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Abstract: Peroxiredoxins (PRDXs) are members of a highly conserved peroxidase family and maintain
intracellular reactive oxygen species (ROS) homeostasis. The family members are expressed in
most organisms and involved in various biological processes, such as cellular protection against
ROS, inflammation, carcinogenesis, atherosclerosis, heart diseases, and metabolism. In mammals,
six PRDX members have been identified and are subdivided into three subfamilies: typical 2-Cys
(PRDX1, PRDX2, PRDX3, and PRDX4), atypical 2-Cys (PRDX5), and 1-Cys (PRDX6) subfamilies.
Knockout mouse models of PRDXs have been developed to investigate their in vivo roles. This review
presents an overview of the knockout mouse models of PRDXs with emphases on the biological and
physiological changes of these model mice.
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1. Introduction

The peroxiredoxin (PRDX) family has peroxidase activity to remove peroxides, including hydrogen
peroxide (H2O2), organic hydroperoxides, and peroxynitrite [1,2]. PRDXs are widely distributed in
almost all organisms and there are more than 3500 members in this protein family [3]. PRDXs are
classified into three subfamilies (typical 2-Cys, atypical 2-Cys, and 1-Cys) based on the number and
location of the active cysteine residues and the type of disulfide bonds produced during the catalytic
reaction (Figure 1) [4–8]. Typical 2-Cys PRDXs function as a homodimer [7]. Peroxides oxidize the
conserved peroxidatic cysteine (CP) in typical 2-Cys PRDXs, and then the oxidized cysteine sulfenic
acid residue in a subunit forms an intermolecular disulfide bond with the resolving cysteine (CR) in
the other subunit [7]. Finally, the intermolecular disulfide bond is reduced by the thioredoxin (Trx)/Trx
reductase/NADPH system [7]. Atypical 2-Cys PRDXs remove peroxides using the same mechanism as
2-Cys PRDXs except that atypical 2-Cys PRDXs form an intramolecular disulfide bond between CP and
CR within a PRDX molecule [9]. 1-Cys PRDXs have only a CP residue and the oxidized CP is reduced
by glutathione (GSH) instead of Trx [10]. According to the PeroxiRedoxin classification indEX (PREX)
database that classifies PRDXs based on structural information around active sites, PRDXs are also
divided into six subfamilies: AhpC-Prx1, BCP-PrxQ, Tpx, Prx5, Prx6, and AhpE [11,12]. In mammals,
there are six PRDX members (PRDX1–PRDX6) [5]. PRDX1–PRDX4 are members of the typical 2-Cys or
AhpC-Prx1 subfamily [5,12]. PRDX5 is a member of the atypical 2-Cys or Prx5 subfamily, and PRDX6
is classified into the 1-Cys or Prx6 subfamily [5,12]. Mammalian PRDXs are widely distributed in cells
and perform various biological functions. PRDX1 is present in the nucleus and cytosol; PRDX2 and
PRDX 6 are in the cytosol; PRDX3 is in the mitochondria; PRDX4 is in the endoplasmic reticulum (ER)
and the cytosol; and PRDX5 is in the cytosol, peroxisomes, and mitochondria [8,13].
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Figure 1. Catalytic cycle of typical 2-Cys (a), atypical 2-Cys (b), and 1-Cys (c) peroxiredoxins (PRDXs). 
CP, peroxidatic cysteine; CR, resolving cysteine; GSH, glutathione; ROOH, peroxide; Trx, thioredoxin. 

As genetically modified mouse (GEM) models, knockout mice are useful to investigate the roles 
of a gene. In the case of mouse Prdx genes, several knockout mouse strains targeting each Prdx gene 
have been generated by independent research groups [14]. These knockout mice provide useful 
information that is hard to obtain from other experiments. The present review summarizes the 
properties of Prdx-knockout mouse models and focuses on the biological and physiological changes 
of these model mouse strains. 

2. PRDX1 

2.1. Genetics and Knockout Mouse Strains 

PRDX1 is a ubiquitously expressed nuclear and cytosolic peroxidase protein and is a member of 
the typical 2-Cys PRDX subfamily [7,13]. PRDX1 is involved in tumor suppression [15–18], 
inflammation [13,19–26], apoptosis [19,27,28], atherosclerosis [13,21], and molecular chaperoning 
[29,30]. According to the mouse Ensembl database, the Prdx1 gene is located on mouse chromosome 
4 and there are five alternative forms of Prdx1 protein-coding transcripts [31]. Prdx1-knockout mouse 
strains have been generated by the homologous recombination [15,32] or gene trap [17,33] 
approaches. No Prdx1-knockout mouse strain with conditional potential has been reported, although 
the International Mouse Phenotyping Consortium (IMPC) has embryonic stem (ES) cell clones that 
possess the reporter and conditional allele [34]. 

