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Abstract

Magnetic Resonance Imaging (MRI) motion artefacts frequently complicate structural and

diffusion MRI analyses. While diffusion imaging is easily ‘scrubbed’ of motion affected vol-

umes, the same is not true for T1w or T2w ‘structural’ images. Structural images are critical

to most diffusion-imaging pipelines thus their corruption can lead to disproportionate data

loss. To enable diffusion-image processing when structural images are missing or have

been corrupted, we propose a means by which synthetic structural images can be gener-

ated from diffusion MRI. This technique combines multi-tissue constrained spherical decon-

volution, which is central to many existing diffusion analyses, with the Bloch equations that

allow simulation of MRI intensities for given scanner parameters and magnetic resonance

(MR) tissue properties. We applied this technique to 32 scans, including those acquired on

different scanners, with different protocols and with pathology present. The resulting syn-

thetic T1w and T2w images were visually convincing and exhibited similar tissue contrast to

acquired structural images. These were also of sufficient quality to drive a Freesurfer-based

tractographic analysis. In this analysis, probabilistic tractography connecting the thalamus

to the primary sensorimotor cortex was delineated with Freesurfer, using either real or syn-

thetic structural images. Tractography for real and synthetic conditions was largely identical

in terms of both voxels encountered (Dice 0.88–0.95) and mean fractional anisotropy (intra-

subject absolute difference 0.00–0.02). We provide executables for the proposed technique

in the hope that these may aid the community in analysing datasets where structural image

corruption is common, such as studies of children or cognitively impaired persons.

1 Introduction

Diffusion magnetic resonance imaging (MRI) is a form of medical imaging that can indirectly

quantify certain aspects of tissue microstructure related to myelination [e.g. 1], axon density
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[2], or cellular death. It also can, via tractography, delineate axonal pathways from which such

microstructural measurements can be taken. These abilities make diffusion MRI a popular

means of identifying and quantifying brain reorganisation and injury [3–5]. Studies utilising

diffusion MRI commonly attempt to report measurements in specific white-matter tracts, or

in specific regions of interest, which almost invariably requires identification of cortical or sub-

cortical structures. Such parcellation typically relies upon an aligned structural MR image,

such as a T1- or T2-weighted scan (referred to herein as ‘structural images’ for simplicity).

This reliance is because most standard neuroimaging packages that can provide parcellations,

such as Freesurfer [6], have been optimised for high-resolution images displaying particular

tissue contrasts that are not apparent in diffusion images. The reliance on structural images to

complete diffusion analyses can introduce four difficulties into analysis pipelines.

Firstly, cross-modality registration sometimes fails due to the meaningful difference

between tissue contrasts combined with the typically low (2–2.5mm) spatial resolution of dif-

fusion images [7]. Poor registration can be subtle, leading to biased measurements, or major,

preventing analysis outright. Attempts have been made to tackle this issue through, for exam-

ple, inverting the T1 contrast [8], registering T1 images to fractional anisotropy maps [9], or

relying on mutual information as a registration cost function [10]. Such approaches only par-

tially address contrast differences, however, and so cross-modal registration can still present as

a major point-of-failure for fully-automated pipelines [9]. Multimodal registration can also

prove computationally expensive and misregistrations can be time consuming to identify and

correct.

Secondly, diffusion images typically display geometric distortions that are not found in

structural images and can prevent perfect registration. The severity of such distortions depends

on the scan parameters [11], and in some instances can be substantial. Correction of geometric

distortion requires reverse-phase-encoded images or fieldmaps [11]. When such images are

collected, correction often works reasonably well; when these are lost, corrupted, or difficult to

use due to patient motion between scans, adequate registration is difficult or impossible to

achieve. Although some specialised registration tools exist for such circumstances, the correc-

tion of eddy currents purely using registration can be problematic [11], and in the presence of

larger deformations these tools can still leave several millimetres of misregistration between

modalities [7].

Thirdly, reliance on structural MR images provides a greater risk that motion artefacts or

other data loss will prevent analysis. In particular, diffusion MR sequences have a reasonable

tolerance for motion as motion-affected volumes can be rejected from the 4D series and still

leave sufficient information for analysis [12]. Conversely, the retrospective methods for correc-

tion of motion-corrupted structural images are usually based on the use of raw k-space data to

obtain motion-robust image reconstructions [13–15], thus preventing their use for most stud-

ies in which the raw k-space data is not collected. The corruption of MR images with motion is

particularly prevalent in young children and populations with brain injury, who are highly

valuable participants but also highly likely to move during scanning [16] and often less tolerant

to remaining in the scanner for repeat scans. Although less common, it is also possible that

structural data can be corrupted, collected incorrectly, or simply lost. In such situations, the

loss of structural images can completely preclude the analysis of the diffusion data using stan-

dard tools. As a concrete example, the constrained spherical deconvolution model [17] is com-

monly used for tractography and requires 45 uncorrupted diffusion encoding directions

(assuming b = 3000s/mm2) [18, 19]. This means 15 motion-affected volumes (25% of the

acquired volumes) can be safely deleted from a classic 60-direction single-shell scan and the

data remain analysable. We have previously reported on 123 scans of children and adolescents,

the majority of whom had disability [20, 21]. Reviewing these data, 63% of scans demonstrated
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motion artefacts in the diffusion scan but only 3.3% had 15 or more motion-affected volumes

out of the 60 acquired. By contrast, 25% of structural scans displayed artefacts that precluded

both structural and atlas-driven diffusion analyses [16].

