMC1^{18,90,115,119,124–127}. Mutations in residues such as D528, D569, and M412 are known to cause deafness
- and alter mechanotransduction current properties of TMC1^{85,118,137}. This indicates that residues involved
- in modulation of the ion conductance may also play a role in TMC1-ligand interactions. However, our
- docking predictions suggest that the pathways for ion-conduction and ligand-permeation within the TMC1
- pore might be distinct, as chemical moieties of several docked ligands were predicted to bind in regions
- outside the predicted pore contour identified by HOLE analysis (**Supp Figure 6**).
- Our docking results accurately predicted several residues that interact with known MET blockers, which
- have been well-experimentally characterized in mice through point mutations in TMC1^{18,90,115,119,124–127}.
- These mutations have demonstrated the importance of these residues in permeation and block. Future
- studies involving site-direct mutagenesis and single-cell electrophysiology will allow to evaluate and further
- validate the novel contact residues identified in this study.
- Our MD simulations, docking predictions, and MM-GBSA energy analyses suggest that phospholipids play
- a key role in small molecule binding, mediating hydrogen bonds, salt bridges, and hydrophobic interactions
- within the TMC1 pore (Figure 4C, and 4G-I, Figure 5G-I). These findings suggest that proper membrane

function around TMC1 promotes stable ligand binding. This in agreement with experimental observations showing that blockage of TMC1 with high concentrations of benzamil and tubocurarine triggers membrane scrambling and phosphatidylserine externalization in hair-cell stereocilia bundles¹¹⁴. Compared to previous simulations of TMC1 and TMC1+CIB2, which did not include TMIE as part of the MET complex, our results reveal possible functional implications of the "elbow-like" linker of TMIE as a flexible component of the mammalian MET channel. Notably, flexibility has also been reported for the PCDH15 MAD12 domain, another part of the MET complex, which has been shown to exhibit mechanical weakness under force stimulation¹³⁸. Furthermore, while our results suggest that the C-terminal helix segment of TMIE exhibits flexibility, this observation may complement experimental data indicating its role as a target region for phosphatidylinositol 4,5-bisphosphate (PIP₂) binding. This region has been implicated in regulating MET currents, and potentially coupling TMIE with PIP₂ to the plasma membrane¹³⁹. However, further studies are necessary to directly determine how flexibility might influence its interaction with PIP2 and its functional implications in the MET complex.

Additionally, the docking and MM-GBSA data show M412 in close contact with phospholipids, also reported as one of high-frequency ligand-binding residues. This may help explain why charged mutations like M412K increase annexin V (AnV) signals, as the p.M412K mutation might attract the phospholipid heads, promoting membrane scrambling¹¹⁴. Our docking interactions of both benzamil and tubocurarine further support the hypothesis that phospholipids act as ligand-binding modulators (**Figure 4-6, Supp Figure 5**, and **Table 2**).

Since the hit compounds were evaluated in early postnatal cochlear explants (P3+2 days *in vitro*), their blocking potency might have been influenced by the overwhelming presence of TMC2 during that developmental stage in the mouse cochlea, which was not considered in our *in silico* predictions. TMC2 is transiently expressed in mouse cochlear hair cells during early development and at the onset of the hair-cell mechanotransduction, but is gradually downregulated and is replaced by TMC1 around P10^{140,141}. Therefore, selective screening and design of TMC1 blockers may necessitate experimental evaluation in mature cochlear hair cells in the absence of TMC2, or in *Tmc2*-ko mice. However, because the screened compounds were based on pharmacophore models of known MET blockers, they likely display some blocking capability for both TMC1 and TMC2. This hypothesis could be further validated using *Tmc1*-ko and/or *Tmc2*-ko mice¹⁴².

However, the structural exclusion of TMC2 from our *in silico* pipeline may promote the selection of hit candidates with possible increased selectivity for TMC1, since the putative pore of TMC2 is distinct from TMC1¹⁴³. The TMC2 pore displays decreased hydrophobicity and a smaller pore radius compared to the homologous middle site of TMC1. These characteristics may reduce the affinity of TMC2-ligand interactions¹⁴³. It is well known that most small molecules preferentially bind to hydrophobic pockets¹⁴⁴, highlighting the complexity of TMC1-blocker interactions within the druggable-pore cavity and the high variety of amino acids involved in TMC1-ligand binding. This structural complexity suggests that the binding affinities of compounds with MET-blocker properties may vary depending on TMC isoform and, perhaps, even species.

TMCs belong to a larger superfamily that includes TMEM16 and TMEM63/OSCA proteins⁶². Our study not only sheds light on the structural features required to modulate the uptake capacity of TMC1 proteins but also provides key insights on potential pharmacological relationships between TMC1 and TMEM16A proteins, as they share common 3D pharmacophores for their compound antagonists. In addition, this study provides additional structural and functional insights into the role of the TMC1 pore in hair cells¹⁴⁵.

In summary, our combined *in silico* and *in vitro* experimental study suggest that a pharmacophore composed by two aromatic groups, one acceptor group, and at least one protonatable amine is required for blocking the TMC1 pore cavity of the mammalian hair-cell MET channel. We developed and provided a proof-of-concept validation of a pipeline for discovering novel MET channel modulators. Our pipeline successfully identified compound antagonists of the hair-cell MET function able to reduce AM1-43 loading into cochlear hair cells *in vitro*. Further evaluation of the reported compounds will provide more insights into their modulatory capacities and help identify novel MET blockers, study their potential otoprotective

- applications, as well as their plausible role in TMEM16A modulation. Additionally, future studies using site-
- directed mutagenesis will help elucidate the role of high-contact druggable sites in TMC1-ligand binding,
- their impact on hair-cell mechanotransduction function, and their potential influence on TMC1 ion
- 724 selectivity and conductance.

MATERIALS AND METHODS

- 726 AlphaFold2 modeling of the MET complex structure
- We generated a dimeric structural model of *Mm*TMC1, spanning residues 81-746, adopting an open-like
- 728 conformation⁸⁵ with domain swapping feature at transmembrane domain 10 (TM10). This model was
- 729 constructed using AlphaFold2 through the ColabFold GitHub repository¹⁴⁶. Subsequently, the MET
- 730 complex was constructed, also using AlphaFold2, by combining two TMC1 subunits, each accompanied
- 731 with CIB2 (residues 1-187) and TMIE (residues 44-118) in a 1:1:1 ratio^{55,147,148}.
- 732 The resulting MET complex model was then compared with the structure of the expanded *C. elegans*
- 733 TMC-1 complex (PDB code: 7USW)⁵⁵, showing the typical swapped conformation and location of homolog
- 534 binding partners of the MET complex.
- 735 Molecular dynamics simulations
- 736 The modeled MET complex was prepared using the protein preparation wizard module of the *Maestro*
- suite^{110,111,149}. Amino acid protonation states were assigned at pH 7.4 using PROPKA¹⁵⁰. Subsequently,
- the complex was subjected to energy minimization and embedded into a pre-equilibrated POPC bilayer,
- 739 followed by solvation using the SPC water model. To neutralize the system, ten K⁺ ions were added, and
- the final ion concentration was set to 0.15 M KCl. Molecular dynamics simulations were performed with
- 741 Desmond¹⁵¹ and the OPLS4 force field¹⁵².
- 742 The Desmond default membrane relaxation protocol was applied before simulations. Then, 25 ns of
- equilibrium MDs in a NPyT semi-isotropic assembly were performed, applying restrictions to the protein
- backbone (spring constant 10 kcal × mol⁻¹ × Å⁻²) with constant surface tension of 0.0 bar × Å. Temperature
- and pressure were kept constant at 300 K and 1.01325 bar, respectively, by coupling to a Nose-Hoover
- Chain thermostat¹⁵³ and Martyna-Tobias-Klein barostat¹⁵⁴ with an integration time step of 2 fs. Coulombic
- interactions were calculated using a cutoff of 9 Å. Subsequently, three replicates of 25 ns production MDs
- were performed using the last frame. Restrictions were applied to the protein secondary structure (spring
- constant 5 kcal × mol x A²) under the same conditions as described above. Replicates' statistical analysis
- 750 is available at the Ramirez Lab Github repository (see Data availability section). We also extended the
- production 25 ns MD to 100 ns to study the stability of the MET complex. The production 25 ns and 100
- ns MDs were analyzed with *Desmond* and in-house scripts. Visualization was carried out with VMD¹⁵⁵ and
- Pymol¹⁵⁶. Subsequently, we analyzed the pore with the HOLE algorithm. Pore radius measurements of
- the TMC1 chain A were obtained over 25 ns and 100 ns production trajectories to determine the stability
- of the pore and the TMC1 dimer. Measurements were obtained every nanosecond throughout the
- simulations. The 25 ns MDs equilibrated structure was used for further virtual screening. In addition, we
- analyzed the potential location of phospholipids neighboring the TMC1 pore.
- 758 Ligand-based pharmacophore modeling of known MET blockers
- Thirteen MET channel blockers with structural diversity reported in the literature such us UoS-7692³³,
- 760 UoS-3607³³, UoS-3606³³, UoS-5247³³, UoS-962³³, Proto-1⁹⁸, E6-berbamine⁵⁴, hexamethyleneamiloride³⁷,
- amsacrine³⁷, phenoxybenzamine^{37,99}, carvedilol-derivate 13⁵³, ORC-13661^{34,36}, and FM1-43 (a positively
- charged styryl dye often used to label hair cells)^{58,59}, were selected to design 3D-pharmacophore models
- of small molecules using an energy-optimized pharmacophore method.
- The pharmacophore design is a versatile approach used to extract common chemical features from a set
- of small molecules with biological function. First, the structures of the 13 known MET channel blockers
- were sketched using *Maestro*⁹¹ and then prepared using *LigPrep*¹⁰⁹ (Schrödinger, 2021) with the S-OPLS
- 767 force.

Salts were removed and no tautomers were generated, compound chiralities were determined from the reference 3D structure. Subsequently, both pharmacophore and ligand mapping were generated from the 13 MET blockers selected, with the *Phase* module⁶⁸. We used six pharmacophoric features: Hydrogen bond acceptor (A), hydrogen bond donor (D), hydrophobic group (H), negatively charged group (P), and aromatic ring (R).

To model the pharmacophores, a minimum of 3 and maximum of 5 pharmacophoric features were set. Also, the percentage of pharmacophore matching threshold (number of known blockers that fits to the modeled pharmacophore) of 50% was selected as a minimal criterion for a representative pharmacophore model of the 13 known MET blockers. The other settings in *Phase* were used by default. Finally, the best 10 pharmacophore models were ranked using the *PhaseHypoScore*⁶⁸. This score measures how well the pharmacophoric-feature vectors align with the structures of the compounds that contribute to the 3D-pharmacophore model.