2.2. Cancer 

Neumann et al. have generated the first Prdx1-knockout mice (Prdx1−/−) [15]. The knockout 
mouse strain targets exon 3 of the Prdx1 gene by the insertion of a transposon containing a PGK-
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As genetically modified mouse (GEM) models, knockout mice are useful to investigate the roles of
a gene. In the case of mouse Prdx genes, several knockout mouse strains targeting each Prdx gene have
been generated by independent research groups [14]. These knockout mice provide useful information
that is hard to obtain from other experiments. The present review summarizes the properties of
Prdx-knockout mouse models and focuses on the biological and physiological changes of these model
mouse strains.

2. PRDX1

2.1. Genetics and Knockout Mouse Strains

PRDX1 is a ubiquitously expressed nuclear and cytosolic peroxidase protein and is
a member of the typical 2-Cys PRDX subfamily [7,13]. PRDX1 is involved in tumor
suppression [15–18], inflammation [13,19–26], apoptosis [19,27,28], atherosclerosis [13,21], and
molecular chaperoning [29,30]. According to the mouse Ensembl database, the Prdx1 gene is located
on mouse chromosome 4 and there are five alternative forms of Prdx1 protein-coding transcripts [31].
Prdx1-knockout mouse strains have been generated by the homologous recombination [15,32] or gene
trap [17,33] approaches. No Prdx1-knockout mouse strain with conditional potential has been reported,
although the International Mouse Phenotyping Consortium (IMPC) has embryonic stem (ES) cell
clones that possess the reporter and conditional allele [34].
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2.2. Cancer

Neumann et al. have generated the first Prdx1-knockout mice (Prdx1−/−) [15]. The knockout
mouse strain targets exon 3 of the Prdx1 gene by the insertion of a transposon containing a
PGK-neomycin-resistant (neoR) cassette, which disrupts all protein-coding transcripts [15]. The
knockout mice are viable and fertile but show severe hemolytic anemia and several malignant cancers,
including lymphomas, sarcomas, and carcinomas, which cause a shortened life span [15]. Using
the same knockout mice, Neumann’s group indicated that PRDX1 is involved in Pten-mediated
tumor suppression in Ras-induced breast cancer [16] and inhibition of fibroblast transition into
cancer-associated fibroblasts (CAFs) [18]. The tumor suppressor function of PRDX1 was also
demonstrated in another study using a different Prdx1-knockout mouse strain, which was generated
using the Lexicon gene trap ES cell clone, which has a gene trap vector in intron 3 of the Prdx1 gene [17].
Elevated nuclear ROS on primary tissues isolated from the Prdx1−/− leads to increased DNA damage
and tumor susceptibility [17].

2.3. Erythrocytes

Severe hemolytic anemia with defects in blood parameters, which is observed in Neumann’s
Prdx1-knockout mice, is not observed in other Prdx1-knockout mouse models [32,33], although Prdx1
deficiency aggravates hemolytic anemia symptoms in Prdx2-knockout mice [32]. These knockout
mouse strains have been generated by replacing whole exons of the Prdx1 gene with a neoR cassette [32]
or using the gene trap clone [33].

2.4. Inflammation

In different inflammation disease models, Prdx1−/− show conflicting results. PRDX1 enhances
cerebral ischemia–reperfusion (I/R) injuries by activation of inflammation and apoptosis [19], and
it initiates inflammation in the ozone-exposed lung [20]. Prdx1 deficiency, however, aggravates
pulmonary inflammation and fibrosis in the bleomycin-treated model [26]. Atherosclerosis and
chronic inflammation model mice (Prdx1−/−;ApoE−/−) show increased formation of atherosclerotic
plaque compared with Prdx1+/+;ApoE−/− mice [13,21]. Prdx1-deficient macrophages present impaired
lipophagic flux and cholesterol homeostasis [13]. Lipopolysaccharide (LPS)-induced lung injury,
lethal shock, and neuroinflammation are increased in Prdx1−/− [22–24]. PRDX1 is a negative regulator
of Th2-type allergic asthma that is induced by ovalbumin [25]. Inflammatory stimuli produce the
intramolecular disulfide bond in HMGB1, which is mediated by PRDX1 or PRDX2 [35]. The formation
of the disulfide bond is sufficient for HMGB1 secretion and secreted HMGB1 signals danger to
surrounding cells. HMGB1 secretion induced by LPS is attenuated in macrophages isolated from
Prdx1- or Prdx2-knockout mice [35].