Finally, diffusion acquisitions are typically limited to a lower spatial or angular resolution

than desired due to scan time requirements. The requirement for high-quality structural

images reduces the time available for diffusion acquisitions and thus their quality. Best practice

is, where possible, to pre-allocate additional scan time for the re-acquisition of motion affected

structural images, which further reduces available time for diffusion scans. This particularly

affects studies of populations where motion artefacts are commonplace because substantial

time must be allowed for re-acquisition of potentially several motion-affected images.

In this study we demonstrate a straightforward means of generating synthetic T1w and

T2w images from a typical diffusion acquisition to allow for diffusion MRI analysis when

in-vivo T1w and T2w images have been lost or motion corrupted. This process takes advantage

of recent advances that allow approximate calculation of tissue compartments from both mul-

tishell [22] and single shell [19] diffusion images. We demonstrate that by combining these

modern methods with MRI simulation based on the use of the Bloch equations [23], synthetic

images can be produced that are of sufficient quality to be used in place of genuine structural

images in some standard diffusion tractography analyses. In many circumstances, this may

eliminate the need to re-acquire motion-corrupted structural images or to reject participants

from analysis due to poor quality structural images.

We are aware of three previous reports in this field. Roy et al. [24] proposed a means of gen-

erating T2w images, through multi-atlas registration and patch-matching, though this method

relied on the collection of adequate-quality T1w images. More simply, Dhollander and Con-

nelly [25] normalized a single diffusion-MR derived segmentation voxel-wise and multiplied it

by experimentally derived values in order to generate an image qualitatively similar to a T1w

image. Similarly, Cheng et al. [26] thresholded the b0 and a mean-diffusivity-like images to

identify grey-matter- and white-matter-like tissues, then applied numerical constants to com-

bine into a T1-like image. These latter approaches both generated T1-like images, but their

utility is potentially limited by relying qualitative thresholding approaches to tissue segmenta-

tions, and a lack of a physical basis for conversion to the structural image. The present work

extends beyond these works by demonstrating how one can utilise established segmentation

approaches that require only diffusion data and perform genuine sequence simulation that

allows arbitrary T1 or T2 contrasts to be generated. We demonstrate these techniques in both

healthy individuals and those with sizeable pathology.

2 Methods

We first describe our proposed method to simulate structural MRIs using diffusion data, then

describe in-vivo experiments designed to assess this method.

2.1 Proposed method

Our proposed method, summarised in Fig 1, requires that multi-tissue fibre orientation dis-

persion (FOD) maps have been calculated from diffusion MR data. These maps can be calcu-

lated from both single-shell and multi-shell diffusion acquisitions using standard tools without

reliance on structural MR images. An example of this process is described in Section 3.2.2.

Once calculated, the white matter (WM), grey matter (GM) and cerebrospinal fluid (CSF)

tissue components of the FOD maps are extracted and used to generate partial volume (PV)
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maps as follows:

PVA ¼
TCA

TCW þ TCG þ TCC
ð1Þ

Where PVA and TCA indicate the partial volume and the FOD tissue component of tissue A,

respectively, and TCW, TCG and TCC indicate the WM, GM and CSF tissue components of the

FOD. The analytical solution of the Bloch equations for a selected sequence can then be

applied to these PV maps to synthesize structural MR images. In the present study, we focus

on T1-w and T2-w MRI signals which can be simulated using the following equations:

ST1w ¼ PVW Smp Ymp;FW

� �
þ PVG Smp Ymp;FG

� �
þ PVC Smp Ymp;FC

� �
ð2Þ

ST2w ¼ PVW Sse Yse;FWð Þ þ PVG Sse Yse;FGð Þ þ PVC Sse Yse;FCð Þ ð3Þ

Where Smp and Sse are the analytical solutions of the Bloch equations for the MPRAGE [27]

and Spin Echo [28] sequences; Θmp and Θse represent the sequence parameters of the

MPRAGE and spin echo sequences; and FW, FG and FC correspond to the magnetic proper-

ties of the WM, GM and CSF tissues, respectively.

Utilisation of Eqs 2 and 3 requires selection of scanning parameters and tissue magnetic

properties. In the current study, the T1w scans were simulated with the ADNI MPRAGE

sequence parameters (α = 9˚, TE = 2.9 ms, TI = 900 ms, TR = 2300 ms) [29]. Similarly, the T2w

spin-echo scans were simulated with standard sequence parameters used in clinical imaging

(TE = 80 ms, TR = 4500 ms) [30]. The tissue magnetic properties used to simulate the T1w and

T2w signals were measured in previous studies conducted at 3T and are summarized in

Table 1 [31–33].

Fig 1. Summary of the proposed MRI synthetization method. After extracting the tissue components of the multi-

tissue fibre orientation maps (FOD), partial volume (PV) maps are computed and used to generate synthetic T1w and

T2w contrast with Bloch equations-based simulations.

https://doi.org/10.1371/journal.pone.0247343.g001
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2.2 In-vivo experiments

We applied the proposed method to several diffusion datasets in order to assess the quality of

the resulting images in terms of qualitative appearance, quantitative tissue contrast, and fitness

for use as an integral component of a diffusion tractography pipeline.

2.2.1 Input data. Three datasets, named herein as the ‘Human Connectome Project Mul-

tishell’ (HCP-M), ‘Human Connectome Project Single Shell’ (HCP-S) and ‘Hospital’ datasets,

were used in the current study. Scans in these datasets were mostly a convenient sample which

had been preprocessed as part of a recent tractography study [9].

