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Forensic entomology is the branch of forensic science that is related to using arthropod specimens
found in legal issues. Fly maggots are one of crucial pieces of evidence that can be used for estimating
post-mortem intervals worldwide. However, the species-level identification of fly maggots is difficult,
time consuming, and requires specialized taxonomic training. In this work, a novel method for the
identification of different forensically-important fly species is proposed using convolutional neural
networks (CNNs). The data used for the experiment were obtained from a digital camera connected
to a compound microscope. We compared the performance of four widely used models that vary

in complexity of architecture to evaluate tradeoffs in accuracy and speed for species classification
including ResNet-101, Densenet161, Vggl9_bn, and AlexNet. In the validation step, all of the
studied models provided 100% accuracy for identifying maggots of 4 species including Chrysomya
megacephala (Diptera: Calliphoridae), Chrysomya (Achoetandrus) rufifacies (Diptera: Calliphoridae),
Lucilia cuprina (Diptera: Calliphoridae), and Musca domestica (Diptera: Muscidae) based on images

of posterior spiracles. However, AlexNet showed the fastest speed to process the identification
model and presented a good balance between performance and speed. Therefore, the AlexNet
model was selected for the testing step. The results of the confusion matrix of AlexNet showed that
misclassification was found between C. megacephala and C. (Achoetandrus) rufifacies as well as
between C. megacephala and L. cuprina. No misclassification was found for M. domestica. In addition,
we created a web-application platform called thefly.ai to help users identify species of fly maggots in
their own images using our classification model. The results from this study can be applied to identify
further species by using other types of images. This model can also be used in the development of
identification features in mobile applications. This study is a crucial step for integrating information
from biology and Al-technology to develop a novel platform for use in forensic investigation.

The fly larvae of Chrysomya megacephala (Diptera: Calliphoridae), Achoetandrus rufifacies (Diptera: Calliphori-
dae), Lucilia cuprina (Diptera: Calliphoridae), and Musca domestica (Diptera: Muscidae) have long been rec-
ognized as crucial clues in medicolegal forensic entomology, especially in Thailand"?. The estimation of the
minimum postmortem interval (PMIm) from fly maggots plays a primary role in estimating the postmortem
interval®. Moreover, human myiasis, the infestation of fly maggots in a living person, may be found in neglected
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people!. Therefore, fly larvae can be used to estimate the minimum abandonment duration'. The accuracy of
PMIm determination and abandonment duration mainly relies on species identification®.

Identification of fly maggots is more difficult because the general morphology of each species is quite
similar*®. It is vermiform, circular in cross section, tapering to a point, and having no legs*-*. Morphology of
the posterior spiracle is one of the important characteristics that have been used for identification of the larval
stage®°. Posterior spiracles are the organs involved in the gas exchanges, which are in the last segment and are
joined to the dorsal longitudinal trunks of the internal tracheal system. The spiracles are placed in two chitinized
plates surrounded by the peritreme. Typically, the number of slits can be used to classify the stage of larvae®’.
For example, the third-stage larva has three slits in each side of the posterior spiracle. The pain points of spe-
cies identification based on morphological characteristics are the requirement of taxonomic experts and time
consuming. In addition, the number of taxonomists and classification experts has drastically decreased so far.
Although molecular techniques and proteomic analysis have been currently used for identification of fly species,
specific equipment and reagents are required in the laboratory®'°.

To overcome the pain point, alternative automatic identification methods with expert-level classification accu-
racy are highly required in this field. Automatic species identification is important not only for flies in forensics,
but also for other insects in general since it contributes to various purposes such as environment monitoring, pest
diagnostics, and vector epidemiology'!. Many previous studies indicated that automatic classification of insect
species achieved high classification accuracy'?~'. Currently, many classification models based on convolutional
neural networks (CNNs) have been proposed in the field of computer vision. CNN is the type of multi-layered
network learning algorithm, which usually contains multiple convolution layers, batch normalization layers,
and fully connected layers!®. Many previous reports demonstrated that the CNNs models have achieved species
identification of insects with high accuracy and precision'*"'%. Based on our information, there have been no
reports on the identification modeling of forensically-important fly maggots based on CNNs. Therefore, the novel
method was proposed and the identification model was developed in 2 parts, including a custom object detec-
tion model for detection of position by using Labellmg, and YOLO programs, consecutively, and the multiple
deep learning models to identify posterior spiracle images of four fly species including C. megacephala (Diptera:
Calliphoridae), C. (Achoetandrus) rufifacies (Diptera: Calliphoridae), L. cuprina (Diptera: Calliphoridae), and
M. domestica (Diptera: Muscidae). In this study, the assessment of the identification was compared with state-
of-the-art CNNs including ResNet-101, Densenet161, Vggl9_bn, and AlexNet. The best performance model
was selected and used to develop a web-application for automatic species identification.