2.5. Others

PRDX1 interacts with Gde2 and reduces the formation of an intramolecular disulfide bond
between the N- and C-terminal regions of Gde2, which induces neuronal differentiation [36]. Prdx1
deficiency attenuates cisplatin-induced nephrotoxicity [37]. Studies using Prdx1-knockout mouse
models also show that PRDX1 is involved in maintenance of stemness of mouse embryonic stem cells
by suppression of ROS/JNK-induced neurogenesis [38], modulation of cellular senescence in mouse
embryonic fibroblasts (MEFs) [39], host defenses against Mycobacterium tuberculosis and Staphylococcus
aureus [40,41], and maintenance of progesterone production in the corpus luteum through regulating
the unfolded protein response [42].
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3. PRDX2

3.1. Genetics and Knockout Mouse Strains

PRDX2 is a cytosolic typical 2-Cys PRDX and has a similar structure to that of PRDX1 [7]. Mouse
PRDX1 and PRDX2 proteins share 89% sequence similarity and 74% sequence identity and perform
overlapping and distinct biological functions [31]. The Prdx2 gene is on mouse chromosome 8 and
there are five alternative forms of Prdx2 protein-coding transcripts [31]. The first Prdx2-knockout mice
(Prdx2−/−) have been generated by replacing the genomic DNA encoding exons 1-5 with a neoR cassette.
They are viable and fertile [43] and most studies have used the same Prdx2-knockout mouse model. ES
cell clones possessing the reporter and conditional allele of the Prdx2 gene have been produced [34],
but a Prdx2-knockout mouse strain with conditional potential has not been reported.

3.2. Erythrocytes

Typical phenotypes of Prdx2−/− are hemolytic anemia, splenomegaly, Heinz body formation,
and morphologically abnormal red blood cells [43]. PRDX2 is expressed in all cell types and is
the third most abundant protein in erythrocytes [44]. Three PRDX isoforms (PRDX1, PRDX2, and
PRDX6) are expressed in mature erythrocytes and PRDX2 is the most abundant protein among
them [45]. The role of PRDX2 in protecting erythrocytes against oxidative stress has been verified
by several studies using the same Prdx2-knockout mouse model [46–55]. PRDX2 has roles to protect
erythrocytes from ROS-mediated DNA damage during erythropoiesis [48] and to protect hemoglobin
from oxidative stress [49,50]. The decameric structure of PRDX2 binds to hemoglobin to stabilize and
protect the protein [49]. Studies using Prdx2−/− show that PRDX2 is involved in the homeostasis of
iron and membrane proteins of erythrocytes, as well as cellular senescence of erythrocytes and skin
cells [51,53,56]. Erythrocytes lose PRDX2 protein gradually during the life span of erythrocytes [54].
PRDX2 is hyperoxidized by H2O2 and the hyperoxidized PRDX2 is degraded by the 20S proteasome [54].

3.3. Blood Vessels

PRDX2 is also involved in the homeostasis of blood vessels [57–59]. The redox-sensitive
transcription factor Nrf2 activates PRDX2 expression to protect vascular smooth muscle cells from
oxidative vascular injury [57]. In vascular endothelial cells, VEGFR2 no longer responds to VEGF
stimulation by the oxidative-stress-induced formation of a cysteine disulfide bond in the C-terminal
region of VEGFR2 [58]. PRDX2, not PRDX1, inhibits the formation of the intramolecular disulfide
bond in VEGFR2 [58]. Furthermore, tumor angiogenesis is suppressed in Prdx2−/− [58]. The
antioxidant activity of PRDX2 needs negative regulation of collagen-stimulated platelet activation and
platelet-dependent thrombosis [60]. Among 2-Cys Prdxs, Prdx2 deficiency exacerbates the neointimal
hyperplasia induced by the balloon injury of the carotid arteries [59].