The HCP-M dataset included 10 healthy participants from the Human Connectome Project

Young Adults 1200 Release [34]. Participants had been scanned twice on a Siemens Skyra

Connectom scanner (Siemens Healthcare, Erlangen, Germany) with a 32-channel head coil.

We used the preprocessed [35] T1w MPRAGE (1 mm isotropic; α = 8˚; TE = 2.14 ms;
TI = 1000 ms; TR = 2400 ms; acquisition time 7m 40s), T2w SPACE (1mm isotropic; TE = 565

ms; TR = 3200 ms; acquisition time 8m 24s) data, and preprocessed multishell diffusion data

derived from a high quality acquisition (18 @ b = 0s/mm2; 90 directions @ b = 1000s/mm2; 90

directions @ b = 2000s/mm2; 90 directions @ b = 3000s/mm2; 1.25mm isotropic). For test-

retest experiments (See Section 3.2.4), we utilised structural scans from two time points. For

other experiments, only the first time point was used. Ethical consent was granted for use of

HCP data.

The HCP-S dataset included the same participants as the HCP-M dataset, excepting that

raw data were used (see below) for the diffusion data, which were downsampled and volumes

were removed such that only a single shell remained (2 @ b = 0s/mm2; 60 directions @

b = 3000s/mm2; no directional repeats; 2mm isotropic). This dataset was designed to represent

a modest single-shell HARDI acquisition often seen in the literature.

The Hospital dataset consisted of 12 neurosurgical patients scanned once on a Siemens

Prisma scanner with a 64-channel head coil at the Herston Imaging Research Facility in Bris-

bane, Australia. Images were acquired as part of a clinical trial involving temporal lobe resec-

tion for epilepsy (n = 3 before surgery, n = 6 after surgery), glioma resection (n = 2 before

surgery), or removal of arteriovenous malformations (n = 1 before surgery). This study

included acquisition of a T1w MPRAGE scan (1mm isotropic, α = 9˚; TE = 2.9 ms; TI = 900

ms; TR = 1900 ms; acquisition time 4m 18s) and a modern multishell diffusion acquisition

(12 @ b = 0s/mm2; 20 directions @ b = 2000s/mm2; 30 directions @ b = 1000s/mm2; 60 direc-

tions @ b = 3000s/mm2; 2mm isotropic; acquisition time 11m 30s) that is in use in a variety of

studies [36–38]. Written informed consent was provided by all patients and the study approved

by the Royal Brisbane and Women’s Hospital (RBWH) Human Research Ethics Committee.

2.2.2 Diffusion MRI processing. Diffusion data from the HCP-S and Hospital datasets

were processed automatically using the CONSULT neurosurgical planning pipeline [9]. This

Table 1. Magnetic properties of white matter (WM), gray matter (GM) and cerebrospinal fluid (CSF) used for the

T1w and T2w signal simulations. These magnetic properties were measured in previous studies conducted at 3T

[31–33].

WM GM CSF

T1(ms) 830 1330 4000

T2 (ms) 80 110 1000

T2� (ms) 53 66 250

ρ1 0.7 0.8 1.0

1 The reported proton densities (ρ) are relative measures compared to the CSF proton density.

https://doi.org/10.1371/journal.pone.0247343.t001
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pipeline prepared raw diffusion data for tractography using standard libraries and algorithms

without requiring associated structural images. Steps included denoising via MRtrix 3.0 [39],

removal of motion-corrupted volumes, brain mask calculation using MRtrix’s dwi2mask, and

eddy-current distortion correction using a combination of FSL’s topup (http://fsl.fmrib.ox.ac.

uk/fsl/fslwiki/TOPUP) and eddy_cuda 8.0. Subsequently, intensity inhomogeneities were cor-

rected using N4-ITK [40]. A final brainmask was then recalculated using MRtrix’s dwi2mask

in conjunction with simple morphological operations.

Diffusion data from the HCP-M dataset were downloaded from the HCP server in their

minimally preprocessed form. This preprocessing included correction for b0 intensity inho-

mogeneities, EPI distortion, eddy currents, head motion, gradient non-linearities, as well as

reorientation and resampling to 1.25 mm isotropic. Brainmasks for these data were calculated

in the same way as for HCP-S and Hospital datasets.

Tissue response functions were calculated using an unsupervised method [41] and FOD

maps were calculated for white matter, grey matter, and cerebrospinal fluid using either multi-

shell multitissue contrained spherical deconvolution (for multishell images) [22] or Single-

Shell 3-Tissue constrained spherical deconvolution [19] (https://3Tissue.github.io; for HCP-S

images). Fractional anisotropy (FA) maps were also calculated from the preprocessed data

using MRtrix.

Synthetic T1w and T2w scans were generated from the resulting FOD maps, for all the

three datasets, using the method described in Section 3.1.

2.2.3 Synthetic and in-vivo structural image comparisons. One standard means of

assessing structural image quality is measuring intensity contrasts between brain tissues. Here,

the brain-tissue contrasts of the in-vivo and synthetic structural images were measured using

the following equation:

CNA=B ¼
SA � SB

SA þ SB
ð4Þ

Where SA and SB refer to the mean signal intensity of tissues A and B, respectively. The con-

trast between brain tissues was measured in regions of interest (ROI) manually drawn in the

corpus callosum for WM, caudate nucleus for GM and lateral ventricles for CSF. Each ROI

comprised at least 20 contiguous voxels. To ensure that the contrast was comparable between

scans with different resolutions, specific care was taken to avoid the inclusion of partial volume

voxels within the ROIs.

