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Summary

We have investigated the effect of granulocyte colony-stimulating factor (G-CSF) delivery at the
site of tumor growth by transducing, via retroviral vector, the human (hu) G-CSF gene into
the colon adenocarcinoma C-26 and assaying the ability oftransduced cells to form tumors when
injected into syngeneic mice. As a control, the same tumor cells were infected with retroviruses
engineered to transduce an unrelated gene, the human nerve growth factor receptor, or carry
the neomycin resistance gene only. Only cells transduced with the huG-CSF were unable to
develop tumors, although huG-CSF was expressed and produced at low level as estimated by
both RNA analysis and enzyme-linked immunosorbent assay, indicating that G-CSF can exert
an antitumor effect at a physiological dose. Implication of G-CSF as mediator of tumor inhibition
was proven by reversing the nontumorigenic phenotype of G-CSF-expressing cells with anti-
huG-CSF monoclonal antibody injected at the tumor site . No tumors were formed by injecting
C-26 infected cells into nu/nu mice, while neoplastic nodules appeared after injection into sublethally
irradiated mice ; such tumors, however, regressed when mice normalized their leukocyte counts
after irradiation . Tumors were also formed after injection of a mixture ofinfected and uninfected
C-26 cells, although critical delay in tumor formation occurred when infected cells were 10 times
more represented in the mixture. Histological examination of tissues surrounding the site of
injection showed infiltration of neutrophilic granulocytes, whose number correlated with that
of G-CSF-expressing C-26 cells in the injected mixture . These results indicate that G-CSF may
have a potent antitumoral activity when released, even at low doses, at the tumor site. The
antitumoral effect is mediated by recruitment and targeting of neutrophilic granulocytes to
G-CSF-releasing cells .

Granulocyte colony-stimulating factor (G-CSF)t was first
identified by its ability to induce differentiation of the

murine myelomonocytic leukemia cell line WEHI-3B, and
then was characterized as a potent differentiation-inducing
CSF, essential in granulopoiesis (1) . G-CSF shows a restricted
action in stimulating progenitor hematopoietic cells in vitro,
in that no eosinophil, erythroid, or megakaryocyte colonies
are induced in clonal culture assays (1, 2) . Human and mouse
G-CSF bind equally well to receptors of either species and
show complete biological crossreactivity (3) . This allowed

1 Abbreviations used in this paper. G-CSF, granulocyte colony-stimulating
factor; hu, human; LAK, lymphokine-activated killer cell ; LTR, long
terminal repeat, NeoR, Neomycine phosphotranspherase gene; NGFr,
nerve growth factor receptor.

for the study of the in vivo action of human G-CSF in mice,
where it was shown to increase granulopoiesis in the spleen
but also to stimulate erythopoiesis and megakaryocytopoi-
esis, and to increase the number of multipotential stem cells
(CFU-S) (4, 5) . Chronic exposure to the factor, studied in
lethally irradiated mice reconstituted with syngeneic bone
marrow infected with a retroviral vector expressing G-CSF
cDNA, has been shown to induce non-neoplastic granulo-
cytic and progenitor cell hyperplasia (6) . Recombinant human
(hu)G-CSF is now being tested in clinical trials for restoring
granulocyte counts in myelodysplastic syndromes and for
boosting granulocytic response after high-dose cancer che-
motherapy (7-9) .
Growing evidence indicates that several cytokines may have
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in vivo antitumor activity, most effectively if they are deliv-
ered at the site of tumor growth (10-13). In fact, growth
of different murine tumor cells engineered by gene transfer
to produce IL4, IL2, or IFN-y is retarded or inhibited in
vivo (11-13). IL-2 exerts its antitumor effect by eliciting a
systemic immunity bypassing the requirement of a T helper
function (12, 13), whereas the action of IFN-y is primarily
mediated by upregulation of MHC class I gene expression
(13) . On the other hand, in the case of IL-4, the antitumor
effect is apparently mediated by eosinophils and activated mac-
rophages abundantly present at the site of tumor injection
(11) . Although it is unclear whether IL4 elicits this response
directly or by stimulating specific cytokine production by other
cells, these studies suggest the possibility that phagocytic cells
may effectively prevent tumor growth if appropriately tar-
geted by cytokknns.