To validate our pharmacophore models, we use active compounds (known MET channel blockers) and decoys (40 decoys per active) generated with *LIDeB*¹⁵⁷ (**Supp Table 3**). To evaluate the performance of each pharmacophore, different key measures were considered, including the area under the curve (AUC) of the corresponding receiver operating characteristic (ROC) as described¹⁵⁸. In addition, we calculated the percentage of actives (% Yield), the percentage yield of active compounds (Ya), sensitivity (Se), specificity (Sp), enrichment factor (EF), and the Güner-Henry (GH) scoring using the method reported in the literature¹⁰².

Pharmacophore based virtual screening (PBVS)

In this project, we used two molecule libraries. *Library* 1 (non-FDA-approved compounds) from the ZINC database (ZINC20) contains over 230 million commercially available compounds in 3D formats and over 750 million purchasable analogs¹⁰⁵. *Library* 2 (1,789 FDA-approved drugs — US Drug Collection, MicroSource Discovery Systems)¹⁰⁶ was in-house processed for PBVS using the *LigPrep* and *Epik* modules of *Maestro*^{91,109,110} with the OPLS3 force field¹⁵⁹. All possible ionization states were predicted for each compound at pH 7.4 ± 2.0, and their chiralities were retained.

We carried out a two-step PBVS with the non-FDA-approved *Library* 1. The 1st-step PBVS using the software *ZINCPharmer* ¹⁰⁷, followed by a 2nd-step screening with *Phase*. For the *ZINCPharmer* screening, the 10 best pharmacophores generated after the pharmacophore mapping step were used to search the most promising compounds from ZINC20 that fits with any of the 10 pharmacophore models.

Compounds were filtered by selecting a single hit as the maximum limit per conformation for each molecule having a maximum RMSD geometric match of 1 Å against each of the 10 pharmacophore models (compounds with RMSD > 1 Å were discarded). The best 50,000 hits (5,000 per each pharmacophore model) with molecular weights between 200 and 700 g/mol were selected from ZINC20. Finally, we selected the compounds that matched two or more pharmacophores using the *KNIME* software ¹⁶⁰.

For the 2nd-step PBVS, the compounds from the 1st-step (*Library* 1) were processed with *LigPrep*, and ionization states were generated at pH 7.4 ± 0.5 using *Epik*^{110,111}. In parallel, the *Library* 2 (FDA-approved drugs) were also processed with *LigPrep* and *Epik*. Thus, the prepared molecules from both libraries were screened against each of the 10 pharmacophores using *Phase*, following the methodology reported by Gallego-Yerga et al., 2021¹⁵³.

For both libraries, the *PhaseScreenScore* values (which evaluate how well the ligands align to the pharmacophore features of the hypothesis)¹⁶¹ were obtained for each ligand per screening against each pharmacophore. In addition, we implemented a workflow with *KNIME* analytics platform and built a matrix to calculate the *Total-PhaseScreenScore* (*TPSs*) for each ligand, represented by the sum of each *PhaseScreenScore* value. Then, we selected hits for molecular docking if the value was higher than the docking threshold (D_T) value, according to the equation 1.

$$D_T \ge \bar{X} + 2\delta \tag{Eq. 1}.$$

- D_T is the docking threshold, \bar{X} is the average TPS_S of the entire *Library* (1 or 2) solutions; and δ is the TPS_S standard deviation of the entire *Library* (1 or 2) solutions.
- 819 Molecular docking and free energy binding energy calculations
- After PBVS, molecules from both libraries were docked with the *Glide* software¹¹⁷ in the pore of the *Mm*TMC1 model (in complex with CIB2 and TMIE) using the frame structure at 24 ns post-equilibration.
- The protein complex and all the phospholipids were kept for molecular docking, while waters and ions
- were removed. A cubic gridbox of $(41_x \times 41_y \times 41_z)$ Å³ was centered at methionine M412 (chain A) covering
- the TMC1 pore including part of the TMIE helical protein embedded in the membrane (Figure 2).
- 825 Molecular docking was performed for the selected hits with the best *PhaseScreenScore* criteria from
- libraries 1 and 2, overpassing the docking threshold, as well as for the 13 known MET blockers (UoS-
- 827 7692, UoS-3607, UoS-3606, UoS-5247, UoS-962, Proto-1, E6-berbamine, hexamethyleneamiloride,
- 828 amsacrine, phenoxybenzamine, carvedilol-derivate 13, ORC-13661 and FM1-43), benzamil, tubocurarine,
- and DHS (known experimental molecules used as MET channel blockers) (Figure 1, Figure 4, and Figure
- 830 **6**). The Glide standard precision (SP) mode and the OPLS_2005 force field were used to explore the
- positional, conformational, and orientational space of the ligands in the TMC1 pore.
- A maximum of 10 docking poses were requested for each ligand and the best pose was determined by selecting the conformer with the lowest *Glide Emodel* score followed by a low *Glide Score* value from superposed-like poses¹¹⁷. The *Glide Emodel* was prioritized, since *Glide* uses *Emodel* to pick the best
- pose of a ligand (conformer selection) and subsequently rank them against one another using GlideScore¹¹⁷. A manual check of each representative pose was carried out to identify common binding
- sites for each selected pose from each molecular docking cluster.

846

847848

849

850

851

852

853

854855

856

- 838 Molecular docking solutions from both libraries 1 and 2 were rescored by calculating their binding free
- energies (ΔG_{Bind}). Two docking postprocessing strategies were implemented. **Strategy A**: excluding
- phospholipids neighboring the pore, and **strategy B**: including key phospholipids neighboring the pore
- 841 that could influence small molecule binding. ΔG_{Bind} calculations were carried out using MM-GBSA
- methods⁸⁶ with *Prime*¹⁶², combining molecular mechanics energies and implicit solvation models¹⁶³. The
- 843 MM-GBSA ΔG_{Bind} between ligands and the TMC1 channel was calculated with the following equations:

$$\Delta G_{bind} = \Delta H - T\Delta S \approx \Delta E_{MM} + \Delta G_{sol} - T\Delta S,$$
 (Eq. 2)

$$\Delta E_{MM} = \Delta E_{internal} + \Delta E_{electrostatic} + \Delta E_{vdw}; \Delta G_{sol} = \Delta G_{PB/GB} + \Delta G_{SA},$$
 (Eq. 3)

where ΔE_{MM} , ΔG_{sol} , and -T ΔS are the changes in the molecular mechanics energy, solvation-free energy, and conformational entropy upon binding, respectively. ΔE_{MM} includes $\Delta E_{\text{internal}}$ (bond, angle, and dihedral energies), electrostatic, and van der Waals energies. ΔG_{sol} is the sum of the electrostatic solvation energy, $\Delta G_{\text{PB/GB}}$ (polar contribution), and non-electrostatic solvation, ΔG_{SA} (non-polar contribution). The polar contribution was calculated by using the generalized born model, while the non-polar energy was calculated by the solvent accessible surface area (SASA). The VSGB 2.0¹⁶⁴ solvation model and OPLS force field were used for these calculations. Residues located within 5 Å from the ligands were included in the flexible region, and the rest of the protein atoms were kept frozen.

- Morgan fingerprint and Tanimoto-similarity coefficient
- After virtual screening through both libraries, Morgan fingerprint similarity factors¹⁶⁵ were determined for
- 858 all molecules with the RDKit module of the KNIME analytics platform. This extended-connectivity
- fingerprint based on Morgan algorithm represent molecules as mathematical objects, which allow us to
- analyze the structural environment of each atom up to a radius of 2 Å¹⁶⁵. Using the Morgan fingerprint, we
- calculated the distance matrix with the Tanimoto-similarity coefficient¹²³, which allowed us to determine
- the structural similarity of the compounds on a scale from 0 (non-identical) to 1 (identical).
- Then hierarchical clustering was performed with the average linkage method. Clusters were selected using
- the normalized distance threshold of 0.75 for the non-FDA-approved dataset (*Library* 1) and 0.85 for the

- FDA-approved dataset (Library 2) to enhance structural diversity. Representative compounds for
- populated clusters were selected for further evaluation.
- 867 Mouse cochlear explant cultures
- 868 All procedures and protocols were approved by the Institutional Animal Care and Use Committee of Mass
- 869 Eye and Ear and we have complied with all relevant ethical regulations for animal use. Postnatal day (P)
- 870 3 CD-1 mice of either sex were cryo-anesthetized and euthanized by decapitation. Inner ears were
- harvested and organ of Corti epithelia were acutely dissected in Leibovitz's L-15 (L-15, Gibco #21083027)
- cell culture medium. Following dissection, explants were affixed to glass-bottom cell culture dishes coated
- 873 with Geltrex basement membrane matrix (Gibco #A1569601, 100 μL/dish) and cultured in DMEM (Gibco
- #12430054) supplemented with 3% FBS and 10 mg/L ampicillin for 48 hours at 37 °C, 8% CO₂.
- 875 Dye loading and fluorescence imaging
- 876 Cochlear explants from postnatal day 3 (P3) mice were cultured for two days *in vitro* at 37 °C and 8% CO₂.
- 877 Following gentle aspiration of the culture medium at room temperature, the explants were rinsed with L-
- 878 15 and were pre-treated for 60 s with the compound at a final concentration of 100 μ M (dissolved in L-15
- at 2% DMSO). The solution was then aspirated and replaced with a solution consisting of the loading dye
- AM1-43 (4 μ M) and the hit compound (100 μ M) of in L-15 with 2% DMSO). Following another 60 s of
- incubation, the solution was aspirated, and the excess AM1-43 dye was neutralized using a quenching
- solution composed of 0.2 mM 4-sulfonate calix[8] arene sodium salt (SCAS, Biotium) in L-15.
- Live imaging of the samples was performed using a Leica SP5 confocal microscope equipped with a 40×,
- 884 0.8 NA water-dipping objective lens, zoom was set to 2×, resulting in an effective pixel size 189nm. The
- laser power and smart gain settings were kept constant across all experimental conditions. During each
- experimental session, at least one compound and one control sample were imaged.
- 887 Image analysis
- 888 Following image acquisition, maximum intensity z-projections were generated using ImageJ.
- Subsequently, Cellpose ¹²⁸ was used to segment individual outer hair cells (OHC) into regions of interest
- 890 (ROIs). The mean fluorescence intensity of each OHC was then quantified and normalized to the average
- 891 fluorescence intensity level of the corresponding control OHCs treated with AM1-43 (4 μM) in L15 and 2%
- 892 DMSO.

