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Background: Although a variety of targets for deep brain stimulation (DBS) have

been found to be effective in Parkinson’s disease (PD), it remains unclear which target

for DBS leads to the best improvement in gait disorders in patients with PD. The

purpose of this network meta-analysis (NMA) is to compare the efficacy of subthalamic

nucleus (STN)-DBS, internal globus pallidus (GPi)-DBS, and pedunculopontine nucleus

(PPN)-DBS, in improving gait disorders in patients with PD.

Methods: We searched the PubMed database for articles published from January

1990 to December 2020. We used various languages to search for relevant documents

to reduce language bias. A Bayesian NMA and systematic review of randomized and

non-randomized controlled trials were conducted to explore the effects of different

targets for DBS on gait damage.

Result: In the 34 included studies, 538 patients with PD met the inclusion criteria. The

NMA results of the effect of the DBS “on and off” on the mean change of the gait of the

patients in medication-off show that GPi-DBS, STN-DBS, and PPN-DBS are significantly

better than the baseline [GPi-DBS: –0.79(–1.2, –0.41), STN-DBS: –0.97(–1.1, –0.81), and

PPN-DBS: –0.56(–1.1, –0.021)]. According to the surface under the cumulative ranking

(SUCRA) score, the STN-DBS (SUCRA = 74.15%) ranked first, followed by the GPi-DBS

(SUCRA= 48.30%), and the PPN-DBS (SUCRA= 27.20%) ranked last. The NMA results

of the effect of the DBS “on and off” on the mean change of the gait of the patients in

medication-on show that, compared with baseline, GPi-DBS and STN-DBS proved to be

significantly effective [GPi-DBS: –0.53 (–1.0, –0.088) and STN-DBS: –0.47(–0.66, –0.29)].

The GPi-DBS ranked first (SUCRA= 59.00%), followed by STN-DBS(SUCRA= 51.70%),

and PPN-DBS(SUCRA = 35.93%) ranked last.

Conclusion: The meta-analysis results show that both the STN-DBS and GPi-DBS can

affect certain aspects of PD gait disorder.
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1. INTRODUCTION

Parkinson’s disease (PD) is currently the second most prevalent
neurodegenerative disease worldwide. Gait disorders widely and
severely affect patients with PD as they significantly limit the
ability of the patient to walk and often cause falls and fall-related
injuries. In addition, with the progression of the disease, their
frequency and severity gradually increase (Nonnekes et al., 2015,
2019). Dopamine therapy and surgery are commonly used to
treat gait disorders in patients with early and mid-stage PD, but
their beneficial effect is minimal for patients with advanced PD
(Gazewood et al., 2013). Deep brain stimulation (DBS) is a novel
treatment for advanced PD-related gait disorders (Ferraye et al.,
2008). Compared with the traditional treatments for PD, DBS has
the advantages of reversibility, preservation of neuronal tissue,
and adjustability of the treatment plan according to the disease
state of the patient. It is believed that the subthalamic nucleus
(STN) (Remple et al., 2011; Jahanshahi et al., 2015), internal
globus pallidus (GPi) (Okun, 2012), and pedunculopontine
nucleus (PPN) are the stimulation targets for improving gait
disorders in patients with advanced PD.

Some randomized controlled trials were unable to
implement two specific interventions, resulting in the
inability to obtain direct evidence from face-to-face trials.
As a result, it can be challenging to evaluate the effectiveness
of many clinically indicated interventions available and
determine the best intervention (Nikolakopoulou et al., 2018).
Through network-meta-analysis (NMA), inferences can be
made about every possible comparison between a pair of
interventions in the network, even if some comparisons
have never been evaluated in actual trials (Bafeta et al.,
2013; Dias and Caldwell, 2019). Ultimately, we can combine
the direct and indirect comparisons and determine the
best intervention.