We, therefore, focused our attention on the possible an-
titumor activity of G-CSF, which is known to act specifically
both by stimulating the production of PMNneutrophilic gran-
ulocytes and by enhancing their migration to the cytokine
production site . We used a retroviral vector to express huG-
CSFin a poorly immunogenic murine colon adenocarcinoma,
which was then injected in both conventional syngeneic and
athymic mice to test the effect of G-CSF synthesis at the site
of tumor-host interaction . We report here that tumorige-
nicity is virtually abolished in these cells through a mecha-
nism that is independent of the T cell response and involves
massive targeting of PMN granulocytes to the G-CSF-pro-
ducing cells.

Materials and Methods

Tumors and Animal Studies.

	

C-26 is a murine colon adenocarci-
noma induced in BALB/c mice by N-nitroso-N-methylurethan (14) .
C-26 tumor was maintained in vivo by subcutaneous transplant
in syngeneic mice and adapted to culture in DMEM (Gibco Labora-
tories, Paisley, UK) supplemented with 10% FCS (Gibco Labora-
tories) . BALB/c Ch and CD1 nu/nu mice were purchased from
Charles River Breeding Laboratories (Calco, Italy) and maintained
at the Istituto Nazionale Tumori by standard conditions, according
to the Institutional Guidelines . Tumorigenic activity ofcontrol and
virus-infected C-26 cells was assayed by injecting cells into the
animal's right flank in a 0.2-ml volume via a 26-gauge needle of
a 1-ml syringe . 3 x 10^ C-26 cells/mouse was the minimal dose
required to kill 100% of injected mice . Higher doses were also used,
as indicated in the tables and figures. The mixed tumor transplan-
tation assay was performed by mixing control uninfected and virus-
infected C-26 cells at 1:1 and 1:10 ratios (1 = 3 x 10^) and in-
jecting them into syngeneic mice as described above. Treated mice
were scored for tumor growth twice a week. Experiments involving
mAb administration were performed by using a mouse IgG1 anti-
huG-CSFmAb (G-CSF, Ab-2; Oncogene Science, Manhasset, NY)
and a mouse IgG anti-hu-NGFr mAb 20.4 ; (HB-8737 ; American
Type Culture Collection, Rockville, MD) at concentration of 200
ng and 2 Pg/mouse/injection . mAbs were mixed with 10 6 infected
(C-26/G3) and uninfected C-26 cells before injection into BALB/c
mice ; injections of the mAbaround the site oftumor growth were
repeated every 48 h for 10 d. The in vitro G-CSF neutralization
activity of Ab-2 mAb is detectable at ratio of 100 ng of Ab to 100
pg of G-CSF (as reported by manufactory specifications), and the
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doses injected in vivo theoretically represent 10 and 100 times the
quantity of Ab required to neutralize the amount of G-CSF pro-
duced by G3 cells. Mice irradiation was performed by using a 6°Co
source (-4,000 Ci = 148,000 GBq; Theratron 780C, Atomic
Energy o£ Canada Limited, Kanata, Ontario, Canada) to deliver
a dose rate of 28 rad/min for a total dose of 600 rad. Treatment
with anti-asialo GM, was performed using a rabbit antiserum
(Wako Chemicals, Neuss, Germany) . BALB/c mice were intrave-
nously injected with 0.2 ml ofdiluted antibodies (0 .5 mg) 3 d be-
fore tumor cell injection and 14 d later. Depletion of NK cells was
assessed in the spleen of treated mice by a 4-h "Cr-release assay
against YAC-1 tumor target . BALB/c NK cells being weakly ac-
tive, we performed the assay after depletion of adherent cells and
boosting the NK activity by addition of rIIr2 (1,000 U/ml) during
the 4 h of test incubation; in this way, we found abrogation of
NK cytotoxicity (from 56% in spleen of untreated mice to no lysis
in anti-asialo GM,-treated mice; E/T ratio: 100:1) . In addition,
we found abrogation oflymphokine-activated killer cell (LAK) pro-
duction in spleens from anti-asialo GM,-treated mice by testing
LAKcytotoxicity on P815 target cell after 3-5 d ofin vitro activa-
tion with 500 U/ml of rIl_ .2 . Leukocyte counts and blood formula
were mechanically determined by an H1 apparatus (Technicon
Chemicals Company, Tournay, Belgium) .