904

AUTHOR CONTRIBUTIONS

- N.A. generated AlphaFold models; P.S. and D.R. performed molecular dynamics simulations to relax the
- 895 models; D.R., C.M.G., W.G., P.S., and P.D. analyzed the MD simulation data; C.M.G. carried out virtual
- screening and MM-GBSA calculations, P.D., C.M.G and D.R. performed virtual screening, MM-GBSA
- analysis, and the selection of compound candidates; P.G. and M.M. carried out cochlear tissue culturing
- and dye-loading experiments, with assistance from P.D.; P.G. performed confocal imaging; P.G. and A.A.I.
- analyzed the imaging data; P.D., C.M.G., P.G., A.A.I., and D.R. prepared the original draft of the
- 900 manuscript: P.D., and A.A.I. edited the manuscript and incorporated feedback from all authors, D.R., P.D.,
- and A.A.I. conceived the study, supervised the project, and secured funding; P.D., A.A.I., D.R., and P.G.
- onceptualized the study and developed methodology. All authors contributed to the final version of the
- 903 manuscript.

ACKNOWLEDGMENTS

- 905 We thank Dr. Angela Ballesteros (NIDCD) for her valuable scientific feedback and critical reading of the
- 906 manuscript draft, and Carlos Peña-Varas (Universidad de Concepción Chile) for advice on figures and
- 907 data visualization. We also thank Dr. Robert Fettiplace, Dr. Anthony Ricci, Dr. Jeffrey Holt, and Dr.
- 908 Gwenaelle Geleoc for their feedback and suggestions.

FUNDING

909

915

919

921

- 910 This work was supported by NIH NIDCD R01DC020190, R01DC021795, and R01DC017166 to A.A.I, the
- 911 NIH NIDCD T32 DC000038 Training Grant awarded to G. Géléoc, supporting M.M., as well as Chilean
- 912 National Research and Development Agency (ANID), Fondecyt 1220656, 1230446, FOVI210027 and
- 913 FOVI240021 to D.R. The funders had no role in study design, data collection and analysis, decision to
- 914 publish, or preparation of the manuscript.

DATA AVAILABILITY

- 916 The PDB file containing the coordinates of the simulated MET channel complex, and the 3D-
- 917 pharmacophores used in this study are available for download from the Ramirez Lab Github repository:
- 918 https://github.com/ramirezlab/Drug-design-targeting-TMC1.

ETHICS DECLARATIONS

- 920 Competing interests
- Authors declare that they have no competing financial and/or non-financial interests in relation to this work.

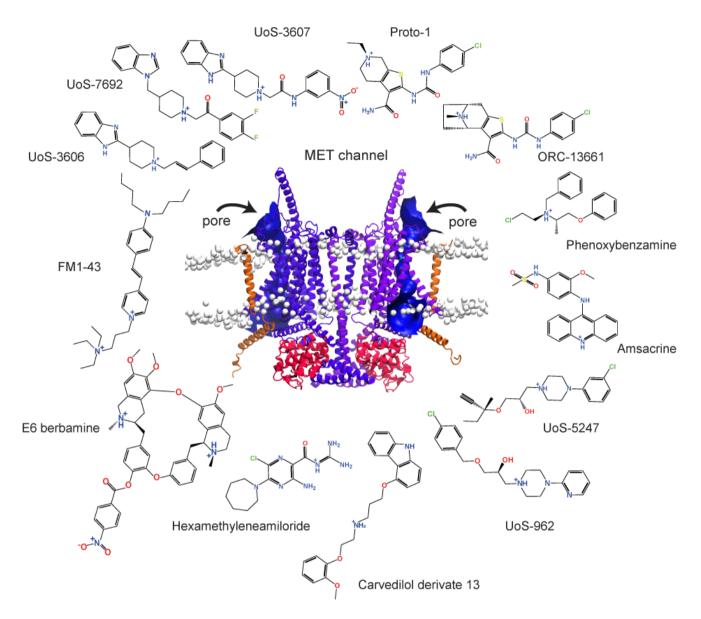
REFERENCES

924

- 926 Angeli, S., Lin, X. & Liu, X. Z. Genetics of Hearing and Deafness. Anat. Rec. Hoboken NJ 2007 1. 927 **295**, 1812–1829 (2012).
- 928 Bitner-Glindzicz, M. Hereditary deafness and phenotyping in humans. Br. Med. Bull. 63, 73–94 929 (2002).
- 930 3. Cornejo-Sanchez, D. M. et al. Rare-variant association analysis reveals known and new age-related 931 hearing loss genes. Eur. J. Hum. Genet. 31, 638–647 (2023).
- 932 4. Eileen, D. Noise and Hearing Loss: A Review. J Sch Health 5, (2007).
- 933 5. Kros, C. J. & Steyger, P. S. Aminoglycoside- and Cisplatin-Induced Ototoxicity: Mechanisms and
- 934 Otoprotective Strategies. Cold Spring Harb. Perspect. Med. 9, a033548 (2019).
- 935 Wang, X. et al. Cisplatin-induced ototoxicity: From signaling network to therapeutic targets. 936 Biomed. Pharmacother. 157, 114045 (2023).
- 937 Le, T. A. et al. Aminoglycoside-Related Nephrotoxicity and Ototoxicity in Clinical Practice: A 938 Review of Pathophysiological Mechanism and Treatment Options. Adv. Ther. 40, 1357–1365 (2023).
- 939 Rybak, L. P., Ramkumar, V. & Mukherjea, D. Ototoxicity of Non-aminoglycoside Antibiotics. 940 Front. Neurol. 12, 652674 (2021).
- 941 O'Sullivan, M. E. et al. Dissociating antibacterial from ototoxic effects of gentamicin C-subtypes.
- 942 Proc. Natl. Acad. Sci. U. S. A. 117, 32423-32432 (2020).
- 943 Huth, M. E., Ricci, A. J. & Cheng, A. G. Mechanisms of Aminoglycoside Ototoxicity and Targets 944 of Hair Cell Protection. Int. J. Otolarvngol. 2011, 937861 (2011).
- 945 11. Bitner-Glindzicz, M. & Rahman, S. Ototoxicity caused by aminoglycosides. BMJ 335, 784–785 946 (2007).
- 947 12. Fischel-Ghodsian, N. Genetic factors in aminoglycoside toxicity. *Pharmacogenomics* 6, 27–36 948 (2005).
- 949 Zhao, H. et al. Maternally inherited aminoglycoside-induced and nonsyndromic deafness is 13. 950 associated with the novel C1494T mutation in the mitochondrial 12S rRNA gene in a large Chinese family.
- 951 Am. J. Hum. Genet. 74, 139–152 (2004).
- 952 14. Rybak, L. P. & Ramkumar, V. Ototoxicity. *Kidney Int.* **72**, 931–935 (2007).
- 953 15. Steyger, P. S. Mechanisms of Ototoxicity and Otoprotection. Otolaryngol. Clin. North Am. 54, 954 1101-1115 (2021).
- 955 Vu, A. A. et al. Integrity and Regeneration of Mechanotransduction Machinery Regulate 16. 956 Aminoglycoside Entry and Sensory Cell Death. *PLoS ONE* **8**, e54794 (2013).
- 957 Marcotti, W., Van Netten, S. M. & Kros, C. J. The aminoglycoside antibiotic dihydrostreptomycin
- 958 rapidly enters mouse outer hair cells through the mechano-electrical transducer channels. J. Physiol. 567, 959 505-521 (2005).
- 960 Pan, B. et al. TMC1 Forms the Pore of Mechanosensory Transduction Channels in Vertebrate Inner 18. 961 Ear Hair Cells. *Neuron* **99**, 736-753.e6 (2018).
- 962 Kirkwood, N. K. et al. d-Tubocurarine and Berbamine: Alkaloids That Are Permeant Blockers of
- the Hair Cell's Mechano-Electrical Transducer Channel and Protect from Aminoglycoside Toxicity. Front. 963 964 Cell. Neurosci. 11, (2017).
- 965 20. Alharazneh, A. et al. Functional Hair Cell Mechanotransducer Channels Are Required for 966 Aminoglycoside Ototoxicity. *PLOS ONE* **6**, e22347 (2011).
- 967 21. Giese, A. P. J. et al. Complexes of vertebrate TMC1/2 and CIB2/3 proteins form hair-cell 968 mechanotransduction cation channels. *eLife* 12, (2023).
- 969 22. Ohmori, H. Mechano-electrical transduction currents in isolated vestibular hair cells of the chick.
- 970 J. Physiol. 359, 189–217 (1985). 971
- Kazmierczak, P. et al. Cadherin 23 and protocadherin 15 interact to form tip-link filaments in 972 sensory hair cells. *Nature* **449**, 87–91 (2007).
- 973
- Kachar, B., Parakkal, M., Kurc, M., Zhao, Y. & Gillespie, P. G. High-resolution structure of hair-24. 974 cell tip links. Proc. Natl. Acad. Sci. U. S. A. 97, 13336–13341 (2000).
- 975 Jaiganesh, A. et al. Zooming in on Cadherin-23: Structural Diversity and Potential Mechanisms of 976 Inherited Deafness. Structure 26, 1210-1225.e4 (2018).
- 977 Siemens, J. et al. Cadherin 23 is a component of the tip link in hair-cell stereocilia. Nature 428, 26.
- 978 950-955 (2004).