3.4. Immune Responses

ROS are harmful byproducts but are also essential for immune responses [61] and their scavenger,
PRDX2, inhibits immune cell responsiveness [62,63]. Increased exposure to ROS by Prdx2 deficiency
activates the proliferation of T lymphocytes and the differentiation of dendritic cells [62,64]. Like
Prdx1−/−, Prdx2−/− are sensitive to LPS-induced inflammatory responses, including lethal shock [65].
LPS activates inflammatory responses which are mediated by NADPH-oxidase-derived ROS generation
in Prdx2-deficient macrophages [65]. Prdx2 deficiency increases immune cell accumulation in
atherosclerotic lesions, which exacerbates atherosclerosis in ApoE−/− mice [66]. Hypoxia-induced
oxidative stress in the lung of Prdx2−/− causes an amplified inflammatory response, vascular dysfunction,
and autophagy activation, which lead to the development of pulmonary arterial hypertension [67]. Prdx2
deficiency ameliorates dextran sulfate sodium (DSS)-induced colitis by enhancing the development of
Foxp3+ regulatory T cells [68].
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3.5. Cancer

In the Apc+/Min colorectal cancer model, the depletion of Prdx2 inactivates the formation of
intestinal adenomatous polyposis through Axin/β-catenin signaling [69,70]. Increased intracellular
H2O2 level by the Apc mutation leads to the direct binding of PRDX2 to a poly(ADP-ribose) polymerase
(PARP) tankyrase. This binding protects the tankyrase from its oxidative inactivation, and thus induces
PARP-dependent Axin degradation [69,70].

3.6. Bone

Prdx2−/− have higher levels of bone mass than those of wild-type mice because PRDX2 is a
negative regulator of BMP2-induced osteoblast differentiation [45]. PRDX2 also functions as a negative
regulator of LPS-induced osteoclastogenesis and bone loss, which are induced by ROS-mediated JNK
and STAT3 activation [71].

3.7. Others

PRDX2 is important for homeostasis of other tissues. PRDX2 protects hippocampal neurons
from age-dependent mitochondrial decay [72] and maintains the stemness of mouse embryonic
stem cells [38]. Oxidation of protein tyrosine phosphatases by ROS in Prdx2−/− fed a high-fat diet
causes reduced body weight and increased glucose clearance [73]. PRDX2 controls corpus luteum
regression that is induced by prostaglandin F2α-mediated ROS and protects against age-related ovarian
failure [74,75].

4. Prdx3

4.1. Genetics and Knockout Mouse Strains

PRDX3 is a member of typical 2-Cys PRDXs and is mainly localized in mitochondria due to a
mitochondrial targeting sequence at the N-terminal region. The Prdx3 gene is localized on mouse
chromosome 19 and there is a Prdx2 protein-coding transcript [31]. Two knockout mouse lines have
been analyzed to study the in vivo function of PRDX3. The first knockout mouse line was produced in
2007 using an ES cell clone generated by the gene trap approach [76]. In this ES clone, the VICTR20
gene trap vector [77] is inserted in intron 1 of the Prdx3 gene [76]. The second knockout mouse line
was generated by the homologous recombination approach [78]. The genomic DNA region possessing
exons 1-4 of the Prdx3 gene is replaced with the neoR cassette in the knockout mouse line [78]. ES cell
clones possessing the reporter and conditional allele of the Prdx3 gene have been produced [34], but no
Prdx3-knockout mouse strain with conditional potential has been reported.

4.2. Muscles

PRDX3 is important to protect mitochondria against oxidative stress. Prdx3 deficiency leads to
reduced mitochondrial DNA content and ATP production and impaired mitochondrial fusion [79,80].
Mitochondrial homeostasis is necessary for the proper function of skeletal muscles. PRDX3 has roles
in the prolonged contraction of skeletal muscles and physical strength [79,80].

4.3. Metabolism

PRDX3 is involved in metabolic homeostasis. Prdx3−/− show increased fat mass by adipocyte
hypertrophy, impaired mitochondrial enzymes, and adipokine dysregulation, resulting in impaired
glucose tolerance and insulin resistance [78].



Antioxidants 2020, 9, 182 6 of 19

4.4. Others

PRDX3 protects the lungs from LPS-induced damages, such as 8-hydroxy-2′-deoxyguanosine
(8-OHdG) formation and protein carbonylation [76]. PRDX3 also protects macrophages and the liver
against LPS-induced oxidative stress and pyrazole-induced oxidative damage, respectively [81,82].
Increased oxidative stress in Prdx3−/− shows placental defects, including focal necrosis and hyaline
degeneration in trophoblast giant cells and vessel degeneration [83,84]. PRDX3 also has a protective
role in UV-induced apoptosis of epidermal keratinocytes [85].