Materials and methods

Preparation of posterior spiracle. Slides of the posterior spiracle were prepared following the method
of Bunchu et al.?’. Briefly, the morphology of the posterior spiracle was investigated by using the hydroxide
clearing method. Maggots of each species (C. megacephala, C. (A.) rufifacies, L. cuprina, and M. domestica) were
laboratory strains, which were obtained from the Medical Entomology Laboratory, Department of Microbiol-
ogy and Parasitology, Faculty of Medical Science, Naresuan University. Adults of all species were identified by
using the taxonomic key of Kurahashi and Bunchu?'. The posterior spiracles of each species were photographed
under the light microscope connected to the digital camera. All the images were used in the training process.
For demonstration purposes, example images of each species were inverted using the rgb colors from rgb (255,
255, 255) to rgb (0, 0, 0) by using the image adjustment function of Adobe photoshop 2021 to increase the clarity
of the images.

Image data set. In this study, the images of the posterior spiracles of four forensically-important fly species
as mentioned above were analyzed. All original images have been categorized as “verified” after they were identi-
fied and confirmed by an expert. In total, 17,144 original images were used in this study and divided into training
(12,000 images), validation (3428), and testing (1716) groups with a number ratio of 7:2:1. For each species, the
number of images for training, validation, and testing were 3000, 857, and 429 respectively.

In the first step, we developed a custom object detection model for detecting the position of posterior spiracle
in the input image by using Labellmg program and YOLO object detection algorithm. The process of the custom
image detection was shown in Fig. 1. Briefly, this process divided the input image into subregions to predict
multiple bounding boxes with their class probabilities for each region, training to create the most accurate object
detection model for bounding boxes. Five hundred images were used for training the object detection model.
The program used for labeling data for YOLO training was the Labellmg program. For the first step, the input
images were added to the model to generate images in multiple scales. Then, the Labellmg program was used
to label the position of the posterior spiracle in the image to detect the object of interest for further training
(Fig. 1A). After that, the labeled images were used in training of the convolutional neural network (CNN) using
YOLO object detection algorithm. The learning process was repeated to adjust the parameter several times to
receive the highest accuracy. After passing through several convolutional layers, a fully connected layer was
obtained to adjust the model output for detecting the position of the object in the image within bounding boxes
(Fig. 1B). Therefore, this training model can be used to label the input image with the maximum confidence to
select the final detection. The images were cropped tightly to the position of posterior spiracle (final detection).
The purpose of this process was to ensure that each image was labeled precisely. This custom object detection
data set was encoded to the JSON format with 224 x 224 pixels (detection result) (Fig. 1C). The cropped images
with resolutions lower than 224 x 224 pixels were discarded from this study. The image data set was encoded to
the JPEG format for the model training in the next step. This custom object detection model provided confidence
and accuracy = 80%.
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Figure 1. The processes of the custom object detection model used in this study was developed by using
LabelImg program and YOLO object detection algorithm consisting 3 steps; (A) preparation process, (B)
training process, and (C) detection process.

Model training. In this study, we compared the performance of four widely used models that vary in com-
plexity of architecture to evaluate tradeoffs in accuracy and speed for species classification including ResNet-101,
Densenet161, Vggl9_bn, and AlexNet. In the first step, we used the model from the previous step as mentioned
above to speed up the training process. After randomly shuffling images in each species, the images within the
species were divided by 7:2:1 ratio into training, validation, and testing groups. For each model, cropped images
were resampled to the standard size for the input model. After using these models initially, we used 224 x 224
pixel images for Resnet-101, Densenet161, Vggl9_bn, and AlexNet. We used an image augmentation strategy
following the previous study by Spiesman et al.'. Stochastic gradient descent (SGD) optimizer with an initial
learning rate of 0.01 for all models was used. We used batch normalization, and models were trained for the 50
epochs using Nvidia K80, T4, P4 and P100 GPUs. At the species level, two metric model performances were
calculated, including precision (1), recall (2), accuracy (3), and F1 score (4). Macro precision or mean of species-
level precision scores and macro-recall or mean of species-level recall scores for each model were determined.
The formulas for these indicators are as follows:

i, Tp

Precision = ————, (1)