RetroviralInfection .

	

TheNSVG-CSF retroviral vector was con-
structed by cloning a 1.2-kb HincII/BalI cDNA fragment con-
taining the complete coding region ofhuman G-CSF (15) into the
HindIII cloning site of the NSV vector. NSV is derived from the
original N2 vector (16) by insertion of the 0.4-kb KpnI/HindIII
fragment containing the SV40 early promoter and origin of repli-
cation into the unique Xhol cloning site downstream from the
Neomycine phosphotranspherase gene (Neon) . In this vector, the
G-CSFcDNA is therefore under the control of the SV40 early pro-
moter, whereas Neon, used as a selectable marker, is driven by the
Moloney murine leukemia virus long terminal repeat (LTR) (see
Fig. 1 B) . TheNSVNGFr vector was constructed by inserting the
1.5-kb SstI cDNA fragment of the human nerve growth factor
receptor (NGFr) (17) into the HindIII site of NSV. The LXSN
vector, containing Neon under the control of the SV40 promoter,
was previously described (18) . All plasmid vectors were transfected
into the ~2 echotropic packaging cell line (19) by standard calcium
phosphate co-precipitation (20) . 48 h after transfection, 02 super-
natants were used to infect the amphotropic PA317 packaging line
(21) for 12 h in the presence of 8 FAg/ml polybrene . Infected PA317
cells were selected in medium containing 0.8 mg/ml G418 (Gibco
laboratories), and then used to generate helper-free, virus-containing
supernatants with titers ranging from 10^ to 5 x 105 CFU/ml.
106 C-26 target cells were infected for 4-12 h with undiluted su-
pematants containing 8 lAg/ml polybrene, grown for 48 h, and then
selected in 0.5 mg/ml G418. Individual clones were isolated, ex-
panded into cell lines, and injected into mice or subjected to fur-
ther analysis .
DNA andRNAAnalysis.

	

High molecular weight DNAs were
obtained from cells and tumors by standard phenol/chloroform ex-
traction (20), digested to completion in 5-hg aliquots with appro-
priate restriction enzymes, run on 0.8% agarose gel, transferred
to nylon membranes (Hybond-N; Amersham International, Amer-
sham, UK) by Southern capillary blotting (20), and hybridized to
10' dpm of DNA probe oligo-labeled to a specific activity of 109
dpm/,ug, in the presence of50% formamide and 10% dextran sul-
phate. Filters were washed at high stringency (0.2x SSC, 0.1%
SDS at 55°C for 2 h) and exposed to Kodak X-AR5 films for 16-
48 h at -70°C. Total cellular RNAwas extracted by the guanidine-
isothiocyanate technique (22), run in 10-ug aliquots on 1.0%



agarose-formaldehyde gel, transferred onto nylon membranes by
Northern blot (23), and hybridized, washed, and exposed as de-
scribed for Southern blots. DNA probes were the Hincll/BaII frag-
ment of huG-CSF cDNA (15) and a HindIII/Smal fragment of
pSV2-Neo (24) containing the Neon gene .

G-CSFAssay.

	

G-CSF production in cultured cells was quanti-
tated by a humanGCSF quantitative ELISA from Oncogene Science
(Manhasset, NY) and an EIA test kit from Amgen Biological (Thou-
sand Oaks, CA) . Cells were cultured at 106/ml for 48 h, culture
media were collected and concentrated 2 x by ultrafiltration on a
30,000-mol wt cutoff membrane, and again concentrated 5 x on
a 10,000-mol wt cutoff membrane (Centricon; Amicon, Grace
Italiana, Italy) . Retenates from the 10,000 cutoff were tested ac-
cording to manufacturer's instructions.

Histologic Evaluation and Immunocytochemical Staining.