The zero-normalized cross correlation was computed to further assess the similarity

between the in-vivo and synthetic structural scans. This metric was preferred over standard

similarity metrics, such as the structural similarity index, as it does not require that the images

being compared have the same intensity range (T1w MPRAGE and T2w spin-echo contrasts

are qualitative, and so repeat scans and synthetic images do not necessarily lie in the same

intensity range as the first in-vivo image). To allow for the computation of the zero-normalized

cross correlation, the synthetic images were spatially normalized to the in-vivo images using

the affine registration tool provided by ANTS 2.1 [42]. The brain masks computed in the diffu-

sion image space (see section 3.2.2) were then propagated in the structural image space to

skull-strip the in-vivo images. The zero-normalized cross-correlation was computed as follows:

r ¼
1

N

X

k2O

ðIk � mIÞðÎ k � mÎ Þ

sI sÎ
ð5Þ

With O the set of voxels within the brain masks; N the number of voxels within the brain

mask; Ik (respectively Î k) the intensity of a given voxel k in the in-vivo (respectively synthetic)
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image; and μI and σI (respectively mÎ and sÎ ) the mean and standard deviation of the in-vivo
(respectectively synthetic) brain tissue intensities.

2.3 Comparative performance in a diffusion tractography pipeline

We tested whether the synthetic images were of sufficiently high quality to be used in a stan-

dard Freesurfer-based diffusion tractography pipeline, described below. Similar to other trac-

tography-generating processes, this pipeline required structural images for parcellation and

diffusion images for tractography. For each subject, we ran this pipeline using (A) in-vivo
structural scans acquired during the same scan session as the diffusion data (all datasets); (B)

in-vivo structural scans acquired during a different scan session as the diffusion data (‘in-vivo
repeat’; HCP-M and HCP-S only); or (C) the synthetically generated structural scans (all data-

sets). The diffusion FOD image did not differ between each subject’s acquisitions. To deter-

mine the influence of the structural scan on reproducibility of this pipeline, we compared

these subjects’ acquisitions in terms of both (1) spatial overlap of binarised tractography (Dice

score) and (2) differences in FA and mean diffusivity (MD) sampled from this tractography.

The former measure was to ascertain how synthetic structural images could impact the tracto-

graphy itself. The latter was conducted to assess the practical significance of any error intro-

duced by synthetic structural images, as the sampling of FA and MD are common use-cases

for tractography.

All image processing was fully automated to avoid biasing results; no manual correction or

process re-running was performed for any processing stage. Parcellation of structural images

was performed using Freesurfer 6.0 [6]. Both the T1w and T2w images belonging to the

HCP-M and HCP-S datasets were provided to Freesurfer. However, only the T1w images were

utilised for the Hospital dataset because in-vivo T2w scans were not available.

When structural images were acquired in-vivo, the resulting parcellation was spatially nor-

malized to the diffusion space by affinely registering the T1w scan to either the FA image

(HCP-M and HCP-S) or mean ‘b0’ image (Hospital dataset) using ANTS 2.1 [42]. The mean

‘b0’ image was used for the Hospital dataset as it was already known to produce registrations

of better quality for this particular dataset. When structural images were synthetic, no spatial

normalization was required because image synthesis naturally creates images in native diffu-

sion space.

The left superior thalamocortical tract was delineated using probabilistic tractography,

using labels extracted from the Freesurfer parcellations. Specifically, the thalamus was used as

the seeding ROI, while the left primary sensory cortex and left primary motor cortex were

combined into a single inclusion ROI. Maximum streamline length was 80 mm. Streamlines

were acquired using iFOD2 [43] until Tractography Bootstrapping stability criteria [44] were

met to ensure the tractogram’s reproducibility was not negatively affected by a low streamline

count (minimum streamline count: 1000; min Dice: 0.975; reliability: 0.95; 1.25 mm isotropic;

tbin: 0.001 × n streamlines). Other parameters were left at default values.

Subject-wise results were compared across runs. To assess overlap between tractograms,

each tractogram was converted into a streamline density image at native diffusion resolution,

thresholded at the Tractogram Bootstrapping stability threshold (tbin), and binarised, in line

with recommendations for when Tractogram Bootstrapping has been used [44]. The Dice

scores between the binarised tractograms of each run were then calculated. To assess repro-

ducibility of microstructural metrics, FA and MD were sampled from each tractogram using

MRtrix’s ‘tcksample’ [e.g. 4, 45, 46].

2.3.1 Comparison of Freesurfer labels. Our white-matter tract delineation was designed

to indicate whether one could use synthetic images to perform a standard Freesurfer-reliant
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tractography pipeline but we acknowledge that this does not utilise all Freesurfer-delineated

regions. As such, we compared labels provided by Freesurfer using the generalised Dice simi-

larity coefficient (gDSC) [47]. The gDSC is an adaption of the Dice Similarity Coefficient that

can summarise overlap between identical labels when multiple labels are present. For each sub-

ject and pipeline we calculated one gDSC considering the 70 cortical grey matter labels, and

another gDSC considering 16 deep grey matter labels. These were calculated as follows:

gDSC ¼ 1 � 2

PNl
l¼1

P
nilnsln

PNl
l¼1

P
n iln þ slnð Þ

ð6Þ

With Nl the number of labels; iln the value of voxel n for label l in the in-vivo image, sln the

value of voxel n for label l in the synthetic image. To ensure relevance to tractography, gDSC

was calculated on parcellations in diffusion space. Furthermore, as tractography typically is

seeded from or terminates at the grey-matter/white-matter interface, we restricted these labels

to voxels in contact with the white matter (18-connectivity), as defined by the Freesurfer par-

cellation in question.