- 979 27. Dionne, G. et al. Mechanotransduction by PCDH15 Relies on a Novel cis-Dimeric Architecture.
- 980 Neuron 99, 480-492.e5 (2018).
- 981 28. Choudhary, D. et al. Structural determinants of protocadherin-15 mechanics and function in hearing
- 982 and balance perception. *Proc. Natl. Acad. Sci.* 117, 24837–24848 (2020).
- 983 29. Ahmed, Z. M. et al. The tip-link antigen, a protein associated with the transduction complex of
- sensory hair cells, is protocadherin-15. *J Neurosci* **26**, 7022–7034 (2006).
- 985 30. Maeda, R. *et al.* Tip-link protein protocadherin 15 interacts with transmembrane channel-like proteins TMC1 and TMC2. *Proc. Natl. Acad. Sci. U. S. A.* **111**, 12907–12912 (2014).
- 987 31. Mulhall, E. M. *et al.* Single-molecule force spectroscopy reveals the dynamic strength of the hair-988 cell tip-link connection. *Nat. Commun.* **12**, 849 (2021).
- 989 32. Arora, N. *et al.* Emergence of slip-ideal-slip behavior in tip-links serve as force filters of sound in hearing. *Nat. Commun.* **15**, 1595 (2024).
- 991 33. Kenyon, E. J. *et al.* Identification of a series of hair-cell MET channel blockers that protect against aminoglycoside-induced ototoxicity. *JCI Insight* **6**, e145704 (2021).
- 993 34. Kitcher, S. R. *et al.* ORC-13661 protects sensory hair cells from aminoglycoside and cisplatin ototoxicity. *JCI Insight* **4**, (2019).
- 995 35. Nekrassov, V. & Sitges, M. Vinpocetine protects from aminoglycoside antibiotic-induced hearing loss in guinea pig in vivo. *Brain Res.* **868**, 222–229 (2000).
- 997 36. Chowdhury, S. et al. Phenotypic Optimization of Urea-Thiophene Carboxamides To Yield Potent,
- Well Tolerated, and Orally Active Protective Agents against Aminoglycoside-Induced Hearing Loss. J.
- 999 *Med. Chem.* **61**, 84–97 (2018).
- 1000 37. Ou, H. C. et al. Identification of FDA-Approved Drugs and Bioactives that Protect Hair Cells in
- the Zebrafish (Danio rerio) Lateral Line and Mouse (Mus musculus) Utricle. J. Assoc. Res. Otolaryngol.
- 1002 **10**, 191–203 (2009).
- 1003 38. Vlasits, A. L., Simon, J. A., Raible, D. W., Rubel, E. W. & Owens, K. N. Screen of FDA-approved
- drug library reveals compounds that protect hair cells from aminoglycosides and cisplatin. *Hear. Res.* **294**, 1005 153–165 (2012).
- 1006 39. Breglio, A. M. *et al.* Cisplatin is retained in the cochlea indefinitely following chemotherapy. *Nat.* 1007 *Commun.* **8**, 1654 (2017).
- 1008 40. Guo, J., Chai, R., Li, H. & Sun, S. Protection of Hair Cells from Ototoxic Drug-Induced Hearing
- 1009 Loss. in Hearing Loss: Mechanisms, Prevention and Cure (eds. Li, H. & Chai, R.) 17-36 (Springer,
- 1010 Singapore, 2019). doi:10.1007/978-981-13-6123-4 2.
- 1011 41. Hsieh, C.-Y. et al. Otoprotection against aminoglycoside- and cisplatin-induced ototoxicity
- focusing on the upstream drug uptake pathway. J. Chin. Med. Assoc. 87, (2024).
- 1013 42. O'Sullivan, M. E. & Cheng, A. G. Mind Your Ears: A New Antidote to Aminoglycoside Toxicity?
- 1014 J. Med. Chem. **61**, 81–83 (2018).
- 1015 43. Lee, J., Fernandez, K. & Cunningham, L. L. Hear and Now: Ongoing Clinical Trials to Prevent
- 1016 Drug-Induced Hearing Loss. Annu. Rev. Pharmacol. Toxicol. 64, 211–230 (2024).
- 1017 44. FDA. FDA approves sodium thiosulfate to reduce the risk of ototoxicity associated with cisplatin
- in pediatric patients with localized, non-metastatic solid tumors. FDA (2024).
- 1019 45. Brock, P. R. et al. Sodium Thiosulfate for Protection from Cisplatin-Induced Hearing Loss. N. Engl.
- 1020 J. Med. 378, 2376–2385 (2018).
- 1021 46. Safety There's only one PEDMARK. PEDMARK® (sodium thiosulfate injection)
- 1022 https://www.pedmark.com/safety/.
- 1023 47. Deng, G. & Blakley, B. Reducing Aminoglycoside Ototoxicity. *Univ. Manit.* (2012).
- Wang, J. et al. Local application of sodium thiosulfate prevents cisplatin-induced hearing loss in
- the guinea pig. *Neuropharmacology* **45**, 380–393 (2003).
- 1026 49. Schroeder, R. J., Audlin, J., Luo, J. & Nicholas, B. D. Pharmacokinetics of sodium thiosulfate in
- Guinea pig perilymph following middle ear application. J. Otol. 13, 54–58 (2018).
- 1028 50. Saito, T., Zhang, Z. J., Manabe, Y., Ohtsubo, T. & Saito, H. The effect of sodium thiosulfate on
- 1029 ototoxicity and pharmacokinetics after cisplatin treatment in guinea pigs. Eur. Arch. Otorhinolaryngol.
- 1030 **254**, 281–286 (1997).
- 1031 51. Berglin, C. E. et al. Prevention of cisplatin-induced hearing loss by administration of a thiosulfate-
- 1032 containing gel to the middle ear in a guinea pig model. Cancer Chemother. Pharmacol. 68, 1547–1556
- 1033 (2011).

- 1034 52. Dhillon, S. Sodium Thiosulfate: Pediatric First Approval. *Pediatr. Drugs* **25**, 239–244 (2023).
- 1035 53. O'Reilly, M. et al. Design, Synthesis, and Biological Evaluation of a New Series of Carvedilol
- 1036 Derivatives That Protect Sensory Hair Cells from Aminoglycoside-Induced Damage by Blocking the
- 1037 Mechanoelectrical Transducer Channel. J. Med. Chem. 62, 5312–5329 (2019).
- 1038 54. Kruger, M. et al. Natural Bizbenzoquinoline Derivatives Protect Zebrafish Lateral Line Sensory
- Hair Cells from Aminoglycoside Toxicity. Front. Cell. Neurosci. 10, 83 (2016).
- 1040 55. Jeong, H. *et al.* Structures of the TMC-1 complex illuminate mechanosensory transduction. *Nature* 1041 **610.** 796–803 (2022).
- 1042 56. Pan, B., Waguespack, J., Schnee, M. E., LeBlanc, C. & Ricci, A. J. Permeation properties of the
- hair cell mechanotransducer channel provide insight into its molecular structure. J. Neurophysiol. 107,
- 1044 2408–2420 (2012).
- 1045 57. Derudas, M. et al. Charge and lipophilicity are required for effective block of the hair-cell mechano-
- electrical transducer channel by FM1-43 and its derivatives. Front. Cell Dev. Biol. 11, 1247324 (2023).
- 1047 58. Gale, J. E., Marcotti, W., Kennedy, H. J., Kros, C. J. & Richardson, G. P. FM1-43 Dye Behaves as
- a Permeant Blocker of the Hair-Cell Mechanotransducer Channel. J. Neurosci. 21, 7013–7025 (2001).
- 1049 59. Meyers, J. R. *et al.* Lighting up the senses: FM1-43 loading of sensory cells through nonselective ion channels. *J. Neurosci. Off. J. Soc. Neurosci.* **23**, 4054–4065 (2003).
- 1051 60. Gund, P. Three-Dimensional Pharmacophoric Pattern Searching. in *Progress in Molecular and*
- 1052 Subcellular Biology (PMSB) (eds. Hahn, F. E., Kersten, H., Kersten, W. & Szybalski, W.) 117-143
- 1053 (Springer, Berlin, Heidelberg, 1977). doi:10.1007/978-3-642-66626-1 4.
- 1054 61. Seidel, T., Schuetz, D. A., Garon, A. & Langer, T. The Pharmacophore Concept and Its
- Applications in Computer-Aided Drug Design. Prog. Chem. Org. Nat. Prod. 110, 99–141 (2019).
- 1056 62. Medrano-Soto, A. et al. Bioinformatic characterization of the Anoctamin Superfamily of Ca2+-
- activated ion channels and lipid scramblases. *PLoS ONE* **13**, e0192851 (2018).
- Hahn, Y., Kim, D. S., Pastan, I. H. & Lee, B. Anoctamin and transmembrane channel-like proteins are evolutionarily related. *Int. J. Mol. Med.* **24**, 51–55 (2009).
- 1060 64. Structural relationship between the putative hair cell mechanotransduction channel TMC1 and
- TMEM16 proteins | eLife. https://elifesciences.org/articles/38433.
 Zhang, M. *et al.* Structure of the mechanosensitive OSCA channels. *Nat. Struct. Mol. Biol.* 25, 850
- 1063 (2018).
 1064 66. Schaller, D. et al. Next generation 3D pharmacophore modeling. WIREs Comput. Mol. Sci. 10,
- e1468 (2020). 1066 67. Ambure, P., Kar, S. & Roy, K. Pharmacophore mapping-based virtual screening followed by
- molecular docking studies in search of potential acetylcholinesterase inhibitors as anti-Alzheimer's agents.
- 1068 *Biosystems* **116**, 10–20 (2014).
- 1069 68. Dixon, S. L., Smondyrev, A. M. & Rao, S. N. PHASE: a novel approach to pharmacophore
- modeling and 3D database searching. Chem. Biol. Drug Des. 67, 370–372 (2006).
- 1071 69. Yang, S.-Y. Pharmacophore modeling and applications in drug discovery: challenges and recent
- 1072 advances. *Drug Discov. Today* **15**, 444–450 (2010).
- 1073 70. Ferreira, L. G., Dos Santos, R. N., Oliva, G. & Andricopulo, A. D. Molecular Docking and
- Structure-Based Drug Design Strategies. *Molecules* **20**, 13384–13421 (2015).
- 1075 71. Nada, H. et al. Perspective for Discovery of Small Molecule IL-6 Inhibitors through Study of
- Structure–Activity Relationships and Molecular Docking. J. Med. Chem. 66, 4417–4433 (2023).
- 1077 72. Ren, F. et al. AlphaFold accelerates artificial intelligence powered drug discovery: efficient
- discovery of a novel CDK20 small molecule inhibitor. *Chem. Sci.* **14**, 1443–1452 (2023).
- 1079 73. Dutt, M. et al. Drug repurposing for Mpox: Discovery of small molecules as potential inhibitors
- against DNA-dependent RNA polymerase using molecular modeling approach. *J. Cell. Biochem.* **124**, 701–1081 715 (2023).
- 1082 74. Peitzika, S.-C. & Pontiki, E. A Review on Recent Approaches on Molecular Docking Studies of
- Novel Compounds Targeting Acetylcholinesterase in Alzheimer Disease. *Molecules* **28**, 1084 (2023).
- 1084 75. Asiamah, I., Obiri, S. A., Tamekloe, W., Armah, F. A. & Borquaye, L. S. Applications of molecular
- docking in natural products-based drug discovery. Sci. Afr. 20, e01593 (2023).
- 1086 76. Agu, P. C. et al. Molecular docking as a tool for the discovery of molecular targets of nutraceuticals
- in diseases management. Sci. Rep. 13, 13398 (2023).