	

Tissues
at the site of tumor cell inoculation were fixed in Bouin, blocked
in paraffin, sectioned at 4 lAm in triplicates, and stained with hema-
toxylin and eosin . For Immunocytochemical staining, tissues were
embedded in OCT compound (Ames Division, Miles Laborato-
ries, Elkart, IN), snap frozen in liquid nitrogen, and stored at
-80°C . Acetone-fixed 5-lAm cryostat sections were blocked with
rat serum and then immunostained with optimal dilution of the
following rat mAbs : Ml/9.3.4HL.2 (TIB 122) anti-CD45 ; 53 .6.72
(TIB 105) anti-CD8; GK1.5 (TIB 207) anti-CD4; M3/84.6.34 (TIB
168) Mac3; and M1/70.15 (TIB 128) Macl were all obtained from
the American Type Culture Collection as hybridoma cell lines. The
slides were then sequentially incubated with goat anti-mouse Igs
(Zymed Laboratories Inc., San Francisco, CA) and rat PAP anti-
bodies (Abbott Laboratories, North Chicago, IL) . Each incuba-
tion step lasted at least 30 min and was followed by a 10-mm PBS
wash . Sections were then incubated with 0.03% H202 and 0.06%
3.3'diaminobenzidine (BDH Chemicals, Poole, England) for 2-5
min, washed in tap water, and counterstained in hematoxilin .

Results
Murine Colon Adenocarrinoma Cells Infected with NS VGCSF

Lack Tumorigenicity In Viva NSVG-CSF viral supernatant
produced during 24 h of semiconfluent culture ofPA317 pack-
aging cells was collected, titrated, and used to infect the C-26
murine colon adenocarcinoma . Eight independent G418-
resistant C-26 colonies were isolated, grown, and tested for
tumorigenicity in vivo by injection into syngeneic mice at
a dose (3 x 104 cells/mouse) that produces tumors in 100%
of animals injected with control C-26 cells. None ofthe NSV
G-CSF-infected colonies gave tumors in syngeneic mice (Table
1) . Two colonies, named C-26/G3 and C-26/G4, were chosen
for further studies. These cells showed no difference in both
morphology and growth characteristics with respect to unin-
fected C-26 cells (data not shown) . Tumorigenic activity of
C-26/G3 and G4 cells was compared with that of uninfected
C-26 cells and unrelated retrovrus-infected C-26 cells, in-
cluding : (a) C-26 cells infected with the NSVNGFr retroviral
vector, in which the human NGF receptor cDNA replaced
G-CSF in the same retroviral background; and (b) C-26 cells
infected with the LXSN vector, containing the NeoR cas-
sette under the SV40 promoter (see Materials and Methods) .
The results (Table 2) indicate that among C-26 cells that ac-
quired the G418 resistance phenotype by retroviral integra-
tion, only those that originated from the NSVG-CSF infec-
tion were nontumorigenic .
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Table 1 .

	

In Vivo Tumorigenicity of C-26 and C-26
NSVG-CSF-infected Cells

No. of mice with tumor/No . of mice injected with
3 x 104 cells of:

NSV-G-CSF-infected C-26 colonies
Uninfected

C-26 1 2 3 4 5 6 7 8

10/10

	

0/10 0/10 0/10 0/10 0/10 0/10 0/10 0/10

Integration and Expression of HuG-CSF in C-26-infected
Cells. Integration of the NSVG-CSF retroviral genomes was
analyzed by Southern blotting ofDNA from colonies C-26/G3
and G4. Fig . 1 A shows that a major 4.5-kb band, corre-
sponding to the expected size for an intact integrated provirus,
was observed in DNAs digested with SstI, which cuts once
in both vector LTRs (Fig. 1 B), and hybridized to both huG-
CSF and Neo probes . An additional high molecular weight
band hybridizing with G-CSF but not the Neo probe was
observed in the Sstl digest from colony G3 (Fig. 1 A), indi-
cating the presence ofat least one rearranged proviral genome.
A band corresponding to the crosshybridizing, endogenous
murine G-CSF gene was observed in all samples hybridized
to the huG-CSF probe . Digestion with HindIII, which does
not cut in the provirus, gave rise to multiple bands in the
DNA of both colonies, indicating the presence of different
integration sites per haploid genome . Expression of vector-
derived transcripts was analyzed by Northern blotting of total

Table 2.

	

In Vivo Tumorigenicity ofC-26 Cells Infected or Not
with NSV-G-CSF and Different Retroviral Vectors and Selected
with G418

' No . of tumor cells injected.

C-26 infected with :

No. of
No .