5. Prdx4

5.1. Genetics and Knockout Mouse Strains

PRDX4 is a member of typical 2-Cys PRDXs. Prdx4 is on the X chromosome and produces two
forms of alternative transcripts [31]. Each of them uses a different exon 1 (exon 1A and exon 1B) [86].
All tissues, including the testis, express Prdx4 mRNAs transcribed from exon 1B, which encodes
the cleavable N-terminal signal sequence, whereas the testis produces a testis-specific form of Prdx4
mRNAs transcribed from exon 1A [86]. PRDX4 is predominantly present in the ER and secreted to
extracellular space [87,88]. A Prdx4-knockout mouse strain has been widely used to study in vivo
functions of PRDX4 [89]. Originally, the knockout mouse line was generated with conditional potential
by insertion of two loxP sequences flanking exon 1B of the Prdx4 gene [89]. However, most studies have
used Prdx4-null mice, in which exon 1B is deleted. The testis-specific form of PRDX4 is not deleted in
this knockout mouse strain [86].

5.2. Phenotypes

Prdx4-knockout male mice (Prdx4−/y) are fertile but show testicular atrophy [89]. Spermatogenic
cells in Prdx4−/y are susceptible to cell death by oxidative stress [89]. In a DSS-induced colitis model,
Prdx4−/y show loss of body weight and shortening of colon length, which may be caused by ER stress
and oxidative damage in colonic epithelial cells [90]. Prdx4−/y show a higher incidence of hepatocellular
carcinoma in the diethylnitrosamine injection model compared with that of wild-type mice [91]. Triple
deletion of ER thiol oxidases, Ero1l and Ero1lb, and Prdx4 causes interfered procollagen maturation
and thus forms defective connective tissues in the extracellular matrix [92]. Prdx4 and superoxide
dismutase 1 (Sod1) double-knockout mice (Prdx4−/y;Sod−/−) show more severe liver phenotypes, such as
aggravated liver steatosis and liver failure, at a relatively young age compared with those of wild-type,
Prdx4−/y, and Sod−/− [93].

6. Prdx5

6.1. Genetics and Knockout Mouse Strains

PRDX5 is a unique member of the atypical 2-Cys subfamily in mammals and is ubiquitously
expressed in tissues [5,12]. PRDX5 is present in the cytosol, peroxisomes, and mitochondria [8].
The Prdx5 gene is located on mouse chromosome 19 and there are four alternative forms of Prdx5
protein-coding transcripts [31]. A Prdx5-knockout mouse line has been generated by the homologous
recombination approach [94]. Another Prdx5-knockout mouse line that is generated by the gene trap
approach is commercially available [95]. In this knockout line, a gene trap vector is inserted in the
5′UTR region of the Prdx5 gene. ES cell clones possessing the reporter and conditional allele of the
Prdx5 gene have been produced [34], but a Prdx5-knockout mouse strain with conditional potential has
not been reported.

6.2. Metabolism

Prdx5 deficiency leads to increased susceptibility to high-fat-diet-induced obesity, and thus
Prdx5-knockout mice fed a high-fat diet show several metabolic abnormalities, including increased
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body weight, adipocyte hypertrophy, fat accumulation in the liver, hepatic steatosis, and an increased
triglyceride level in the serum [94,96].

7. Prdx6

7.1. Genetics and Knockout Mouse Strains

In mammals, PRDX6 is a unique member of the 1-Cys subfamily [5,12]. The Prdx6 gene is located
on mouse chromosome 1 and produces two forms of alternatively spliced protein-coding transcripts [31].
PRDX6 is widely expressed in tissues and localized in the cytosol [8,97]. Two Prdx6-knockout mouse
lines have been generated [97,98]. Exons 1 and 2 of the Prdx6 gene are replaced by a LacZ reporter
and a neoR cassette in the first knockout mouse line [97], and a part of exon 3 is replaced by a neoR

cassette in the second line [98]. Both knockout mouse lines are viable, fertile, and display no gross
morphological defects [97,98]. IMPC produced a Prdx6-conditional knockout mouse line [34], although
the mouse line has not been used for detailed phenotyping.