The treatment of gait disorders is a challenge. Realizing that
few studies directly compare the efficacy of DBS with different
stimulation targets, we conducted an NMA to evaluate the
potential effects of STN-DBS, GPi-DBS, and PPN-DBS in the
treatment of PD gait.

The Unified Parkinson’s Disease Rating Scale (UPDRS) is
currently the most widely used clinical grading system for PD
(Movement Disorder Society Task Force on Rating Scales for
Parkinson’s Disease, 2003). This study evaluates the 3.29-step
item of gait in the UPDRS. Therefore, our goal is to compare and
rank the therapeutic effects of these three types of interventions
on PD gait.

2. METHOD

This NMA is implemented in accordance with the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses
extension statement for NMA.

2.1. Search Method
We searched the PubMed database for articles published
from January 1990 to December 2020 and searched for
relevant documents in various languages to reduce language

bias. However, ultimately, only documents in English were
considered appropriate. After that, we also screened the
references of the retrieved articles to determine related
research studies.

2.2. Eligibility Criteria
1. Clinical trials of using DBS to treat idiopathic PD.
2. Research object: patients clinically diagnosed with PD.
3. Results: studies used the UPDRS III and UPDRS III item 29 to

evaluate therapeutic efficacy.

FIGURE 1 | Flowchart of study selection.
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FIGURE 2 | Network plot for all studies. (A) UPDRS III-Gait med-off/stim-off vs. med-off/stim-on. (B) UPDRS III-Gait med-on/stim-off vs. med-on/stim-on. (C) UPDRS

III-Gait med-off/stim-off vs. med-on/stim-off. (D) UPDRS III-Gait med-off/stim-on vs. med-on/stim-on. (E) UPDRS III- Total med-off/stim-off vs. med-off/stim-on. (F)

UPDRS III- Total med-on/stim-off vs. med-on/stim-on. (G) UPDRS III- Total med-off/stim-off vs. med-on/stim-off. (H) UPDRS III- Total med-off/stim-on vs.

med-on/stim-on.

4. Including one ormore of the following three surgical methods:
STN-DBS, GPi-DBS, and PPN-DBS.

2.3. Exclusion Criteria
1. Clinical trials of DBS in the treatment of diseases other than

PD.
2. No clinically controlled trials were conducted at the same

time.
3. Lost data or data that cannot be extracted.
4. Studies used the MDS-UPDRS III and MDS-UPDRS III item

29 to evaluate therapeutic efficacy.

2.4. Quality Assessment and Data
Extraction
The Cochrane Collaboration’s risk-of-bias tool was used to assess
the quality of previous systematic reviews. The quality of each
manuscript was evaluated by two researchers and then discussed
with themain researcher to reach an agreement.We extracted the
following variables from the collected manuscripts: name of the
first author, date of publication, number of participants, age of
participants, intervention measures, sex ratio, disease duration,
post-surgery duration, and funding.

2.5. Effective Measurement
The UPDRS is currently the most commonly used clinical
grading scale system for PD. The UPDRS III score is the main
evaluation index for PD therapeutic research, and the UPDRS
III gait sub-score is defined as the UPDRS III item 29 score.
Therefore, we used the UPDRS III item 29 to evaluate the
improvement of gait in patients with PD. In addition, the UPDRS
III total score was used to assess the improvement of motor
symptoms in patients with PD.

2.6. Statistical Analysis
In this study, the R language (R program software V.3.5.3,
CRAN Project) was used to conduct NMA in order to compare
the efficacy of different therapies. The specific method refers

to our previous study (Lin et al., 2021). In short, NMA was
performed based on the Bayesian framework, using the Markov
Chain Monte Carlo method in the R software, including 4
chains with over-dispersed initial values and Gibbs sampling
based on 50,000 iterations after 20,000 aging stages. The mean
difference and 95% CI of the difference were obtained, and the
significance level was 0.05. Additionally, the rank probability of
each clinical outcome was assessed. The deviation information
criterion (DIC) was used to evaluate the goodness of fit in
this study. The quality of the model is negatively correlated
with the value of DIC. By comparing the DIC values between
the models, the suitability of the models can be assessed
(Carpinella et al., 2007). To be able to determine whether small
research effects exist, we examined each result and compared
the adjusted funnel chart. In this study, we drew a funnel chart
of the mean difference between all comparisons after treatment
and baseline.