- 1088 77. Kitchen, D. B., Decornez, H., Furr, J. R. & Bajorath, J. Docking and scoring in virtual screening for drug discovery: methods and applications. *Nat. Rev. Drug Discov.* **3**, 935–949 (2004).
- 1090 78. Malkaje, S., Srinivasa, M. G., Deshpande N, S., Navada, S., & Revanasiddappa BC. An In-silico
- 1091 Approach: Design, Homology Modeling, Molecular Docking, MM/GBSA Simulations, and ADMET
- Screening of Novel 1,3,4-oxadiazoles as PLK1inhibitors. *Curr. Drug Res. Rev. Former. Curr. Drug Abuse Rev.* **15**, 88–100 (2023).
- 79. Basnet, S., Ghimire, M. P., Lamichhane, T. R., Adhikari, R. & Adhikari, A. Identification of potential human pancreatic α-amylase inhibitors from natural products by molecular docking, MM/GBSA
- calculations, MD simulations, and ADMET analysis. *PLOS ONE* **18**, e0275765 (2023).
- 1097 80. Singh, A. P., Ahmad, S., Raza, K. & Gautam, H. K. Computational screening and MM/GBSA-
- based MD simulation studies reveal the high binding potential of FDA-approved drugs against Cutibacterium acnes sialidase. *J. Biomol. Struct. Dvn.* **0**, 1–11 (2023).
- 1100 81. Ramírez, D. et al. Discovery of Novel TASK-3 Channel Blockers Using a Pharmacophore-Based
- 1101 Virtual Screening. *Int. J. Mol. Sci.* **20**, 4014 (2019).
- 1102 82. Ramírez, D. et al. 5-(Indol-2-yl)pyrazolo[3,4-b]pyridines as a New Family of TASK-3 Channel
- Blockers: A Pharmacophore-Based Regioselective Synthesis. *Molecules* **26**, 3897 (2021).
- 1104 83. Gálvez, J. et al. Design, facile synthesis, and evaluation of novel spiro- and pyrazolo[1,5-
- c]quinazolines as cholinesterase inhibitors: Molecular docking and MM/GBSA studies. *Comput. Biol.* 1106 *Chem.* 74, 218–229 (2018).
- 1107 84. De-la-Torre, P. et al. A Novel Class of Selective Acetylcholinesterase Inhibitors: Synthesis and
- Evaluation of (E)-2-(Benzo[d]thiazol-2-yl)-3-heteroarylacrylonitriles. *Molecules* 17, 12072–12085 (2012).
- 1109 85. Akyuz, N. *et al.* Mechanical gating of the auditory transduction channel TMC1 involves the fourth 1110 and sixth transmembrane helices. *Sci. Adv.* **8**, eabo1126.
- 1111 86. Hou, T., Wang, J., Li, Y. & Wang, W. Assessing the Performance of the MM/PBSA and
- 1112 MM/GBSA Methods. 1. The Accuracy of Binding Free Energy Calculations Based on Molecular Dynamics
- 1113 Simulations. J. Chem. Inf. Model. **51**, 69–82 (2011).
- 1114 87. Zhang, X. et al. Cepharanthine, a novel selective ANO1 inhibitor with potential for lung
- adenocarcinoma therapy. *Biochim. Biophys. Acta BBA Mol. Cell Res.* **1868**, 119132 (2021).
- 1116 88. Beurg, M. et al. New Tmc1 Deafness Mutations Impact Mechanotransduction in Auditory Hair
- 1117 Cells. J. Neurosci. 41, 4378–4391 (2021).
- 1118 89. Murthy, S. E. et al. OSCA/TMEM63 are an evolutionarily conserved family of mechanically
- 1119 activated ion channels. *eLife* 7, e41844 (2018).
- 1120 90. Walujkar, S. *et al.* In Silico Electrophysiology of Inner-Ear Mechanotransduction Channel TMC1
- Models. 2021.09.17.460860 Preprint at https://doi.org/10.1101/2021.09.17.460860 (2021).
- 1122 91. Maestro, Schrödinger. Schrödinger (2021).
- 1123 92. Shukla, R. & Tripathi, T. Molecular Dynamics Simulation of Protein and Protein-Ligand
- 1124 Complexes. in Computer-Aided Drug Design (ed. Singh, D. B.) 133–161 (Springer, Singapore, 2020).
- 1125 doi:10.1007/978-981-15-6815-2 7.
- 1126 93. Law, R. J. et al. Membrane protein structure quality in molecular dynamics simulation. J. Mol.
- 1127 Graph. Model. 24, 157–165 (2005).
- 1128 94. Arnittali, M., Rissanou, A. N. & Harmandaris, V. Structure Of Biomolecules Through Molecular
- 1129 Dynamics Simulations. *Procedia Comput. Sci.* **156**, 69–78 (2019).
- 1130 95. Shi, S. et al. Molecular mechanism of ion channel protein TMEM16A regulated by natural product
- of narirutin for lung cancer adjuvant treatment. *Int. J. Biol. Macromol.* **223**, 1145–1157 (2022).
- 1132 96. Zamri, M. H. B., Ujihara, Y., Nakamura, M., Mofrad, M. R. K. & Sugita, S. Decoding the Effect
- of Hydrostatic Pressure on TRPV1 Lower-Gate Conformation by Molecular-Dynamics Simulation. *Int. J.*
- 1134 *Mol. Sci.* **23**, 7366 (2022).
- 1135 97. Smart, O. S., Neduvelil, J. G., Wang, X., Wallace, B. A. & Sansom, M. S. HOLE: a program for
- the analysis of the pore dimensions of ion channel structural models. J. Mol. Graph. 14, 354-60, 376
- 1137 (1996).
- 1138 98. Owens, K. N. et al. Identification of Genetic and Chemical Modulators of Zebrafish
- Mechanosensory Hair Cell Death. *PLOS Genet.* **4**, e1000020 (2008).
- 1140 99. Majumder, P., Moore, P. A., Richardson, G. P. & Gale, J. E. Protecting Mammalian Hair Cells from
- Aminoglycoside-Toxicity: Assessing Phenoxybenzamine's Potential. Front. Cell. Neurosci. 11, (2017).

- 1142 100. Zhou, Y., Di, B. & Niu, M.-M. Structure-Based Pharmacophore Design and Virtual Screening for
- Novel Tubulin Inhibitors with Potential Anticancer Activity. *Molecules* **24**, 3181 (2019).
- 1144 101. Zhao, S. et al. Ligand-based pharmacophore modeling, virtual screening and biological evaluation
- to identify novel TGR5 agonists. RSC Adv. 11, 9403–9409.
- 1146 102. Ntie-Kang, F. et al. Pharmacophore modeling and in silico toxicity assessment of potential
- anticancer agents from African medicinal plants. *Drug Des. Devel. Ther.* **10**, 2137–2154 (2016).
- 1148 103. Vyas, V. K., Ghate, M. & Goel, A. Pharmacophore modeling, virtual screening, docking and in silico ADMET analysis of protein kinase B (PKB β) inhibitors. *J. Mol. Graph. Model.* **42**, 17–25 (2013).
- 1150 104. Zaccagnini, L. et al. Identification of novel fluorescent probes preventing PrPSc replication in prior
- 1151 diseases. Eur. J. Med. Chem. 127, 859–873 (2017).
- 1152 105. Irwin, J. J. & Shoichet, B. K. ZINC A Free Database of Commercially Available Compounds for
- 1153 Virtual Screening. J. Chem. Inf. Model. 45, 177–182 (2005).
- 1154 106. MicroSource Discovery Systems, Inc. The US Drug Collection.
- http://www.msdiscovery.com/usdrug.html.
- 1156 107. Koes, D. R. & Camacho, C. J. ZINCPharmer: pharmacophore search of the ZINC database. *Nucleic*
- 1157 Acids Res. 40, W409-414 (2012).
- 1158 108. Zhang, M. et al. Pharmacophore Modeling, Synthesis, and Antibacterial Evaluation of Chalcones
- and Derivatives. ACS Omega 3, 18343–18360 (2018).
- 1160 109. Life Science: LigPrep. Schrödinger https://newsite.schrodinger.com/platform/products/ligprep/.
- 1161 110. Shelley, J. C. et al. Epik: a software program for pKaprediction and protonation state generation for
- drug-like molecules. J. Comput. Aided Mol. Des. 21, 681–691 (2007).
- 1163 111. Epik, S. Protein Preparation Wizard. Epik: Schrödinger, LLC, New York, NY. Schrödinger, LLC.
- 1164 (2019).
- 1165 112. Vélez-Ortega, A. C., Freeman, M. J., Indzhykulian, A. A., Grossheim, J. M. & Frolenkov, G. I.
- Mechanotransduction current is essential for stability of the transducing stereocilia in mammalian auditory
- 1167 hair cells. *eLife* **6**, e24661.
- 1168 113. Rüsch, A., Kros, C. J. & Richardson, G. P. Block by amiloride and its derivatives of mechano-
- electrical transduction in outer hair cells of mouse cochlear cultures. *J. Physiol.* **474**, 75–86 (1994).
- 1170 114. Ballesteros, A. & Swartz, K. J. Regulation of membrane homeostasis by TMC1 mechanoelectrical
- transduction channels is essential for hearing. Sci. Adv. 8, eabm5550 (2022).
- 1172 115. Corns, L. F., Johnson, S. L., Kros, C. J. & Marcotti, W. Tmc1 Point Mutation Affects Ca2+
- 1173 Sensitivity and Block by Dihydrostreptomycin of the Mechanoelectrical Transducer Current of Mouse
- 1174 Outer Hair Cells. *J. Neurosci.* **36**, 336–349 (2016).
- 1175 116. Kroese, A. B. A., Das, A. & Hudspeth, A. J. Blockage of the transduction channels of hair cells in
- the bullfrog's sacculus by aminoglycoside antibiotics. *Hear. Res.* **37**, 203–217 (1989).
- 1177 117. Friesner, R. A. et al. Glide: a new approach for rapid, accurate docking and scoring. 1. Method and
- assessment of docking accuracy. J. Med. Chem. 47, 1739–1749 (2004).
- 1179 118. Vreugde, S. et al. Beethoven, a mouse model for dominant, progressive hearing loss DFNA36. Nat.
- 1180 Genet. **30**, 257–258 (2002).
- 1181 119. Fettiplace, R., Furness, D. N. & Beurg, M. The conductance and organization of the TMC1-
- 1182 containing mechanotransducer channel complex in auditory hair cells. Proc. Natl. Acad. Sci. 119,
- 1183 e2210849119 (2022).
- 1184 120. Corey, D. P., Akyuz, N. & Holt, J. R. Function and Dysfunction of TMC Channels in Inner Ear
- Hair Cells. Cold Spring Harb. Perspect. Med. 9, a033506 (2019).
- 1186 121. Hansen, F. A. & Pedersen-Bjergaard, S. Electromembrane extraction of streptomycin from
- 1187 biological fluids. J. Chromatogr. A **1639**, 461915 (2021).
- 1188 122. Blundell, C. D., Packer, M. J. & Almond, A. Quantification of free ligand conformational
- preferences by NMR and their relationship to the bioactive conformation. *Bioorg. Med. Chem.* **21**, 4976–
- 1190 4987 (2013).
- 1191 123. Rácz, A., Bajusz, D. & Héberger, K. Life beyond the Tanimoto coefficient: similarity measures for
- interaction fingerprints. J. Cheminformatics 10, 48 (2018).
- 1193 124. Beurg, M., Goldring, A. C. & Fettiplace, R. The effects of Tmc1 Beethoven mutation on
- mechanotransducer channel function in cochlear hair cells. J. Gen. Physiol. 146, 233–243 (2015).