4. Results

4.1 Image quality and contrast

An example of PV maps generated from FOD tissue components is presented in Fig 1. Exam-

ples of synthetic T1w and T2w scans are presented in Fig 2. Qualitatively, all synthetic scans

displayed a similar appearance to their corresponding in vivo scan, albeit at the resolution of

their diffusion scan (1.25 or 2mm isotropic). Despite this limitation, the borders of individual

gyri and subcortical structures were still easily identifiable in all images. Tissue contrast was

qualitatively similar between in-vivo and synthetic images, despite small differences in acquisi-

tion and simulation protocols (Figs 1 and 2). Specifically, the synthetic T1w scans were charac-

terized by a good suppression of the CSF signal and by a high contrast between grey matter,

white matter, and CSF, as is typical for MPRAGE acquisitions. Similarly the synthetic T2w

scans displayed comparable tissue contrasts to those of the in-vivo T2w scans, including the

typical hyper-intensity of the CSF signal. Synthetic images derived from single and multi-shell

diffusion scans produced similar tissue contrast, despite relying on meaningfully different dif-

fusion FOD algorithms and resolutions. Notably, images were also realistic for patients with

tumours and post-surgical cavities.

The quantitative brain tissue contrast measurements obtained for both T1w and T2w syn-
thetic images were close to their in-vivo counterparts for the HCP-M, HCP-S and Hospital

datasets (Tables 2 and 3). The brain tissue contrasts were not significantly different between

in-vivo and synthetic images (Tables 2 and 3), except for the T1w WM/GM contrast in the

Hospital dataset (Bonferroni-corrected Wilcoxon signed rank test, p = 0.02) and the WM/CSF

and GM/CSF contrasts in the HCP-M dataset (Bonferroni-corrected Wilcoxon signed rank

tests, both p = 0.04). The contrast difference between in-vivo and synthetic images remained

very small for these cases (Tables 2 and 3).

A very strong zero-normalized cross-correlation was measured between the co-registered

T1w in-vivo and synthetic images for the Hospital (mean: 0.87; range: 0.82–0.90), HCP-M

(mean: 0.86; range: 0.84–0.87) and HCP-S (mean: 0.86; range: 0.83–0.88) datasets. The zero-

normalized cross-correlation measured between the co-registered T2w in-vivo and synthetic

images was strong for both HCP-M (mean: 0.75; range: 0.67–0.80) and HCP-S (mean: 0.68;

range: 0.64–0.73) datasets.
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Fig 2. In-vivo and synthetic T1w and T2w images obtained from the HCP-M (far left), HCP-S (middle left) and

Hospital (middle and far right) datasets. The synthetic T1w images display contrasts qualitatively similar to that of the

in-vivo scans for all datasets, even in presence of tumours (middle right) and post-surgical cavities (far right). The T2w

contrast was similar between the synthetic and in-vivo scans for the HCP-M and HCP datasets, including the expected

hyper-intensity of the cerebrospinal fluid signal. For the Hospital dataset, the in-vivo T2w images were not acquired

but synthetic images provided similar contrast to that which could be expected from an in-vivo scan, including in the

areas of pathology.

https://doi.org/10.1371/journal.pone.0247343.g002

Table 2. Mean brain tissue contrast measured for in-vivo and synthetic T1w scans on the Hospital, HCP-M and HCP-S datasets.

WM/GM WM/CSF GM/CSF

Mean Range p-value Mean Range p-value Mean Range p-value

In-vivo Hospital 0.14 0.12–0.15 N/A 0.59 0.56–0.65 N/A 0.49 0.46–0.55 N/A

In-vivo HCP 0.12 0.09–0.15 N/A 0.56 0.54–0.59 N/A 0.47 0.45–0.49 N/A

Synthetic Hospital 0.09 0.07–0.12 0.02 0.56 0.52–0.60 0.30 0.49 0.47–0.52 1.00

Synthetic HCP-M 0.10 0.07–0.12 0.10 0.50 0.39–0.60 0.17 0.43 0.31–0.55 0.34

Synthetic HCP-S 0.13 0.10–0.15 1.00 0.50 0.42–0.58 0.07 0.40 0.33–0.48 0.05

HCP datasets used identical in-vivo structural images and so appear together in one row. P-values indicate comparisons of in-vivo vs synthetic contrasts using

Bonferroni-corrected Wilcoxon signed rank tests. The contrasts measured for the synthetic scans are similar to the contrasts measured for the in-vivo scans, despite

slight differences between the imaging protocols.

https://doi.org/10.1371/journal.pone.0247343.t002
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4.2 Comparative performance in a diffusion tractography pipeline

Freesurfer succeeded for all but one participant. This participant, from the Hospital dataset,

presented with a glioma in the left temporal lobe, preventing adequate Freesurfer performance

when provided with either in-vivo or synthetic input data (Fig 2, middle-left column). A quali-

tative assessment indicated that Freesurfer parcellations obtained from synthetic datasets were

similar to those obtained from in-vivo data, as shown in Fig 3. Notably, near the white matter/

grey matter interface, from which tractography is typically seeded, Freesurfer parcellations

were qualitatively similar between corresponding synthetic and in vivo images. However, the

synthetic images at 2mm resolution often produced inaccurate segmentation of the pial surface

by Freesurfer (Fig 3, S1 Table in S1 File).