3. RESULTS

3.1. Research Description
The basic process of research data collection is illustrated in
Figure 1. The network plot of the overall efficacy is shown in
Figure 2. The basic information of the data of the study is
shown in Table 1. The comparison-adjusted funnel plot for the
network of the functional outcome is shown in Figure 3 and
the risk of bias for the included trials is shown in Figure 4.
In our first search, we identified 529 articles and subsequently
eliminated 442 irrelevant articles based on the title and abstract
of the article. Then, we carefully reviewed the full text of the
remaining 87 articles and eliminated 53 of them. Our exclusion
criteria were as follows: no extracted data; no available data;
inappropriate diagnosis, and comment/overview. Ultimately, this
study included a total of 34 studies and 26 of which were included
in quantitative studies (Gálvez-Jiménez et al., 1998; Kumar et al.,
1999; Obeso et al., 2001; Ogura et al., 2004; Erola et al., 2005;
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TABLE 1 | Characteristics of included studies.

Number Intervention Author&Year Sample

size

Age

(mean (SD) y)

Gender

(M/F)

Disease

duration

(y ears)

Post

surgery

duration

Funding

1 STN-DBS Tir, 2007 100 58.7 ± 8.2 55/45 13.6 ± 4.4 12 m /

2 single electrode guided

STN-DBS or multiple

electrode guided STN-DBS

Temel, 2007 55 (S:32 M:23) 61.6 (S:59.4 ± 7

M:64.6 ± 9.6)

36/19 (S:21/11

M:15/8)

12.3 (S:13.1 ± 5.1

M:11.3 ± 5.6)

12 m /

3 STN-DBS Tabbal, 2007 72 63 ± 8.2 41/31 14.5 ± 6.5 6 m The Sam and Barbara Murphy Fund, the

Elliot H. Stein

Family Fund

4 STN-DBS Simuni, 2002 12 58 ± 11 10/2 12 ± 4 12 m /

5 STN-DBS Rodrlguez-oroz,

2005

69 (S:49 M:20) 58.6 (S:59.8 ± 9.8

G:55.8 ± 9.4)

38/31 (S:25/24

G:13/7)

14.2 (S:14.1 ± 5.9

G:14.4 ± 5.7)

3–4 y Medtronic Europe

6 STN-DBS Panida, 2007 33 53.4 ± 8.3 24/9 / 5y /

7 GPi-DBS Ogura, 2004 30 57.7 16/14 8.4 12 m /

8 GPi-DBS (There is an

example of GPi+VIM)

Nestor, 1998 5 63.2 ± 7.5 4/1 10.2 ± 4.7 3 m Medtronic, Minneapolis, MN, the

National Parkinson Foundation, Miami, Fl

and the Parkinson Foundation of Canada

9 STN-DBS Lefaucheur, 2008 54 59 34/20 14 12 m /

10 STN-DBS Erola, 2005 29 60 ± 8 20/9 13 ± 7 12m Finnish Parkinson

Foundation

11 STN-DBS or GPi-DBS DBSPDG, 2001 134 (S:96 G:38) 58.1 (S:59.0 ± 9.6

G:55.7 ± 9.8)

87/37 (S:60/36

G:27/11)

/ 6m /

12 STN-DBS Crenna, 2006 10 60.2 ± 4.8 5/5 16.9 ± 5.5 10.4 ± 7 m Italian

Ministry of Health

13 STN-DBS or GPi-DBS Burchiel, 1999 10 (S:6 G:4) 56 6 13 (S:62.8 ±

12 G:46.5 ± 11)

7/3 12.4 (S:13.6 ± 5

G:10.6 ± 2)