7.2. Tissue Protection

The protective roles of PRDX6 in the lung have been analyzed with Prdx6−/−. Administration of
paraquat, an herbicide that produces damaging ROS within cells, causes tissue damage, decreased
survival rate, and increased oxidation of lipids and proteins in the lungs of Prdx6−/− [97,99]. Exposure
to 100% oxygen leads to similar defects in the lungs of Prdx6−/− [100]. Comparison between glutathione
peroxidase 1 (Gpx1)-knockout mice and Prdx6−/− reveals that PRDX6 is the major enzyme for the
reduction of phospholipid hydroperoxides in the lung [101]. In addition to the glutathione-dependent
peroxidase activity, PRDX6 also has phospholipaseA2 (PLA2) and lysophospholipid:acyltransferase
activities [102,103]. The deficiency of PLA2 activity alters phospholipid metabolism in the lungs of
Prdx6−/− [102]. The lung and pulmonary microvascular endothelial cells (PMVECs) isolated from
Prdx6−/− show increased sensitivity to peroxidative stress induced by exposure to 100% oxygen or
tert-butyl hydroperoxide (t-BOOH) treatment [104,105]. These defects are partially rescued by the
expression of mutant PRDX6 with either peroxidase activity alone or PLA2 activity alone [104,105].
However, coexpression of these mutant forms of PRDX6 rescues Prdx6-null PMVECs treated with
t-BOOH as well as the expression of wild-type PRDX6 [104]. The glutathione-dependent peroxidase
activity of PRDX6 can reduce both short-chain hydroperoxides such as H2O2 and phospholipid
hydroperoxides [106]. The repair of peroxidized cell membranes of the lung or PMVECs is mostly
dependent on the phospholipid hydroperoxidase activity rather than peroxidase activity toward
H2O2 [106]. Protective effects of PRDX6 in the lung have been revealed using other lung injury
models, including exposure to H2O2, LPS, or chronic cigarette smoke and cecal ligation and puncture
(CLP)-induced acute lung injury [107–110]. Interestingly, the treatment of angiotensin II or phorbol
ester increases the generation of superoxide and H2O2 in wild-type PMVECs but not in Prdx6-deficient
PMVECs [111,112]. The authors explain that the PLA2 activity of PRDX6 is necessary for the activation
of NADPH oxidase type 2 (NOX2), which produces superoxide [111,112]. PRDX6 also has protective
roles in other tissues. PRDX6 protects the kidney from metabolic acidosis by contributing to the
maintenance of anion exchanger 1 [113] and blood vessels in wounded skin [114].

7.3. Prion Disease

In ME7-infected prion disease models, Prdx6 deficiency worsens prion-related
neuropathology [115]. These defects are caused by Prdx6 deficiency in astrocytes because PRDX6 is
predominantly expressed in astrocytes rather than neurons in the brain [115].

7.4. Inflammation and Metabolism

Oxidative stress contributes to the pathogenesis of various inflammatory and metabolic diseases.
Hepatic I/R injury causes a significant increase of PRDX6 expression and PRDX6 transfer from the
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cytoplasm to the mitochondria [116]. Prdx6 deficiency in the I/R model increases the mitochondrial
generation of H2O2 and mitochondrial dysfunction, thus leading to severe hepatocellular damage [116].
In Prdx6−/−, ethanol-induced lipid accumulation and peroxidation are observed in the liver [117]. An
intensive study shows that Prdx6−/− develop insulin resistance, diabetic dyslipidemia, impaired insulin
signaling, morphological changes in the pancreas and liver, and increased pro-inflammatory responses,
suggesting that Prdx6 deficiency is a key mediator of hyperglycemia in type 2 diabetes [118]. A study
suggests that PRDX6 is involved in the biosynthesis of fatty acid esters of hydroxy fatty acids that are
lipid mediators with potent antidiabetic and anti-inflammatory activities [119]. In acute and chronic
DSS-induced colitis models, however, Prdx6 deficiency attenuates the development of colitis [120]. The
authors explain that Prdx6 deficiency is compensated by the upregulation of other PRDXs (PRDX3 and
PRDX4) and antioxidant enzymes (Nrf2, Gss, and Gclm). A study tested the relationship between PRDX6
and atherosclerosis using Prdx6−/− with three different genetic backgrounds: atherosclerosis-resistant
129/SvJ (129), atherosclerosis-susceptible B6, and mixed B6;129 [121]. The effects of Prdx6 deficiency in
atherosclerosis are minor and background dependent.