Tractography was successfully performed for all the datasets for which Freesurfer parcella-

tion did not fail. Tractography was qualitatively similar between in-vivo- and synthetic-struc-

tural pipelines (Fig 4). Median Dice coefficients for binarised tractography between the in-
vivo- and synthetic-structural pipelines were 0.93 (HCP-M), 0.93 (HCP-S), and 0.90 (Hospital)

with respective worst-case performances of 0.90, 0.90, and 0.88 (Fig 5). Structural scans were

available from a second time point for all HCP datasets. The tractography pipeline was

repeated using the same diffusion data but with these alternative in-vivo structural scans.

These in-vivo vs in-vivo-repeat comparisons demonstrated similar median Dice coefficients to,

and poorer worst-case performance than, the aforementioned in-vivo vs synthetic compari-

sons (Fig 5). Numerical differences between the in-vivo-repeat and the synthetic Dice coeffi-

cients were not statistically significant for HCP-S or HCP-M datasets (Bonferroni-corrected

Wilcoxon Signed-Rank Tests, both p>0.1; see Fig 5). The poorer worst case performance of

the in-vivo-repeat analysis may be explained by variations in the quality of registration between

structural and diffusion scans: a step not required by the synthetic pipeline which guarantees

perfect alignment between modalities.

FA values sampled from tractography did not differ significantly between pipelines for the

HCP-M or HCP-S datasets (Bonferroni-corrected Wilcoxon Signed-Rank tests versus the in-
vivo-structural pipeline FA values: HCP-M Synthetic, p = 1; HCP-M in-vivo repeat, p = 1;

HCP-S Synthetic, p = 0.11; HCP-S in-vivo repeat 0.37).

Although a statistically significant difference was found between in-vivo and synthetic pipe-

lines for the Hospital dataset (p = 0.02), this median difference was only 0.01, or 2.2%, which is

well below both inter-group and longitudinal differences typically reported in imaging studies

[4, 45, 46].

MD values sampled from tractography did not differ significantly between pipelines for the

HCP-S dataset (Bonferroni-corrected Wilcoxon Signed-Rank tests versus the in-vivo-

Table 3. Mean brain tissue contrast measured for in-vivo and synthetic T2w scans on the Hospital, HCP-M and HCP-S datasets.

WM/GM WM/CSF GM/CSF

Mean Range p-value Mean Range p-value Mean Range p-value

In-vivo HCP 0.16 0.12–0.21 N/A 0.53 0.50–0.57 N/A 0.41 0.37–0.44 N/A

Synthetic Hospital 0.15 0.11–0.19 N/A 0.58 0.56–0.59 N/A 0.47 0.44–0.48 N/A

Synthetic HCP-M 0.16 0.13–0.18 1.00 0.58 0.55–0.59 0.04 0.46 0.42–0.49 0.04

Synthetic HCP-S 0.19 0.16–0.23 0.17 0.55 0.51–0.58 0.92 0.40 0.36–0.44 1.00

P-values indicate comparisons of in-vivo vs synthetic contrasts using Bonferroni-corrected Wilcoxon signed rank tests. P-values for the Hospital dataset are unavailable

as no in-vivo T2w scan was acquired for this dataset. The synthetic HCP-M dataset WM/CSF and GM/CSF contrasts are significantly higher than their in-vivo

counterparts. Although the absolute WM/CSF and GM/CSF contrast difference remained very small. The other synthetic contrasts were very close to their in-vivo

counterparts, despite the use of different magnetic resonance sequences to acquire and simulate the signals.

https://doi.org/10.1371/journal.pone.0247343.t003
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structural pipeline MD values: HCP-S Synthetic, p = 1; HCP-S in-vivo repeat, p = 1). In other

datasets, all other comparisons with the first in-vivo pipeline showed differences that were sig-

nificant, or bordered on significance (HCP-M in-vivo repeat, p = 0.01; HCP-M synthetic,

p = 0.06; Hospital synthetic, p = 0.08), but these median differences (0.33%, 0.24%, and 0.78%

respectively) were again well below inter-group and longitudinal differences of clinical or sci-

entific significance [E.g. 4, 48].

4.3 Comparison of Freesurfer labels

Table 4 shows generalised Dice similarity coefficients for 70 cortical grey matter labels, or 16

deep grey-matter labels. These gDSCs reflect similarities between label obtained from the first

Fig 3. Example of freesurfer parcellations obtained from the in-vivo (left) and synthetic (right) scans of the

Hospital dataset. The bottom row shows a magnified section of the frontal lobe. A qualitative assessment indicated

that the synthetic parcellations were similar to the in-vivo parcellations in subcortical structures and near the grey-

matter/white-matter interface from which tractography is typically seeded. However, the lower resolution provided by

the synthetic data (2 mm isotropic) reduced the accuracy of the pial surface segmentation, as highlighted by the green

arrows.

https://doi.org/10.1371/journal.pone.0247343.g003
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in-vivo structural scan and labels obtained using either the repeat in-vivo structural scan or

synthetic structural image. For the HCP-M dataset, median gDSCs were typically lower for

synthetic images than repeat in-vivo data (p = 0.01 for both comparisons using uncorrected

Wilcoxon Signed-Rank tests). The worst-case performances of in-vivo and synthetic pipelines

were similar on this dataset. For the HCP-S dataset, differences between in-vivo and synthetic

pipeline gDSCs were not statistically significant (p = 0.65 for cortical GM and p = 0.51 for

deep GM using uncorrected Wilcoxon Signed-Rank tests). On the HCP-S dataset, the syn-

thetic pipeline demonstrated considerably better worst-case performance than the in-vivo
pipeline. Dice coefficients for Freesurfer-delineated tissues can be found in S1 Table in S1 File.