3m United States Public

Health Service

14 PPNa-DBS Welter, 2015 4 62 ± 9.5 1/3 15.8 ± 5.1 6m The Institut National de la Recherche

Me’dicale (INSERM), the ’Institut du

Cerveau

et de la Moelle Epinie’re’ (ICM)

Foundation, the ’Re’gie Autonome

des Transports Parisiens’ (RATP), the

’Fondation pour la Recherche

Medicale’ (FRM) and the programme

’Investissements d’avenir’

(ANR-10-IAIHU-06)

15 STN-DBS Vallabhajosula, 2015 19 61.8 ± 9 16/3 13.6 ± 4.2 / The National

Parkinson Foundation Center of

Excellence, the UF Foundation, and

UF Center for Movement Disorders and

Neurorestoration

(Continued)
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TABLE 1 | Continued

Number Intervention Author&Year Sample

size

Age

(mean (SD) y)

Gender

(M/F)

Disease

duration

(y ears)

Post

surgery

duration

Funding

16 STN-DBS Stegemoller, 2013 17 61.5 ± 9.2 14/3 13.6 ± 3.9 30.5 ± 19.2 m The National Parkinson

Foundation UF Center for Excellence and y

NIH grant 5R03HD054594-02

17 STN-DBS Sidiropoulos, 2013 45 59.5 ± 7.8 35/10 17.8 ± 5.7 4y /

18 STN-DBS Romito, 2009 20 56.4 ± 6.9 11/9 14.3 ± 6.2 5y The Italian

Ministry of University and Research

(National Interest Project

number 2001062543 to AA)

19 STN-DBS or GPi-DBS Price, 2011 37 58.8 ± 7 28/9 12.4 4m NINDS K23NS060660 (CP), NIH T35

07489

(CF), UF National Parkinson Foundation

Center of Excellence and UF

Foundation

20 STN-DBS Phibbs, 2013 20 62 16/4 12.5 3y NIH grant 1UL 1RR024975 NCRR and

grant UL1 TR000445 from NCATS/NIH

21 STN-DBS Nardo, 2014 9 66.4 ± 6.0 7/2 3.1 ± 1.3 3.3 ± 1.2 y /

22 PPN-DBS Moro, 2009 6 65.2 ± 2 5/1 15.5 ± 6.2 12m The National Parkinson Alliance

23 STN-DBS and PPN-DBS Moreau, 2009 4 / / / / /

24 STN-DBS Kelly, 2009 8 51.9 ± 8.7 6/2 10.1 ± 3.5 / The National Institutes of Health grant

HD-007424 and a grant from Medtronic

25 STN-DBS or GPi-DBS Katz, 2015 235 (S:108 G:127) 60.9 199/36 11.8 2 y The Cooperative Studies Program of the

Department of Veterans Affairs Office of

Research and Development, the National

Institute of Neurological

Disorders and Stroke, and Medtronic

26 STN-DBS Hausdorff, 2009 13 63.6 ± 8.7 10/3 12.9 ± 5.6 12 ± 7 m NIH (AG-14100), the Israel Ministry of

Absorption,the European Union Sixth

Framework Program (FET018474-2,

Dynamic Analysis of Physiological

Networks,DAPHNet, STREP 045622

SENSing, ect)