7.5. Aging

Prdx6−/− show age-related phenotypes [122–124]. Prdx6 deficiency decreases the fertility of male
Prdx6−/− in an age-dependent manner [122]. PRDX6 protects spermatozoa against the oxidative stress
that causes protein oxidation, lipid peroxidation, and DNA oxidation and fragmentation [122,123]. Lens
epithelial cells (LECs) isolated from Prdx6−/− display elevated ROS expression and ER-stress-associated
phenotypes [124,125]. Human LECs derived from aged men show a decreased level of PRDX6 and
ER-stress-associated phenotypes [124]. LECs of Prdx6−/− are also more vulnerable to UV irradiation
than those of wild-type mice [126].

7.6. Cancer

Prdx6 deficiency enhances susceptibility to tumorigenesis in the human-papillomavirus-8-induced
skin cancer model [127]. The anti-tumorigenic effect of PRDX6 is achieved by the reduction of oxidative
stress rather than altered proliferation, apoptosis, or the inflammatory response in keratinocytes [127].

8. Conclusions

PRDXs are typical peroxidases for the removal of cellular peroxides [1,2]. To investigate the
biological roles of PRDXs, numerous approaches have been performed using the cell culture system.
Although these experiments have provided valuable insights into PRDX biology, the approaches are
not sufficient to reveal physiological functions in the human body. Knockout mouse models offer more
reliable data to understand the in vivo functions of PRDXs (Table 1). More than one knockout mouse
model of each PRDX has been generated and analyzed intensively. These knockout mouse models
show that each PRDX functions essentially as a similar peroxidase and also performs specific functions
depending on organs or intracellular organelles. In the past, the generation of knockout mouse models
was time-consuming and labor-intensive work. However, recently developed gene-editing techniques
using the CRISPR/Cas9 system have dramatically reduced these efforts [128]. Now, we can easily
obtain GEM models that are more precisely modified than the previous complete knockout mouse
models. Future studies using these new models, as well as complete knockout mouse models, will
help us better understand the physiological roles of PRDXs and provide possible therapeutic targets
for drugs against diseases, such as cancer and inflammatory and metabolic diseases.
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Table 1. Knockout mouse models of Prdxs.

Gene Models Phenotypes Challenges 1 Affected Organs/Cells

Prdx1

KO1 [15]
(Homologous recombination,

Insertion, exon 3) 2

Tumorigenesis [15,16,18] None Various

Hemolytic anemia [15] None Red blood cells (RBCs)

Atherosclerosis [21] Normal diet, ApoE−/− Aorta

Neuronal defects [36] None Embryonic neurons

KO2 [32]
(Homologous recombination,

Replacement, exons 1–6)

Pro-inflammation [23] Lipopolysaccharide (LPS) Liver

Defective RBC clearance [32] None Macrophages

Cellular senescence [39] None Mouse embryonic fibroblasts (MEFs)

Defective host defense [41] Staphylococcus aureus Liver, lung

KO3 [17]
(Gene Trap, Insertion, Intron 3) Tumorigenesis [17] None Brain, liver, spleen, MEFs

KO4 [33]
(Gene Trap, Insertion, Intron 3)

Anti-inflammation [20] Ozone Lung

Pro-inflammation [26] Bleomycin Lung

Fibrosis [26] Bleomycin Lung

Asthma [25] Cisplatin Lung

Defective host defense [40] Mycobacterium tuberculosis Lung

Kidney defects [37] Ovalbumin Kidney

Pro-apoptosis [28] UVA MEFs

Uncertain

Anti-inflammation [19] Ischemia–reperfusion (I/R) injury Brain

Pro-inflammation [24] LPS Microglia

Anti-apoptosis [19] I/R injury Brain

Pro-apoptosis [42] Tunicamycin Corpus luteum

Atherosclerosis [13] Normal or high-fat diet, ApoE−/− Aorta

Lung defects [22] LPS Lung, macrophages

Loss of stemness [38] Differentiation medium Embryonic stem (ES) cells

Reduced progesterone [42] Tunicamycin Corpus luteum

Defective HMGB1 secretion [35] LPS Macrophages
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Table 1. Cont.