5 Discussion

Motion artefacts are commonplace in MRI acquisition, particularly with children and cogni-

tively impaired persons [16, 49]. Diffusion imaging can be easily ‘scrubbed’ of motion affected

volumes, typically leaving usable data [18, 19]. However, the same is not true for structural

images which are critical to most diffusion analyses. As such, motion or other corruption of

structural images can lead to disproportionate data loss [16, 49]. To alleviate this issue, we

have proposed a means by which synthetic structural images can be generated from diffusion

MR images. We are aware of one previous report [25] in which a single diffusion-MR derived

segmentation was normalised voxel-wise and multiplied by experimentally derived values in

order to generate an image qualitatively similar to a T1w image. Similarly, Cheng et al. [26]

applied thresholding to processed diffusion weighting images to identify grey-matter- and

white-matter-like tissues, then applied constants to combine into a T1-like image. These latter

approaches both generated T1-like images, but their utility is potentially limited by relying

Fig 4. Example tractography from the in-vivo and synthetic pipelines. The rightmost column shows overlap of the

in-vivo tractography (from the leftmost column; green) with the synthetic tractography (fuchsia; white indicating

overlap). Tractography densities showed clear correspondences between in vivo and synthetic pipelines for HCP-S,

Hospital, and HCP-M datasets. The datasets shown here were selected at random.

https://doi.org/10.1371/journal.pone.0247343.g004
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Fig 5. The tractography pipeline was run first using genuine (‘in-vivo’) diffusion and structural MR images, and

then run again using the same diffusion data but with either a synthetic structural image (‘synthetic’) or a

structural scan acquired during another scanning session (‘in-vivo repeat’). Top: Dice scores for overlap of

tractography between runs using in-vivo data and either synthetic or in-vivo repeat data. Median dice scores did not

differ significantly between synthetic and in-vivo repeat runs after correction for multiple comparisons. Bottom: Mean

tract FA values sampled from the tractography, compared with the in-vivo tractography. Differences between the in-

vivo versus synthetic or in-vivo-repeat runs were below the level of practical significance. Approximate percentages

were calculated by dividing differences by the mean FA of all datasets (0.52). Displayed p-values are corrected for

multiple comparisons.

https://doi.org/10.1371/journal.pone.0247343.g005
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qualitative thresholding approaches to tissue segmentations, and a lack of a physical basis

for conversion to the structural image. We have expanded on these ideas by using a well-

established physical model that allows precise scanning parameters to be simulated; this is

demonstrated here by the synthesis of specific T1w MPRAGE and T2w spin-echo sequences

from both single-shell (HCP-S dataset) and multi-shell (HCP-M dataset, Hospital dataset) dif-

fusion scans. We demonstrated that the synthetic images generated for these 32 participants,

including those displaying pathology, were both visually convincing and had tissue contrasts

in line with images acquired in-vivo. In addition, the strong zero-normalized cross-correla-

tions measured between the synthetic and in-vivo images further highlighted their structural

similarities.

To demonstrate the utility of the proposed method, we performed Freesurfer-driven tracto-

graphy for 32 participants. Freesurfer is a well-established program and is regularly relied on

for diffusion analyses but can, like many packages, fail if low-quality images are provided.

Here, Freesurfer was able to segment brains successfully in all instances for both in-vivo and

synthetic data excepting for one subject presenting with a glioma for which it failed with both

real and synthetic images. Due to the lower resolution of the synthetic data, the pial surface

was not always as well defined in the synthetic-image parcellation as in the in-vivo image par-

cellation. However, this is unlikely to be of serious concern for tractography-based studies

which are more reliant on an accurate grey-matter/white-matter interface, which was generally

of reasonable quality (Fig 3), particularly for the 2mm HCP-S dataset (Table 4). Indeed, tracto-

graphy derived from in-vivo structural and synthetic-structural parcellations overlapped well

(median Dice� 0.90) for all three types of diffusion acquisition tested in this study. A com-

mon use for tractography is to identify a tract from which microstructural measures, such as

FA or MD, can be sampled. Here, FA and MD sampled from tractography of the in-vivo and

synthetic-image pipelines differed well below the level of practical significance for most forms

of analysis (Fig 5).

An alternative to the proposed method, available only to longitudinal diffusion MRI studies,

is to replace a corrupted structural image with another acquired at another time point. We

tested the efficacy of this alternative for the HCP-S and HCP-M datasets by running the Free-

surfer-based pipeline with T1w and T2w scans acquired at a second time point. In general, this

did not produce meaningfully better results, in terms of tractography Dice scores, MD, or FA,

than using a synthetic image. Visual inspection suggested that performance of this in-vivo-

repeat run sometimes suffered from slight mis-registrations between the real structural images

Table 4. Generalised Dice coefficients for 70 cortical grey matter labels (Cortical GM) or 16 deep grey-matter

labels (Deep GM).