27 STN-DBS Gervais-bernard,

2009

23 55.1 ± 7.2 17/6 12.9 ± 3.2 5y /

28 STN-DBS and PPNa-DBS Ferraye, 2009 6 63.3 ± 6.8 4/2 20.7 ± 7.1 1y The Michael J. Fox Foundation, the

Fondation de France, the Centre

Hospitalier Universitaire de Grenoble,

project FREESTIPP and Medtronic
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Rodriguez-Oroz et al., 2005; Crenna et al., 2006; Piboolnurak
et al., 2007; Tabbal et al., 2007; Temel et al., 2007; Tir et al., 2007;
Chastan et al., 2008; Lefaucheur et al., 2008; Ballanger et al., 2009;
Ferraye et al., 2009; Gervais-Bernard et al., 2009; Moro et al.,
2009; Schneider et al., 2009; Fasano et al., 2010; Kelly et al., 2010;
Caliandro et al., 2011; Price et al., 2011; Sidiropoulos et al., 2013;
Katz et al., 2015; Vallabhajosula et al., 2015; Welter et al., 2015).

3.2. Unified Parkinson’s Disease Rating
Scale III-Gait
(Medication-Off/Stimulation-Off vs.
Medication-Off/Stimulation-On
The NMA results of the effect of the stimulation “on and off”
on the mean change of the gait of the patients in medication-
off are summarized in Figure 5. In addition, Figure 6 shows the
surface under the cumulative ranking (SUCRA). The comparison
results of the NMA show that GPi-DBS, STN-DBS, and PPN-
DBS are superior to the baseline [GPi-DBS: –0.79(–1.2, –
0.41), STN-DBS: –0.97(–1.1, –0.81), and PPN-DBS: –0.56(–
1.1, –0.021)]. According to the results of the SUCRA scores,
STN-DBS (SUCRA = 74.15%) ranks first, followed by GPi-
DBS (SUCRA = 48.30%), and PPN-DBS (SUCRA = 27.20%)
ranks last.

3.3. Unified Parkinson’s Disease Rating
Scale III-Gait
(Medication-On/Stimulation-Off vs.
Medication-On/Stimulation-On)
The NMA results of the effect of the stimulation “on and off”
on the mean change of the gait of the patients in medication-
on are shown in Figure 5 and the SUCRA is shown in

Figure 6. Compared with the baseline, the GPi-DBS and STN-

DBS proved to be significantly effective [GPi-DBS: –0.53(–1.0,

–0.088) and STN-DBS: –0.47(–0.66, –0.29)]. The SUCRA scores

reveal the rank of the three surgical interventions as follows:

The GPi-DBS (SUCRA = 59.00%) ranks first, followed by STN-
DBS (SUCRA = 51.70%), and PPN-DBS (SUCRA = 35.93%)
ranks last.

3.4. Unified Parkinson’s Disease Rating
Scale III-Gait
(Medication-Off/Stimulation-Off vs.
Medication-On/Stimulation-Off)
The NMA results show the effect of medication “on and off”
on the mean change of the gait of the patients in stimulation-
off (Figure 5), the SUCRA is shown in Figure 6. The GPi-DBS,
STN-DBS, and PPN-DBS show effective improvement compared
to the baseline [GPi-DBS: –1.4(–2.1, –0.82), STN-DBS: –1.2(–
1.5, –0.90), and PPN-DBS: –1.1(–1.9, –0.34)]. The rank of the
three surgical interventions is that based on the SUCRA scores
that is as follows: The GPi-DBS (SUCRA = 67.75%) ranks
first, followed by STN-DBS (SUCRA = 44.80%), and PPN-DBS
(SUCRA= 37.40%) ranks last.
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FIGURE 3 | Comparison-adjusted funnel plot for the network of functional outcome; (A) UPDRS III-Gait (med-off/stim-off vs. med-off/stim-on), (B) UPDRS III-Gait

(med-on/stim-off vs.med-on/stim-on), (C) UPDRS III-Gait (med-off/stim-off vs. med-on/stim-off), (D) UPDRS III-Gait (med-off/stim-on vs. med-on/stim-on). (E) UPDRS

III-Total (med-off/stim-off vs. med-off/stim-on), (F) UPDRS III- Total (med-on/stim-off vs.med-on/stim-on), (G) UPDRS III- Total (med-off/stim-off vs. med-on/stim-off),

(H) UPDRS III- Total (med-off/stim-on vs. med-on/stim-on).