3 x 10"'

mice with tumor/
of mice injected

10 5 106 107

None 30/30 10/10 5/5 5/5
NSV-G-CSF
colony 3 (G3) 0/30 0/20 0/20 0/10

NSV-G-CSF
colony 4 (G4) 0/20 0/10 0/10 0/10

NSV-NGFr
colony 3 5/5 ND 5/5 ND

NSV-NGFr
colony 5 5/5 ND 5/5 ND

NSV 5/5 ND 5/5 ND
LXSN 5/5 ND 5/5 ND



Figure 1 .

	

Analysis of NSVG-CSF retroviral integration in C-26 cells .
(A) DNA from uninfected C-26 (lane 1) and from G418 selected colonies
G3 and G4 (lanes 2 and 3, respectively) were digested to completion with
SstI or HindIII in order to perform Southern blotting. Hybridizations
were sequentially performed with huG-CSF (left) and pSV2-Neo (right)
probes; (e) indicates the endogenous G-CSF sequences. A Xphage HindIII
digest was used as size marker. (B) Schematic map of the NSVG-CSF
retroviral vector; Sstl (A), Hindlll (H3), Hincll (H2), and Ball (B) re-
striction sites are indicated . Restriction sites indicated within parentheses
were abolished during the NSVG-CSF vector construction .

cellular RNA (Fig. 2 A) . As expected for this type of vector
(16), abundant unspliced and spliced 5'-LTRgenerated tran-
scripts were detected in RNA from both colonies, after hy-

bridization with either G-CSF or Neo probes. A faint, 2.4-
kb band hybridizing to the G-CSF probe was also detected,
corresponding to the subgenomic, SV40-promoted G-CSF
transcript . This indicates that activity of the internal SV40
promoter is low in murine C-26 cells.

Production of huG-CSF by infected C-26 cells was evalu-
ated by immunoassay of the G-CSF levels in the culture
medium. Conditioned media from a 48-h culture of 106 cells
from colonies C-26/G3 and G4 and from uninfected C-26
cells were 10 times concentrated over a 30,000- and then a
10,000-mol wt cutoff, and assayed by two different commercial
kits. Secretion of G-CSF from C-26/G4 and G3 amounted
to 900 and 200 pg/ml, respectively, the latter value being
at the edge of test sensitivity, while no G-CSF could be de-
tected in the culture medium of uninfected C-26 (Fig . 2 B) .

Reversion ofthe C-26/G3 Nontumorigenicity by Anti-G-CSF
mAh To test directly the role of huG-CSF on C-26/G-3
tumor suppression, 106 G3 cells were injected with 200 ng
or 2 lag of anti-huG-CSF neutralizing antibody. Since the
G-CSF produced by 106 G3 cells in 48 h was estimated to
be 200 pg, mAb was given repeatedly every 48 h around the
site of tumor injection . In this way, we estimated that we
should deliver the amount of mAb that is 10 and 100 times
its nominal in vitro blocking activity, respectively (see Materials
and Methods). As a control, we injected G3 cells together
with an unrelated mAb and the uninfected C-26 cells with
anti-huG-CSF mAb. The results of this experiment are
reported in Fig . 3 and indicate that G3 cells were able to form
tumors (size ranging from 6 to 10 mm3) after treatment
with anti-huG-CSF, but not with an anti-huNGFr mAb used
as unrelated control . However, the antibody effect was time
restricted and not limited to the treatment period since tumor
regression began before the interruption of mAb injections .
This should be explained either by a dilution of mAb per

Figure 2 .

	

Expression and production of huG-CSF in NSVG-CSF-infected cells . (A) Northern blot analysis of total cellular RNA (10 Rg) from
C-26 and C-26 NSVG-SCF-infected colonies 3 and 4 (G3 and G4) and schematic representation of transcripts from the LTR and the SV40 promoters,
as detected by the huG-CSF probe. SD and SA indicate splice donor and splice acceptor sites, respectively. (B) ELISA determination, by the assay kit
from Oncogene Science, of huG-CSF produced by colonies 3 and 4 . (0) The average absorbance values, for both C-26/G3 and G4 cells, that intersect
the standard curve prepared by plotting the average absorbance vs . the concentration of the G-CSF standard solutions .
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106 cells/mouse .

DAYS

cell during tumor formation, or by an inefficient delivery of
the mAb.