- 1195 125. Beurg, M., Barlow, A., Furness, D. N. & Fettiplace, R. A Tmc1 mutation reduces calcium
- permeability and expression of mechanoelectrical transduction channels in cochlear hair cells. *Proc. Natl.*
- 1197 Acad. Sci. 116, 20743–20749 (2019).
- 1198 126. Holt, J. R. et al. Putting the Pieces Together: the Hair Cell Transduction Complex. JARO J. Assoc.
- 1199 Res. Otolarvngol. 22, 601–608 (2021).
- 1200 127. Goldring, A. C., Beurg, M. & Fettiplace, R. The contribution of TMC1 to adaptation of
- mechanoelectrical transduction channels in cochlear outer hair cells. *J. Physiol.* **597**, 5949–5961 (2019).
- 1202 128. Stringer, C., Wang, T., Michaelos, M. & Pachitariu, M. Cellpose: a generalist algorithm for cellular segmentation. *Nat. Methods* **18**, 100–106 (2021).
- 1204 129. Ballesteros, A., Fenollar-Ferrer, C. & Swartz, K. J. Structural relationship between the putative hair
- cell mechanotransduction channel TMC1 and TMEM16 proteins. *eLife* 7, e38433 (2018).
- 1206 130. Al-Hosni, R., Ilkan, Z., Agostinelli, E. & Tammaro, P. The pharmacology of the TMEM16A
- channel: therapeutic opportunities. *Trends Pharmacol. Sci.* **43**, 712–725 (2022).
- 1208 131. Paulino, C., Kalienkova, V., Lam, A. K. M., Neldner, Y. & Dutzler, R. Activation mechanism of
- the calcium-activated chloride channel TMEM16A revealed by cryo-EM. *Nature* **552**, 421–425 (2017).
- 1210 132. Shi, S., Ma, B., Sun, F., Qu, C. & An, H. Theaflavin binds to a druggable pocket of TMEM16A
- channel and inhibits lung adenocarcinoma cell viability. J. Biol. Chem. 297, (2021).
- 1212 133. Shi, S. et al. Identification of a druggable pocket of the calcium-activated chloride channel
- 1213 TMEM16A in its open state. *J. Biol. Chem.* **299**, 104780 (2023).
- 1214 134. Jia, Z. & Chen, J. Specific PIP2 binding promotes calcium activation of TMEM16A chloride
- 1215 channels. *Commun. Biol.* **4**, 1–10 (2021).
- 1216 135. Ballesteros, A. & Swartz, K. J. Dextran Labeling and Uptake in Live and Functional Murine
- 1217 Cochlear Hair Cells. J. Vis. Exp. JoVE (2020) doi:10.3791/60769.
- 1218 136. Farris, H. E., LeBlanc, C. L., Goswami, J. & Ricci, A. J. Probing the pore of the auditory hair cell
- mechanotransducer channel in turtle. J. Physiol. **558**, 769–792 (2004).
- 1220 137. Zhao, Y. et al. A novel DFNA36 mutation in TMC1 orthologous to the Beethoven (Bth) mouse
- associated with autosomal dominant hearing loss in a Chinese family. *PloS One* **9**, e97064 (2014).
- 1222 138. De-la-Torre, P., Choudhary, D., Araya-Secchi, R., Narui, Y. & Sotomayor, M. A Mechanically
- Weak Extracellular Membrane-Adjacent Domain Induces Dimerization of Protocadherin-15. *Biophys. J.*
- 1224 **115**, 2368–2385 (2018).
- 1225 139. Farhadi, M., Razmara, E., Balali, M., Hajabbas Farshchi, Y. & Falah, M. How Transmembrane
- Inner Ear (TMIE) plays role in the auditory system: A mystery to us. J. Cell. Mol. Med. 25, 5869–5883
- 1227 (2021).
- 1228 140. Kurima, K. et al. TMC1 and TMC2 Localize at the Site of Mechanotransduction in Mammalian
- 1229 Inner Ear Hair Cell Stereocilia. Cell Rep. 12, 1606–1617 (2015).
- 1230 141. Ratzan, E. M. et al. TMC function, dysfunction, and restoration in mouse vestibular organs. Front.
- 1231 Neurol. **15**, (2024).
- 1232 142. Kawashima, Y. et al. Mechanotransduction in mouse inner ear hair cells requires transmembrane
- 1233 channel–like genes. J. Clin. Invest. 121, 4796–4809 (2011).
- 1234 143. Clark, S., Jeong, H., Posert, R., Goehring, A. & Gouaux, E. The structure of the Caenorhabditis
- elegans TMC-2 complex suggests roles of lipid-mediated subunit contacts in mechanosensory transduction.
- 1236 *Proc. Natl. Acad. Sci. U. S. A.* **121**, e2314096121 (2024).
- 1237 144. Guo, Z. et al. Identification of Protein–Ligand Binding Sites by the Level-Set Variational Implicit-
- 1238 Solvent Approach. J. Chem. Theory Comput. 11, 753–765 (2015).
- 1239 145. Holt, J. R., Fettiplace, R. & Müller, U. Sensory transduction in auditory hair cells—PIEZOs can't
- 1240 touch this. J. Gen. Physiol. 156, e202413585 (2024).
- 1241 146. Mirdita, M., Ovchinnikov, S. & Steinegger, M. ColabFold Making protein folding accessible to
- all. 2021.08.15.456425 Preprint at https://doi.org/10.1101/2021.08.15.456425 (2021).
- 1243 147. Giese, A. P. J. et al. CIB2 interacts with TMC1 and TMC2 and is essential for mechanotransduction
- 1244 in auditory hair cells. *Nat. Commun.* **8**, 43 (2017).
- 1245 148. Liang, X. et al. CIB2 and CIB3 are auxiliary subunits of the mechanotransduction channel of hair
- 1246 cells. *Neuron* **109**, 2131-2149.e15 (2021).
- 1247 149. Jacobson, M. P., Friesner, R. A., Xiang, Z. & Honig, B. On the Role of the Crystal Environment in
- Determining Protein Side-chain Conformations. J. Mol. Biol. 320, 597–608 (2002).

- 1249 150. Olsson, M. H. M., Søndergaard, C. R., Rostkowski, M. & Jensen, J. H. PROPKA3: Consistent
- 1250 Treatment of Internal and Surface Residues in Empirical pKa Predictions. J. Chem. Theory Comput. 7,
- 1251 525–537 (2011).
- 1252 151. Bowers, K. J. et al. Scalable Algorithms for Molecular Dynamics Simulations on Commodity
- 1253 Clusters. in SC '06: Proceedings of the 2006 ACM/IEEE Conference on Supercomputing 43-43 (2006).
- 1254 doi:10.1109/SC.2006.54.
- 1255 152. Lu, C. et al. OPLS4: Improving Force Field Accuracy on Challenging Regimes of Chemical Space.
- 1256 J. Chem. Theory Comput. 17, 4291–4300 (2021).
- 1257 153. Gallego-Yerga, L. et al. Application of ensemble pharmacophore-based virtual screening to the
- discovery of novel antimitotic tubulin inhibitors. *Comput. Struct. Biotechnol. J.* **19**, 4360–4372 (2021).
- 1259 154. Martyna, G. J., Tobias, D. J. & Klein, M. L. Constant pressure molecular dynamics algorithms. J.
- 1260 Chem. Phys. **101**, 4177–4189 (1994).
- 1261 155. Humphrey, W., Dalke, A. & Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 14,
- 1262 33–38 (1996).
- 1263 156. DeLano, W. L. Pymol. (2002).
- 1264 157. Gori, D. N. P. et al. LIDeB Tools: A Latin American resource of freely available, open-source
- cheminformatics apps. Artif. Intell. Life Sci. 2, 100049 (2022).
- 1266 158. Truchon, J.-F. & Bayly, C. I. Evaluating Virtual Screening Methods: Good and Bad Metrics for
- the "Early Recognition" Problem. J. Chem. Inf. Model. 47, 488–508 (2007).
- 1268 159. Harder, E. et al. OPLS3: A Force Field Providing Broad Coverage of Drug-like Small Molecules
- 1269 and Proteins. J. Chem. Theory Comput. 12, 281–296 (2016).
- 1270 160. Berthold, M. R. et al. KNIME the Konstanz information miner: version 2.0 and beyond. ACM
- 1271 SIGKDD Explor. Newsl. 11, 26–31 (2009).
- 1272 161. Structure-Based Virtual Screening Using Phase Workshop Tutorial | Schrödinger.
- 1273 https://www.schrodinger.com/training/structure-based-virtual-screening-using-phase-workshop-
- 1274 tutorial221.
- 1275 162. Prime, Schrödinger, LLC, New York, NY, USA. (2017).
- 1276 163. Kaminski, G. A., Friesner, R. A., Tirado-Rives, J. & Jorgensen, W. L. Evaluation and
- 1277 Reparametrization of the OPLS-AA Force Field for Proteins via Comparison with Accurate Quantum
- 1278 Chemical Calculations on Peptides. J. Phys. Chem. B **105**, 6474–6487 (2001).
- 1279 164. Li, J. et al. The VSGB 2.0 model: a next generation energy model for high resolution protein
- 1280 structure modeling. *Proteins* **79**, 2794–2812 (2011).
- 1281 165. Rogers, D. & Hahn, M. Extended-Connectivity Fingerprints. J. Chem. Inf. Model. 50, 742–754
- 1282 (2010).

FIGURES, FIGURE LEGENDS, AND TABLES

Figure 1. Structural diversity of known MET blockers. Compounds reported to display varied MET channel blocker potencies and AG protection (see *Supp Table 1*). These compounds share a protonatable nitrogen atom and at least one aromatic ring in their structures. Potential protonatable nitrogen atoms are marked with a blue plus sign. Front view a of our dimeric TMC1 model (*purple*) in complex with two protomers of TMIE (*orange*) and two protomers of CIB2 (*red*) proteins. Heads of phospholipids are showed as white beads. Arrows represent the entry site of small molecules via the pores in both TMC1 protomers calculated by HOLE⁹⁰ (*blue*). More details about this model are presented in *Figure 2* and in the *Methods* section.