3.5. Unified Parkinson’s Disease Rating
Scale III-Gait
(Medication-Off/Stimulation-On vs.
Medication-On/Stimulation-On)
The NMA results of the effect of the medication “on and
off” on the mean change of the gait of the patients in
stimulation-on are shown in Figure 5 and the SUCRA is
shown in Figure 6. The comparison results of the NMA
show that the GPi-DBS, STN-DBS, and PPN-DBS are

superior to the baseline [GPi-DBS: –0.89(–1.1, –0.63),

STN-DBS: –0.40(–0.52, –0.29), and PPN-DBS: –0.83(–1.5,

–0.20)]. According to the results of the SUCRA, the GPi-
DBS (SUCRA = 68.36%) ranks first, followed by PPN-DBS
(SUCRA = 61.50%), and the STN-DBS (SUCRA = 20.03%)
ranks last.

3.6. Unified Parkinson’s Disease Rating
Scale III-Total
(Medication-Off/Stimulation-Off vs.
Medication-Off/Stimulation-On)
The secondary results of discontinuation are motor symptoms.
The NMA results show the effect of stimulation “on and
off” on the mean change of the gait of the patients in
medication-off (Figure 7), and the SUCRA is shown in Figure 8.
Compared with baseline, the GPi-DBS and STN-DBS proved
to be significantly effective [GPi-DBS: –16.0(–26.0, –4.7) and
STN-DBS: –22.0(–26.0, –17.0)]. The SUCRA scores reveal that
the rank of the three surgical interventions is as follows: The
STN-DBS (SUCRA = 78.70%) ranks first, followed by GPi-
DBS (SUCRA = 52.77%), and PPN-DBS (SUCRA = 15.77%)
ranks last.
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FIGURE 4 | Risk of bias for the included trials (A). Risk of bias summary for the included trials (B).

3.7. Unified Parkinson’s Disease Rating
Scale III-Total
(Medication-On/Stimulation-Off vs.
Medication-On/Stimulation-On)
The NMA results of the effect of the stimulation “on and off”
on the mean change of the gait of the patients in medication-on
are summarized in Figure 7. In addition, the SUCRA is shown
in Figure 8. The STN-DBS has effective improvement compared
to the baseline [STN-DBS: –6.4(–9.3, –3.5)]. The SUCRA
scores reveal that the rank of the three surgical interventions
is as follows: the STN-DBS (SUCRA = 62.43%) ranks first,
followed by GPi-DBS (SUCRA = 47.20%), and the PPN-DBS
(SUCRA= 33.87%) ranks last.

3.8. Unified Parkinson’s Disease Rating
Scale III-Total
(Medication-Off/Stimulation-Off vs.
Medication-On/Stimulation-Off)
The NMA results of the effect of the medication “on and off”
on the mean change of the gait of the patients in stimulation-
off are summarized in Figure 7. In addition, SUCRA is shown in
Figure 8. Compared with the baseline, the GPi-DBS and STN-
DBS proved to be significantly effective [GPi-DBS: –33.0(–49.0,

–17.0) and STN-DBS: –24.0(–29.0, –19.0)]. According to the
SUCRA scores, the GPi-DBS (SUCRA = 78.61%) ranks first,
followed by STN-DBS (SUCRA = 54.07%), and the PPN-DBS
(SUCRA= 16.57%) ranks last.