Growth of C-26/G3 and G4 Cells in Immunologically Im-
pairedMice. Although G-CSF shows a restricted activity on
neutrophilic granulocytes in vivo, we deemed it interesting
to know whether tumor suppression activity required the
cooperation ofother effector cells. To this aim, C-26/G3 and
G4 cells were injected into : (a) athymic (nuinu) mice; (b) mice
depleted of NK cells by treatment with anti-asialo GM, an-
tiserum ; and (c) sublethally irradiated (600 rad) mice. The
results showed that C-26/G3 and G4 cells were unable to
develop tumors in nu/nu and NK-depleted mice (Table 3),

Table 3 .

	

Tumorigencity of C-26 and NSV-G-CSF-infected C-26
Cells Injected into Immunologically Impaired Mice

No . of mice with tumor/No . of mice injected
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0-O

anti-hu-G-CSF (2 ug)

O

8 10 12 14 16

+ anti-hu-G-CSF (2 vg)

indicating that T and NK cells are not required for tumor
suppression of G-CSF-producing cells. Conversely, transient
tumor growth was consistently observed in irradiated mice:
tumors grew to the size of N1 cm3 followed by regression
in 8 out of 10 mice injected with C-26/G3 and 9 out of 10
mice injected with C-26/G4 cells . Regressions were to com-
pletion, with reabsorption of tumors and resolution of even
skin ulcerations when present . Follow-up of treated mice in-

100 .

80-

60-

U 40

Figure 3.

	

Reversion of the C-26/G3
nontutnorigenicity by anti-huGCSF
mAb. A murine anti-huG-CSF (A, B,
and D) or anti-huG-NGFr (C) mAb
were mixed to 106 G3 cells (A-C) or
C-26 cells (D) before injection; mice
were then injected peritumorally, at days
2, 4, 6, and 9 with the given mAb.

12 16 20 24 28 32

DAYS

Figure 4.

	

Amixed tumor transplantation assay: tumor outgrowth after
injection of the C-26/G4 and C-26 cell mixture . C-26/G4 cells (106) were
injected alone (A) or mixed at a 1:1 (") or 10:1 (O) ratio with C-26
cells. (A) The C-26 cells injected alone.

0 0-O

G3 + anti-hu-G-CSF (200 ng)
0 Q---O--O

G3 +

8 10 12 14 16

4 C D
z

3
7F-
2 2F-
3
W 1U

0 0 0 f--~
Z I G3 + anti-hu-NGFr (2 gg) C-26

. . .8 1 ,0 1 ,2 1
-
4
-
1 6

Cells
injected" BALB/c

BALB/c

Day 30

(600 rad)

Day 60

BALB/c
a-asialo
GM1 nu/nu

C-26 5/5 5/5 5/5 5/5 5/5
C-26/G3 0/10 10/10 2/10 0/10 0/10
C-26/G4 0/10 10/10 1/10 0/10 0/10



Figure 5 .

	

Histological and Immunocytochemical analysis of the site of tumor injection . Histopathology and immunoperoxidase staining of tumor
sections from mice transplanted with uninfected C-26 (A), a mixture 1:1 (B) and 10 :1 (C) of C-26/G4, or 1 :1 (D-F) of C-26/G3 and uninfected C-26
cells . Intratumoral reactive cells showed mainly the morphologically or neutrophils, and their amount appears to be related to the number of infected
cells present in the mixture (B vs. C) (A-D/hematoxilin-eosin ; x400) . The neutrophilic origin of the reactive cells is supported by immunoperoxidase
staining showing positivity for Mad (M1/70.15) (E) and negativity for Mac3 (M3/84.6.34) (F) (PAP method; x400) .

cluded a weekly determination of white blood cell counts
and formulas, which indicated that normalization of leuko-
cytes counts after the initial, radiation-induced reduction was
necessary before any tumor regression became clinically ap-
preciable. These data indicate that growth ofGCSF-producing
tumors is no longer suppressed in the absence of granulo-
cytes, and that mice self-reconstituted after sublethal irradia-
tion are still able to destroy previously formed tumors .