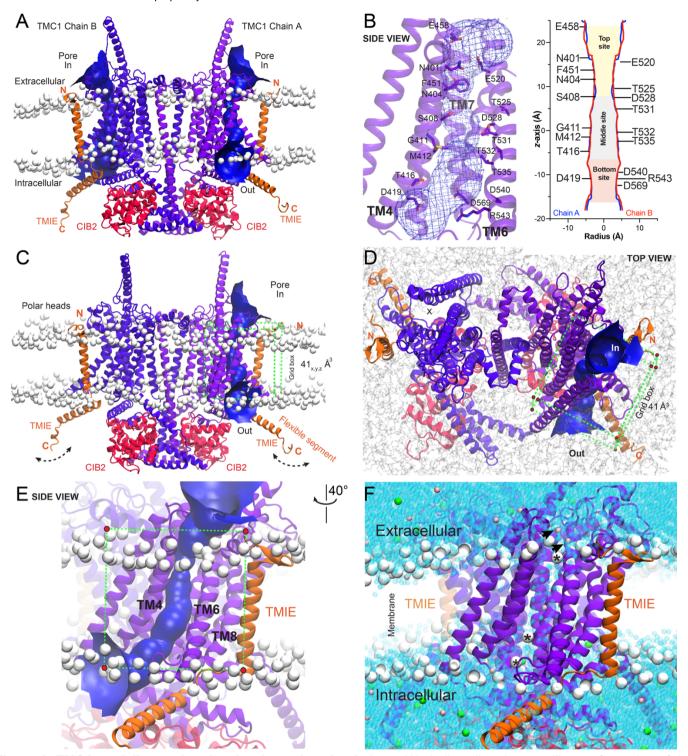
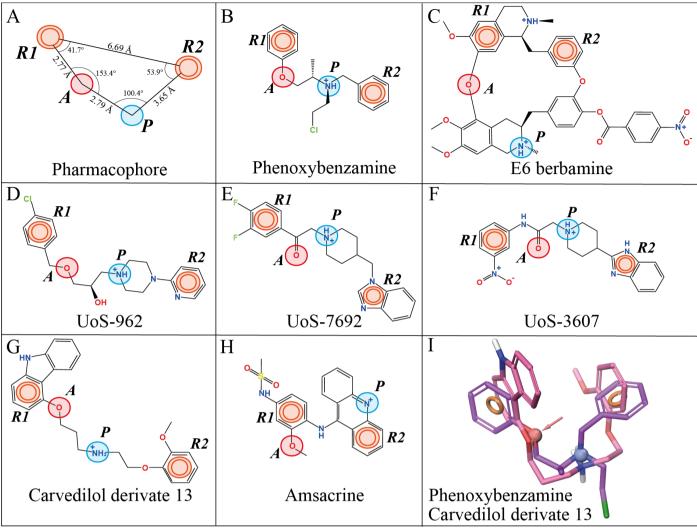



Figure 2. TMC1 modeling and molecular dynamics simulations. We built a dimeric open-like conformation of the TMC1 structure using AlphaFold2. (A) Front view of a 25 ns frame of the dimeric, equilibrated TMC1 protein in complex with two protomers of TMIE (orange) and two protomers of CIB2 (red) proteins. The system is embedded in a POPC membrane, with the phosphorus of the phospholipids heads illustrated as white beads. The TMC1 pores of chain A and B are represented by a blue funnel obtained by HOLE⁹⁰ analysis. (B) Detailed view of the TMC1 pore of chain A, depicting the pore in a mesh representation, and amino acids as purple sticks. The inset depicts the van der Waals radius (Å) of the pore plotted against the distance (Å) along the pore of both TMC1 chains (z-axis), obtained by HOLE⁹⁰ analysis. Top (gold), middle (light gray), and bottom (light red) sites of the pore are labeled and color-coded according to the most expanded regions of the pore. The zero (0 Å) at the z-axis represents the reference position of the middle site of the TMC1 pore at the center of the plasma membrane. See Supp Figure 2 for additional details and quantitative analysis . (C) Front view of the complex as in panel a. The flexible TMIE C-terminal segment is labeled (see Supp Figure 2). A 41 Å³ docking gridbox is represented by green dashed lines with vertices in red circles. (D) Top view of the simulated system showing the swapped TMC1 conformation with two pores represented by a blue surface (chain A) and a dashed circle with an X (chain B), respectively. Same gridbox as in panel c. (E) Zoomed-in side view of chain A from panel c showing the gridbox and TM domains forming the pore. (F) Zoomed-in side view of the MET complex showing water molecules filling the pore (blue beads). K+ ions are illustrated as pink beads, while Cl- ions as green beads. K⁺ ions visiting the pore are pointed with black arrows. Phospholipids that moved into the pore are indicated by asterisks (see Supp Figure 5).

Figure 3. Pharmacophore modeling of 13 known MET channel blockers. (A) The APRR four-point pharmacophore model of MET channel modulators show a hydrogen-bond acceptor feature (*A*) in red, two aromatic rings (*R1* and *R2*) in orange, and a positively charged group (*P*) in blue. Distances and angles between the pharmacophoric features are labeled. This model showed the highest *PhaseHypoScore* (APRR = 0.780) matching 7 out of 13 matching blockers. (**B–H**) A 2D-representation of the APRR pharmacophore model with matching compounds. (**I)** Superposed 3D-structures of the MET blockers phenoxybenzamine (*purple*) and carvedilol derivative 13 (*pink*) onto the APRR pharmacophore. These two compounds fit all 10 pharmacophores reported in Table 1 (see also *Supp Table 2*).

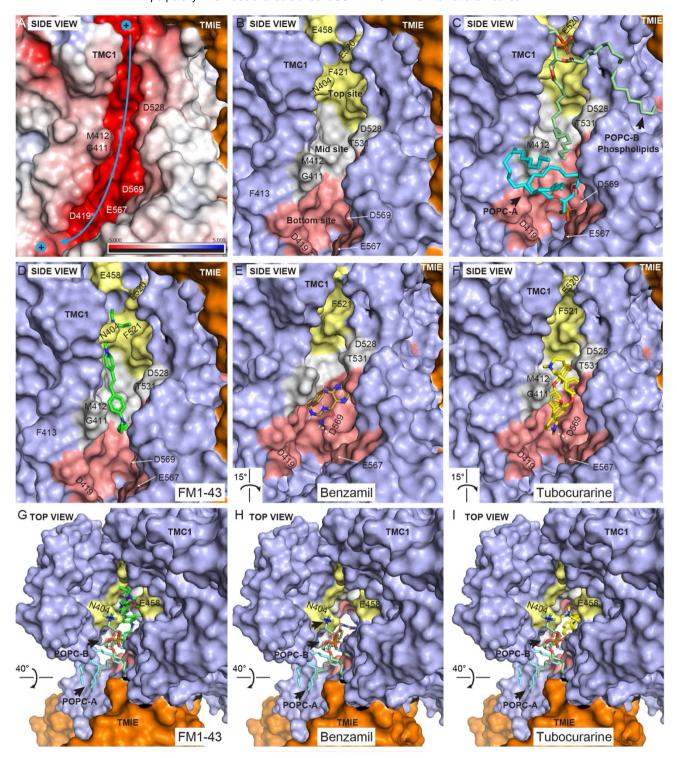
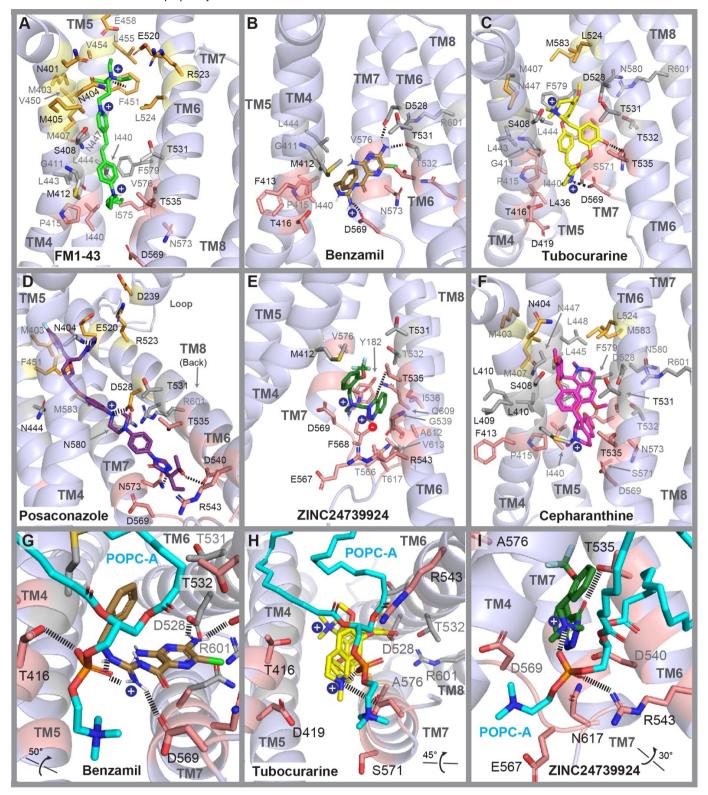



Figure 4. Molecular docking of known blockers within the TMC1 pore cavity. Side view surface representation of TMC1 chain A pore (light purple). TMIE is shown as an orange surface, while CIB2 is not displayed for clarity. (A) Surface electrostatic potential (calculated by PyMOL) of TMC1 cavity. Electronegative area is highlighted in red, electropositive in blue, and hydrophobic in white. The cavity of TMC1 is highly electronegative with a cation pathway indicated by the blue arrow. (B) TMC1 pore cavity highlighting 3 ligand-binding sites: top (gold), middle (light gray), and bottom (light red) sites of the pore, color-coded for illustration purposes. Binding at these sites is governed by interactions between the positively charged amine group of the ligands with residues E458 and F451 (top site), D528 (middle site), and D569 (bottom site), as well as hydrophobic and hydrogen bond interactions with other residues within the TMC1 pore cavity. (C) Side view, similar to panel b, showing the location of two key phospholipids (POPC-A and POPC-B) identified during MD simulations. The polar head of POPC-A points towards the bottom site forming a zwitterionic-like interaction network near D569, key for ligand binding. Additionally, the polar head of POPC-B forms a similar zwitterioniclike network with R523 at the top site (see also Figure 6 and Supp. Figure 5). (D) Binding interaction of FM1-43 (green) across the top, middle, and near the bottom sites of the pore. (I) Binding interaction of benzamil (brown) at the bottom site of the pore. Dashed white line represents a hydrogen bond interaction with D569. (F) Binding interaction of tubocurarine (yellow) at the middle and the bottom sites of the pore. Dashed white line as in panel E. (G-I) Top views of FM1-43, benzamil, and tubocurarine showing the location of the ligands and the phospholipid sidewall formed by POPC-A and POPC-B surrounding the ligands. Additional illustrations on interactions are presented in Figure 6 and Supp Figure 5.