3.9. Unified Parkinson’s Disease Rating
Scale III-Total
(Medication-Off/Stimulation-On vs.
Medication-On/Stimulation-On)
The NMA results of the effect of the medication “on and
off” on the mean change of the gait of the patients in
stimulation-on are shown in Figure 7 and the SUCRA is shown
in Figure 8. The GPi-DBS, STN-DBS, and PPN-DBS show
effective improvement compare to the baseline [GPi-DBS: –
15.0(–21.0, –8.7), STN-DBS: –7.1(-8.5, –5.5), and PPN-DBS: –
9.0(–13.0, –5.2)]. According to the SUCRA scores, the GPi-
DBS (SUCRA = 80.86%) ranks first, followed by PPN-DBS
(SUCRA = 48.40%), and the STN-DBS (SUCRA = 22.73%)
ranks last.

3.10. Consistency and Integration Analysis,
Small-Scale Research Effects
In this study, we assessed the inconsistency between the included
studies by constructing a consistency model and an inconsistency
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FIGURE 5 | Forest plot of mean difference of UPDRS-III (29 item, gait); (A) med-off/stim-off vs. med-off/stim-on, (B) med-on/stim-on vs. med-on/stim-on, (C)

med-off/stim-off vs. med-on/stim-off, (D) med-off/stim-on vs. med-on/stim-on.

model. The results show that the difference in DIC between
these two models was less than 1. Thus, the consistency model
is reliable. In addition, by limiting the value of all potential
proportional reduction factors of different parameters to 1,
it is demonstrated that the algorithm has good convergence
efficiency. Moreover, we did not find a small-scale research
effect.

4. DISCUSSION

This study includes data from 34 clinical trials (538 patients) and
systematically reviews the treatment of PD gait with different
DBS targets and NMA. This study found that STN-DBS is the
best treatment option to improve PD gait, while GPi-DBS is the
best to improve PD gait under medication. STN-DBS ranked
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FIGURE 6 | Cumulative rank of three surgical intervention of UPDRS-III (29 item, gait); (A) med-off/stim-off vs. med-off/stim-on, (B) med-on/stim-on vs.

med-on/stim-on, (C) med-off/stim-off vs. med-on/stim-off, (D) med-off/stim-on vs. med-on/stim-on.

first in improving PD gait and motor symptoms and can greatly
increase the stride length and increase the gait speed in the drug
withdrawal state, while the rhythm remains mostly unchanged
(Allert et al., 2001; Faist, 2001; Liu et al., 2005). At the same
time, it also increases the swing motion amplitude of the arms
and legs (Carpinella et al., 2007). STN- DBS also counteracts the
asymmetry of foot position in pathological space, resulting in a
more physiologically alternating gait cycle (Johnsen et al., 2009).
Our findings are consistent with the findings of most previous
studies. STN-DBS ranked first in improving the UPDRS III-29
gait score in the drug withdrawal state.

In principle, the effect of STN-DBS on gait parameters is
similar to that of over-dose levodopa (L-dopa) (Cantiniaux et al.,
2009; Hausdorff et al., 2009; Gulberti et al., 2015; Muthuraman
et al., 2018), although L-DOPA sometimes has a slight impact
on increasing step length and gait speed (Stolze et al., 2001;
Lubik et al., 2006). Compared with any other treatment, the
comprehensive effect of L-DOPA combined with STN-DBS is
better than the effect of each alone (Hausdorff et al., 2009). In this
study, the results of comparing the effects of L-dopa and STN-
DBS are consistent with the general observation that STN-DBS
can improve the symptoms of patients with dopamine-responsive
PD (Pötter-Nerger and Volkmann, 2013). Our study found
that GPi-DBS is more effective than STN-DBS in improving
PD gait under medication. The effect of GPi-DBS on gait is
different from that of STN-DBS. The GPi-DBS primarily affects
gait speed, while STN-DBS primarily affects step length without
changing the rhythm (Allert et al., 2001). Some studies have
shown that GPi-DBS significantly improves the axial symptoms
of untreated patients with PD in the first year after surgery,

and this effect is not obvious under the state of drug treatment
(Bakker et al., 2004). For gait and balance problems in patients
with PD, the choice of GPi or STN as the target remains a matter
of controversy.