G-CSF-secreting C-26 Cells Do Not Suppress Tumorigenicity
of Uninfected C-26 Cells in a Mixed Tumor Transplantation
Assay. Additional insight into the mechanisms by which
G-CSF production causes inhibition oftumor growth in vivo
came from mixed tumor transplantation experiments in which
1:1 and 10:1 mixtures of C-26/G4 and uninfected C-26 cells
were injected in syngeneic mice. Tumors arose in 100% of
the animals, although a longer latency was scored with the
10:1 ratio mixture (Fig . 4) . After the injection of the 1 :1 mix-
ture of C-26/G3 and C-26 cells, tumors developed in all the
treated animals as well as the G4 plus C-26 mixture (data
not shown) . Southern blot analysis of DNA extracted from
these tumors failed to detect the presence of NSVG-CSF se-
quences (data not shown), suggesting that they originated
from uninfected C-26 cells. These results indicate that inhi-
bition of tumor cell growth by G-CSF is only occurring in
cells actually secreting the hemopoietin . This conclusion was
corroborated by experimentsshowing that recombinant huG-
CSF injected together with C-26 cells, and subsequently given
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around the injection site twice a day for 20 d at a dose of
400 ttg/day, was unable to inhibit C-26 tumor formation (data
not shown) .

Histological and Immunocytochemical Analysis of the Site of
Tumor Injection. To elucidate which host cells were activated
and elicited by G-CSF-producing cells in vivo, morpholog-
ical and Immunocytochemical analysis of the reactive popu-
lations present at the tumor site was performed 5 and 10 d
after injection of C-26, C-26/G3, C-26/G4, and of their 1:1
or 1:10 mixtures . C-26 tumor showed a solid growth, with
central necrotic areas . Intratumoral reactive cells were absent,
and only a few granulocytes and macrophages were observed
in the fat tissue around the tumor (Fig . 5 A) . In mice in-
jected with G3 and G4 cells, tissues surrounding the site of
injection did not show any histological alterations. Compared
with C-26, tumors arising after mixture inoculations were
ofsmaller size and devoid ofnecrotic foci . Furthermore, they
were characterized by a prominent intratumoral reactive
infiltrate, the amount of which was related to the number
of G-CSF-producing cells present in the mixed population
(Fig. 5, B and C) . The reactive cells were positive to Macl
staining and negative for both Mac3 (Fig . 5, E and F) and
a mixture of anti-CD4 and anti-CD8 mAb (data not shown) .
Macl stains granulocytes and macrophages while Mac3 only
stains macrophages . The restricted positivity for Macl and
morphological features identified the reactive cells as PMN
neutrofilic granulocytes . Presence of eosinophils was ruled



out by the absence of spontaneous peroxydase in control and
Mac3- or CD4/CD8-stained slides .

Discussion
The study of the effect of lymphokines directly released

at the site of tumor host interaction has been made possible
by transfection procedures that allow interleukin genes to be
expressed in tumor cells injected into mice (11-13) . In this
study, we have used a retroviral mediated gene transfer to
transduce the human G-CSF gene into the murine colon ad-
enocarcinoma C-26 to study how G-CSF-producing C-26
cells behave in vivo . Our results show that only C-26 cells
that transduced the human-GCSF gene lacked tumorigenicity
(even at the dose of 10' cells/mouse), whereas uninfected
C-26 cells and cells infected by the same retroviral vector,
either empty or carrying a control gene, caused tumors when
injected at the dose of 3 x 104 cells/mouse. The effect of
huG-CSF in this tumor was remarkable considering its low
level of expression . This is a normal drawback of the NSV
derived vectors, which although they generate high-titer
viruses, often result in low expression of the internal, SV40-
promoted gene (25) . This boosts the evidence that G-CSF
can exert an antitumoral effect at a concentration possibly
close to the physiological one, and suggests that a local,
microenvironmental release ofGCSF may be more active than
a large and systemic availability. Indeed, the tumor suppres-
sion activity of G-CSF was limited to the G-CSF-producing
cells and not transferred to the nonproducing C-26 cells in
a mixed tumor transplantation assay (Fig . 4) . We hypothe-
size that a gradient of G-CSF concentration around G-CSF-
producing C-26/G3 and G4 cells is instrumental in targeting
effector cells, thus causing the destruction of G3 and G4 cells
over that of C-26 cells. C-26 outgrowth was only delayed
when G4 were 10 times more represented than C-26 cells
in the injected mixture . It has been described that cell surface
contact or cell-cell interactions are essential to trigger the re-
spiratory burst ofPMN activated by soluble stimuli (26) . Like-
wise, an intimate contact between effector and G-CSF-pro-
ducing cells is strictly necessary, since we have found that
G3 or G4 cells segregated by millipore filters into a diffusion
chamber placed subcutaneously in singeneic mice were not
destroyed (data not shown) . The implication of G-CSF as
the mediator of tumor inhibition was strengthened by ex-
periments showing that a mouse anti-huG-CSF mAb was
able to reverse the nontumorigenic phenotype of infected
C-26/G3 cells (Fig. 3) ; such reversion was, however, time
restricted, suggesting that the mAb needs to be present in
the microenvironment surrounding the GCSF-producing cells
in order to exert an efficient blocking activity.
Although the G-CSF have a restricted activity on neu-