Figure 5. Molecular docking simulations of known and novel TMC1 blockers. Cartoon representation and binding modes of blockers. **(A)** FM1-43 (*green*) within the cavity of TMC1 (*light purple*). **(B)** Benzamil (*brown*). **(C)** Tubocurarine (*yellow*). **(D)** Posaconazole (*dark purple*). **(E)** Compound ZINC24739924 (*green*). **(F)** Cepharanthine (*magenta*). **(G-I)** Bottom view of the ZN3 bottom site with benzamil, tubocurarine, and compound ZINC24739924, respectively. Residues are labeled in *black* and *gray* for their position at the front or at the back of each helix, respectively. The side chains and the backbone residues are colored as in *Figure 4*, according to their location within the top (*gold*), middle (*light gray*), and bottom (*light red*) sites of the TMC1 pore. Residues within 5 Å distance from each blocker are displayed, and key interactions highlighted with black dashed lines. Additional illustrations on interactions are presented in *Supp Figure 5*.

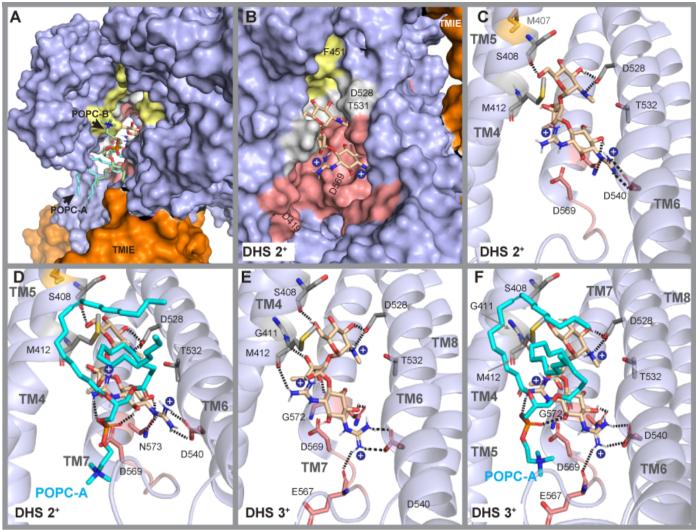
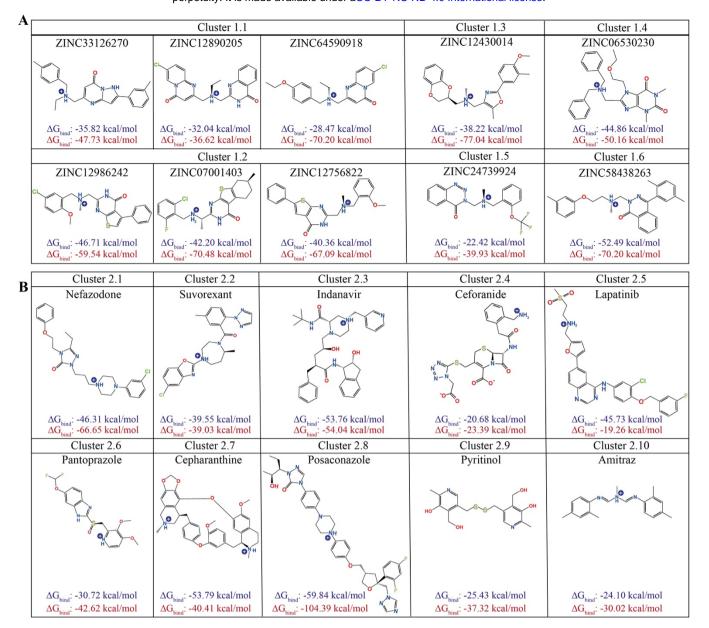



Figure 6. Molecular docking of dihydrostreptomycin (DHS) within the TMC1 pore. Binding interactions following molecular docking and MM-GBSA. Phospholipids are not displayed in some panels to visualize DHS and TMC1 only. Each positively charged nitrogen is shown as a blue bead. Dashed lines represent direct hydrogen bonds or salt-bridge interactions. (A) Top view of DHS (2+) showing the location of the ligand and the phospholipid sidewall formed by POPC-A and POPC-B, surrounding the ligands. (B) Side view of DHS (2+) within the TMC1 pore. Top site (gold), middle site (light gray), and bottom site (light red) are shown. Phospholipids are not displayed for clarity. Binding at these sites is governed by interactions between the positively charged amine and guanidinium groups, as well as the hydroxyl groups of DHS (2+) with amino acids of the middle and bottom sites. (C) Docking pose of DHA (2+) showing hydrogen bonds between the N-methyl-L-glucosamine head with the amino acids S408 and D528. The streptose moiety pointed towards TM7, while the guanidinium groups of the streptidine moiety displayed hydrogen bond interactions with N573 and salt bridges with D540. One of the guanidinium groups points to D569 in a region exposed to solvent (more details in panel d). (D) Bottom view from panel C. Interactions between DHS (2⁺), TMC1, and POPC-A within the bottom site of the pore cavity. One quanidinium group displayed interactions with N573 and D540 (as in panel c), while the second quanidinium group showed interactions with the polar head of POPC-A. (E) Side view of DHS (3⁺) within the pore showing interactions similar to DHS (2+). Additionally, the hydroxyl group of the streptose moiety formed hydrogen bonds with the carbonyl backbone groups of G411 and G572, while the quanidinium groups formed hydrogen bonds with the carbonyl backbone groups of M412 and E567. (F) Interactions of DHS (3⁺) within the pore and with POPC-A.

Figure 7. **List of final hits selected for experimental evaluation. (A)** Chemical structures of the 10 selected hits from *Library* 1 (non-FDA-approved). **(B)** Chemical structures of the 10 selected hits from *Library* 2 (FDA-approved drugs). The calculated MM-GBSA ΔG_{bind} energies are shown for all selected hit compounds in blue (without POPCs) and in red (with POPCs), respectively. Compounds were sketched using ChemDraw.

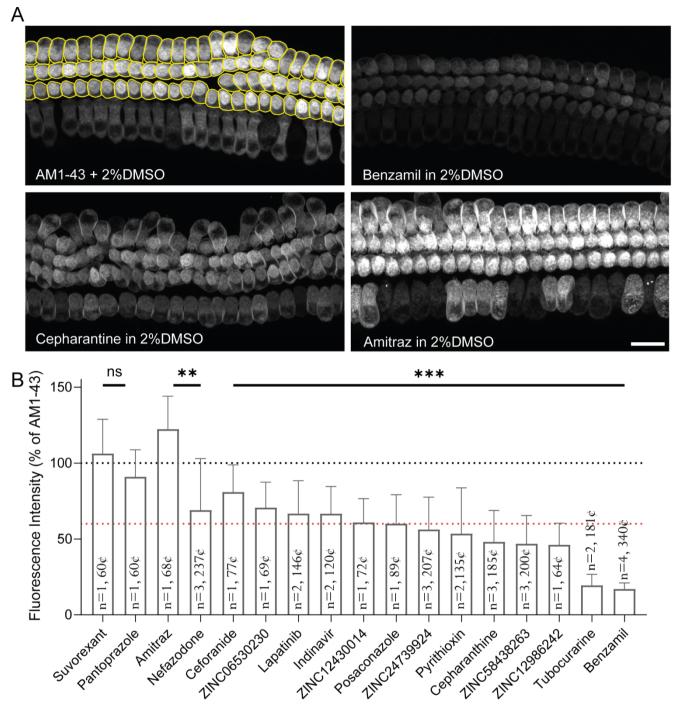


Figure 8. Evaluation of predicted TMC1 modulators in live cochlear hair cells using AM1-43 dye uptake assay. (A) Representative confocal microscopy images of AM1-43 dye loading into hair cells from the middle region of the cochlea. The Cellpose algorithm was used to segment each OHC as individual region of interest (*top left* panel). Dye uptake was reduced by treatment with benzamil (*top right*) and cepharantine (*bottom left*) but increased following treatment with Amitraz (*bottom right*) compared to DMSO-treated controls (*top left*). Scale bar: $15\mu m$. (B) Averaged AM1-43 dye uptake by OHCs in cochlear explants treated with 16 commercially available hit compounds normalized to values obtained from DMSO-treated control explants of the same experimental session. The number of experimental sessions and total number of analyzed cells are indicated within the histogram bar. Data are presented as mean \pm SD. To compare the average compound fluorescence with the average control levels from the same experimental sessions, the Kruskal-Wallis test followed by Dunn's multiple comparison test was used. p > 0.5 (ns); p < 0.01(***); p < 0.001(***). Individual AM1-43 dye loading intensities across each experimental sessions are reported in *Supp Figure* 8.

Table 1. Pharmacophore models identified by *Phase* and scored by *PhaseHypoScore*⁶⁷ (See *Methods*).

Pharmacophore ID	Pharmacophore hypothesis	Number of matching compounds	PhaseHypoScore
ID-1	APRR	7	0.780
ID-2	APR-1	9	0.762
ID-3	APR-2	8	0.759
ID-4	PRR	7	0.698
ID-5	ARR-1	7	0.629
ID-6	ARR-2	9	0.526
ID-7	AHR	7	0.475
ID-8	ARR-3	7	0.418
ID-9	ARR-4	8	0.385
ID-10	HRR	9	0.340

Table 2. Re-scoring of the docking energies for the selected hits from *Library* 1 and *Library* 2 ($\Delta G_{bind} = kcal/mol$).

Library 1 (non-FDA-approved compounds)		Library 2 (FDA-approved drugs)				
	Without	With		Without	With	
Compound	phospholipids	phospholipids	Compound	phospholipids	phospholipids	
	ΔG_{bind}	ΔG_{bind}		$\Delta G_{ ext{bind}}$	ΔG_{bind}	
ZINC58438263	-52.49	-70.02	Posaconazole	-59.84	-104.39	
ZINC12986242	-46.71	-59.54	Cepharanthine	-53.79	-40.41	
ZINC06530230	-44.86	-50.16	Indinavir	-53.76	-58.04	
ZINC07001403	-42.20	-70.48	Nefazodone	-46.31	-66.65	
ZINC12756822	-40.36	-67.09	Lapatinib	-45.73	-19.26	
ZINC12430014	-38.22	-77.04	Suvorexant	-39.55	-39.03	
ZINC33126270	-35.82	-47.73	Pantoprazole	-30.72	-42.62	
ZINC12890205	-32.04	-36.62	Pyritinol	-25.42	-37.32	
ZINC64590918	-28.47	-51.42	Amitraz	-24.10	-30.02	
ZINC24739924	-22.42	-39.93	Ceforanide	-20.68	-23.29	
Compounds in bold were evaluated experimentally, upon commercial availability.						