Cortical GM Deep GM

Synthetic Hospital 0.56 (0.47–0.63) 0.59 (0.57–0.63)

In-vivo Repeat HCP-M 0.75 (0.34–0.76) 0.70 (0.41–0.75)

Synthetic HCP-M 0.59 (0.34–0.63) 0.55 (0.40–0.62)

In-vivo Repeat HCP-S 0.68 (0.17–0.90) 0.74 (0.07–0.93)

Synthetic HCP-S 0.60 (0.52–0.64) 0.62 (0.54–0.69)

In-vivo Repeat vs Synthetic Dice Scores

HCP-M p = 0.005 p = 0.005

HCP-S p = 0.65 p = 0.51

Median values are shown; ranges appear in brackets. Dice coefficients are a comparison between the listed scan and

the first in-vivo scan and restricted to voxels at the GM/WM interface in diffusion space. P-values indicate

comparison of dice coefficients between in-vivo Repeat vs Synthetic scans using Wilcoxon signed rank tests.

https://doi.org/10.1371/journal.pone.0247343.t004
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and diffusion images, reminding that the negative impact of the lower- resolution synthetic

images is somewhat counter balanced by their guaranteed perfect alignment to the diffusion

image.

We also calculated generalised Dice coefficients (gDSC) for 70 cortical GM labels and 16

deep GM labels, at the GM/WM interface (Table 4). For the HCP-S dataset, gDSC scores for

the synthetic and in-vivo repeat pipelines were comparable. Results for the HCP-M dataset,

however, implied that groups who work with high resolution (1.25mm) diffusion data whose

pipelines rely on a particularly accurate cortical parcellation would do best to rely on an in-
vivo structural image (if available), rather than a synthetic structural image. The degree to

which the differing parcellation accuracies will affect tractography depends on the specifics of

the tractography. For example, when we performed tractography of the corticothalamic tracts

in this study, we used cortical and thalamic ROIs from Freesurfer. The ROIs produced by the

in-vivo pipeline had higher gDSC scores (median gDSCs of 0.73 for cortical GM, 0.64 for thala-

mus) than the synthetic pipeline (0.58 cortical GM, 0.48 thalamus). Nevertheless, these differ-

ences did not meaningfully affect the physical location of the tractography or the

microstructural measurements taken from it (Fig 5). This may not be the case in all situations,

but it serves as a reminder that subtle changes in seed or termination ROIs do not necessarily

bias diffusion measurements. Notably, the worst-case performance was equal between the syn-

thetic and in-vivo pipelines for high-resolution (HCP-M) diffusion data, while at the more typ-

ical resolution of 2mm (HCP-S), the synthetic pipeline had better worst-case performance

than the in-vivo pipeline. Such results highlight that while a genuine structural image is usually

preferable, when this is lost or corrupted a synthetic image can act as a worthwhile substitute.

One strength to our method is a reliance on a well-established physical model that makes a

relatively small number of assumptions. While hand-tuned or machine-learning based

approaches could in principle generate similar outputs, these are inherently tuned to their

training data, which sometimes leaves general use uncertain–for example, when presented

with lesions, low quality data, or high resolution inputs. By contrast, our proposed method is

resolution independent and, as demonstrated here, was able to generate convincing images

from data acquired on two scanners, using two different tissue response function methods,

and three different acquisition parameters. It also was able to produce convincing and usable

images where pathology and post-surgical cavities were present without requiring tuning of

any kind. One limitation of the current approach is the assumption that the brain tissues have

the same relaxometry values for all subjects, while the subject relaxometry values may change

due to the subject age or brain disease. However, the relaxometry values are used as input vari-

ables in the solutions of the Bloch equations for the synthetization of the structural images,

thus allowing to easily tailor the model by using relaxometry values corresponding to the pop-

ulation of interest (ie. young vs aged subjects, type of pathology, . . .). Nevertheless, the pro-

posed method is likely to not work for neonates as it models tissues that have not yet fully

developed in the neonate brain.

Our proposed method is dependent on the ‘single-shell 3-tissue’ (SS3T) or ‘multishell-mul-

titissue’ (MSMT) diffusion models, which in turn are reliant on an adequate number of diffu-

sion directions being available. We have not explored the effects of progressively reducing the

number of directions to simulate movement because the requirements of SS3T and MSMT

have already been explored [18, 19, 22]. Furthermore, our method has no additional require-

ments over those of typical tractography that uses constrained spherical deconvolution (at

least 45 directions at a b-value of 3000s/mm2). If these requirements are not met high-quality

tractography will not be possible, regardless as to whether an in-vivo or synthetic structural is

used. Importantly, the proposed method is intended to enable diffusion MRI analyses of white

matter; it is not intended to produce images for clinical interpretation nor for other types of
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analyses that would normally rely on precise tissue-contrast for certain pathologies or sharp

pial surfaces. For this intended use-case, the major limitation of the proposed method is that

the synthetic images produced are at the resolution of the diffusion data. Although it is possible

to apply up-sampling and super-resolution techniques, we have not attempted to do so here

because the synthetic images were of sufficient quality to obtain adequate quality parcellations

and diffusion metrics. It is also worth considering that the proposed method provides some

insurance against motion-corrupted structural images, therefore, scan time does not necessar-

ily have to be pre-allocated for potential re-acquisition of motion-affected structural scans.

This, in turn, may provide some studies with additional scan time that can potentially be used

to modestly improve the resolution of their diffusion data.

In conclusion, we have presented a simple and physically constrained means of synthesising

structural images with customisable acquisition parameters from diffusion MRI. These images

are of adequate quality to be used with standard parcellation tools, allowing analysis of diffu-

sion data that would otherwise be impossible due to motion-corrupted or non-acquired scans.
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