rophilic granulocytes, we investigated whether tumor sup-
pression activity required the cooperation ofother host cells
by injecting C-26/G3 and G4 cells into mice immunologi-
cally deficient for either the T or the NK lineage. The
G-CSF-producing cells did not develop into tumors when
injected into nu/nu mice, but they did when given to irradi-
ated (600 rad) BALB/c mice, indicating an immunological
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nonTmediated mechanism of tumor destruction . Implica-
tion ofNK cells was ruled out by treating mice with anti-asialo
GM, antibodies, by the known NK radioresistance and by
the poor lysability of this tumor by NK cells . Since G-CSF
has a restricted activity on neutrophilic granulocytes, we as-
sumed that this population was the most involved at the site
of tumor growth . Eosinophilic granulocytes, macrophages,
and T lymphocytes were previously reported to be stimu-
lated by 11.74 or peritumoral injection ofIL-2 (11, 27) . To docu-
ment which cells were elicited and activated at the site of
tumor injection, all tissues surrounding the point of injec-
tion of the G3 or G4 plus C-26 mixtures were histologically
examined . The results indicated that neutrophilic granulo-
cytes were the only cells infiltrating the mixture and that
the extent of PMN infiltration correlated with the number
of G-CSF-producing cells injected .

The finding of antitumoral effect of neutrophilic granulo-
cytes stimulated by tumor-released G-CSF is intriguing in
the light of the known ability of some tumors to induce neu-
trophilia and to secrete CSF. In the case of murine mammary
carcinoma CE, neutrophilia was due to the tumor-derived
G-CSF and, in vitro, granulocyte stimulation was enhanced
by the synergistic action of G-CSF and purified M-CSF (28)
but no antitumoral activity was found . This can suggest that,
in our system, some other factor(s) released by C-26 may
cooperate with the G-CSF in suppressing tumor growth in
vivo. Interestingly, C-26 induces cachexia and neutrophilia,
as found by following the blood formula during the time
of tumor growth, the onset of neutrophilia being associated
with at least 1 cm3 of tumor size . However, we could not
detect endogenous GCSF expression in C-26 cellsby Northern
blot using the crossreactive human probe . Mice injected with
G3 cells never developed tumor and never deviated from the
normal blood formula. Altogether these observations would
support the requirement of additional factors concurring with
G-CSF to exert the observed potent antitumoral effect . Fur-
thermore, it seems likely that different tumors behave differ-
ently when attacked by neutrophilic granulocytes. In this re-
spect, in vitro studies revealed that depending on the target
cell type and the condition under which the interaction occurs,
the PMNs may disrupt a monolayer architecture with or
without cell killing (29) . Insensitivity to PMN-mediating
killing may explain why, even in the presence oflarge numbers
of PMN, the tumor grows progressively. In addition, different
tumor cells display a different susceptibility to the same
cytokine, as exemplified by the fact that forced expression
of 11,2 gene into C-26 colon adenocarcinoma can stimulate
host T cell response (12), whereas 11,2 transduction by
retroviral vector into the CTLI72 lymphoma is associated with
the fatal outcome of the injected mice (30) . Recombinant
huG-CSF was already described as being able to stimulate
both differentiation and self-renewal processes of murine leu-
kemic stem cells in vitro, but also of suppressing leukemia
development in vivo, probably through the cytotoxic action
of PMN (31) . However, the mechanisms by which G-CSF
primes neutrophils for enhanced oxidative metabolism (32),
antibody-dependent cell-mediated cytotoxicity (33), and ara-
chidonic acid release (34) remain to be elucidated .
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