Gene Models Phenotypes Challenges 1 Affected Organs/Cells

Prdx2

KO1 [43]
(Homologous recombination,

Replacement, exons 1–5)

Hemolytic anemia [32,43,46–55] None RBCs, spleen, bone marrow (BM)

Defective iron homeostasis [53] Carbonyl-iron, LPS RBCs, liver, BM

Blood vessel defects [58,59] None Endothelial cells

Balloon injury Carotid arteries

Platelet defects [60] Collagen Platelet

Pro-inflammation [62–65] None Spleen, BM, thymus

LPS Macrophages

Anti-inflammation [68] Dextran sulfate sodium (DSS) Colon

Atherosclerosis [66] Atherogenic cholate-containing
diet, ApoE−/− Aorta

Anti-tumorigenesis [69,70] Apc+/Min Intestine, colon

Metabolic defects [73] High-fat diet MEFs, serum, muscle

Ovary defects [74,75] None, PGF2α,
4-vinylcyclohexene diepoxide Ovary

Bone defects [45,71] LPS Bone

Neuronal defects [72] None Neurons

Pulmonary hypertension [67] Hypoxia Lung

Cellular senescence [56] None MEFs

Loss of stemness [38] Differentiation medium ES cells

Defective HMGB1 secretion [35] LPS Macrophages

Uncertain Blood vessel defects [57] FeCl3 Carotid arteries
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Table 1. Cont.

Gene Models Phenotypes Challenges 1 Affected Organs/Cells

Prdx3

KO1 [78]
(Homologous recombination,

Replacement, exons 1–4)

Pro-apoptosis [85] UVB Keratinocytes

Muscle defects [79] None Muscle

Liver defects [82] Pyrazole Liver

Metabolic defects [78] None Fat, adipocytes

KO2 [76]
(Gene Trap, Insertion, Intron 1)

Pro-apoptosis [80] None Brain

Muscle defects [80] None Muscle

Lung defects [76] LPS Lung

Macrophage defects [81] LPS Macrophages

Placental defects [83,84] None Placenta

Prdx4
KO1 [89]

(Homologous recombination,
Cre-loxP deletion, exon 1)

Defective spermatogenesis [89] None Testis

Tumorigenesis [91] Diethylnitrosamine Liver

Colon defects [90] Dextran sulfate sodium Colon

Liver defects [93] Sod1−/− Liver

Defective connective tissues [92] Ero1l−/−, Ero1bl−/− Connective tissues

Prdx5
KO1 [94]

(Homologous recombination,
Replacement, not specified)

Metabolic defects [94,96] High-fat diet Fat, liver
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Table 1. Cont.

Gene Models Phenotypes Challenges 1 Affected Organs/Cells

Prdx6

KO1 [97]
(Homologous recombination,
Replacement, exons 1 and 2)

Tissue defects [97] Paraquat Lung, kidney, liver, macrophages

Anti-inflammation [120] DSS Colon

Tumorigenesis [127] Human papillomavirus 8 Skin

Atherosclerosis (mild) [121] Atherogenic high fat diet Aorta, plasma

Metabolic defects [118] None Various

Lens defects [124,125] None, hypoxia, CoCl2,
tunicamycin, H2O2, Lens epithelial cells (LECs)

Lens defects and pro-apoptosis [126] UVB LECs

Liver defects [117] Ethanol Liver

Prion disease [115] ME7 Brain

Vascular defects [114] UV Skin, blood vessels

KO2 [98]
(Homologous recombination,

Replacement, exon 3)

Lung defects [99–101,107–110]

Paraquat Lung

Hyperoxia Lung

Hyperoxia, tert-butylhydroperoxide
(t-BOOH), Paraquat

Lung, pulmonary microvascular
endothelial cells (PMVECs)

H2O2 Type II alveolar epithelial cells

Cigarette smoke Lung

Cecal ligation and puncture Lung

LPS Lung

Lung defects (phospholipid metabolism) [102] None Lung

PMVEC defects [104] t-BOOH PMVECs

Lung and PMVEC defects [105,106] t-BOOH, hyperoxia PMVECs, lung

Attenuated production of superoxide and
H2O2 [111,112]

Angiotensin II,
Phorbol ester Lung, PMVECs, alveolar macrophages

Defective spermatogenesis [122,123] Aging, t-BOOH Sperm

Liver defects [116] I/R injury Liver

Kidney defects [113] NH4Cl Kidney
1 Most phenotypes are induced by various challenges. 2 Methods to generate knockout mouse models.
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