A meta-analysis showed that when combined with drugs,
the effect of STN-high-frequency stimulation (STN-HFS) on
postural instability and gait disorder (PIGD) symptoms gradually
worsened and reached the preoperative level within 2 years,
while the effect of GPi-HFS combined with drugs remained
stable over time (George et al., 2010). This may be due to
the superiority of GPi-DBS over STN-DBS in the long-term
efficacy of PIGD. However, the judgment on the relative benefit
of GPi vs. STN surgery for PIGD must consider that GPi-HFS
patients receive more levodopa than STN-HFS patients under
combination therapy. Besides, there are few long-term studies
evaluating GPi-HFS, and further randomized controlled trials
and long-term follow-up trials are needed (George et al., 2010;
Pötter-Nerger and Volkmann, 2013).

The PPN was introduced as a possible stimulation target
for the treatment of gait disorders in patients with advanced
PD (Broen et al., 2011). The PPN located in the midbrain
and the upper bridge cover is classically identified by its main
cholinergic neurons. Due to its extensive connections with other
areas of the brain and spinal cord, the PPN is considered to
be an important part of the “mesencephalic locomotor region”
(MLR), which has been shown to be an upper spinal cord
that can initiate and regulate movement (Ryczko and Dubuc,
2013). Plaha study (Plaha and Gill, 2005) shows that PPN-DBS
has a possible therapeutic effect on gait disorders in patients
with advanced PD. The previous published meta-analysis on
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FIGURE 7 | Forest plot of mean difference of UPDRS-III (Total); (A) med-off/stim-off vs. med-off/stim-on, (B) med-on/stim-on vs. med-on/stim-on, (C)

med-off/stim-off vs. med-on/stim-off, (D) med-off/stim-on vs. med-on/stim-on.

the efficacy of PPN-DBS on PD gait indicates that PPN-DBS
can greatly improve PD-related gait disorders (Lin et al., 2020).
The results of this NMA show that PPN-DBS is effective in
improving the gait score of UPDRS III-29 during the drug off
period compared to baseline, but it ranks behind STN-DBS
and GPi-DBS. In addition, PPN-DBS also ranks last in the

improvement of the motor symptom score of patients with PD,
which was not significant compared with the baseline. PPN-DBS
is a promising therapy for axial motor deficits in PD, particularly
gait freezing and falls (Thevathasan et al., 2017; Lin et al.,
2020). The enrolled studies included patients with PD, which
mainly included patients with stiffness, tremor, and postural gait
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FIGURE 8 | Cumulative rank of three surgical intervention of UPDRS-III (Total); (A) med-off/stim-off vs. med-off/stim-on, (B) med-on/stim-on vs. med-on/stim-on, (C)

med-off/stim-off vs. med-on/stim-off, (D) med-off/stim-on vs. med-on/stim-on.

disorder. Hence, the results of the study show the effectiveness in
PPN-DBS lower than STN-DBS and GPi-DBS. The original data
of the included article did not provide specific types of patients,
and we could not further subgroup analysis to evaluate axial
motor deficits in PD.

This study has certain limitations. First, in this study, age
and sex were not taken into account, and the patient population
that underwent different DBS targets were imbalanced. Second,
the UPDRS III-gait is not very sensitive in detecting the gait
improvement in patients with PD. Third, the evaluation of
long-term efficacy requires further research studies. Fourth, the
parameters of DBS were not considered, which caused a certain
deviation. Finally, our conclusion involves indirect comparison
and since NMA combines direct and indirect comparisons
that include observational evidence, the inherent differences
between trials was not considered and bias were added when
assessing effects.

5. CONCLUSION

Although both STN-DBS and GPi-DBS can affect some aspects
of PD gait disorder, the treatment of gait disorder in PD is still a

challenge. Our study compared and ranked three stimulus targets
for the treatment of PD, and the results can help clinicians choose
reasonable treatment strategies for patients with PD.
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