Tp + Fp

T
Recall = _P_ , (2)
Tp + Fn

T T

Accuracy = pt1In (3)

Tp+ Fp+ Tn+ Fn’

2 Precisionx Recall
Flscore = — , (4)
Precision + Recall

where Tp, Tn, Fp, and Fn represent the number of true positive, true negatives, false positive and false negatives,
respectively. For the support value, it is the number of actual occurrences of the class in the specified dataset.
In addition, a confusion matrix table was constructed to realize a class-wise comparison to examine the accu-
racy of the identifications (generalized accuracy) and ensure that the model could detect and classify objects in
a reliable manner. The mean accuracy determined from the table was analyzed and assessed for all the models.
The mean time needed to predict the image in the test data set was also quantified as the model speed. All speed
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Figure 2. Morphology of posterior spiracles of four different fly species after inverting the image colors; (A)
Chrysomya (Achoetandrus) ruffifacies, (B) Chrysomya megacephala, (C) Lucilia cuprina, (D) Musca domestica.

Model #Params (million) | Model speed (s) | Model size (mb) | Macro precision | Macro recall | fl-score | support
Resnet101 44.6 246.0 170.96 1.00 1.00 1.00 3388
Densenet161 14.2 326.4 55.33 1.00 1.00 1.00 3388
Vggl9_bn 20.6 210.0 78.67 1.00 1.00 1.00 3388
AlexNet 2.7 10.8 10.58 1.00 1.00 1.00 3388

Table 1. Comparison of model size, speed, and performances of each studied model (The text in bold
indicates the best value in each category).

tests run on the same system using Nvidia K80s, T4s, P4s and P100s GPUs. The best performance model from
this study was selected and used to develop web applications for automatic species identification.

To confirm the results of this study, we tested this model with other images from outsources (internet and
personal contact) and visualized the results using the PyTorch CNN visualizations®.

Results and discussion

Of which at the third instar, the external morphology of larvae is quite similar; thus, the morphological identifica-
tion used to differentiate between its genera or species, generally includes cephalophalyngeal skeleton, anterior
spiracle, and posterior spiracles. The morphology of the posterior spiracle is one of the important characteristics
for identification. A typical morphology of the posterior spiracle of third stage larvae was shown in Fig. 2. Based
on studying under light microscopy, the posterior spiracle of M. domestica was clearly distinguished from the
others. On the other hand, the morphology of the posterior spiracle of C. megacephala and A. rufifacies was quite
similar. For C. megacephala and C. rufifacies, the peritreme, a structure encircling the three spiracular openings
(slits), was incomplete and slits were straight as shown Fig. 2A,B, respectively. The complete peritreme encircling
three slits was found in L. cuprina and M. domestica as shown in Fig. 2C,D, respectively. However, only the slits
of M. domestica were sinuous like the M-letter (Fig. 2D). Their morphological characteristics found in this study
were like the descriptions in the previous reports®*-%.

For model training, four of the CNN models used for species-level identification of fly maggots provided
100% accuracy rates and 0% loss. Number of parameter (#Params), model speed, model size, macro precision,
macro recall, f1-score, and support value were also presented in Table 1. The result demonstrated that the AlexNet
model provided the best performance in all indicators when compared among four models. The AlexNet model
used the least number of parameters while the Resnet101 model used the most. For model speed, the AlexNet
model provided the fastest speed, while the Densenet161 model provided the slowest speed. For the model size,
the AlexNet model was the smallest, while the Resnet101 model was the largest which corresponded to the num-
ber of parameters used. Macro precision, macro recall, f1-score and support value of all models were the same.
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Figure 3. tSNE visualization of the AlexNet model by dimensionality reduction of the penultimate features
(The test data are shown in colors for different classes; yellow refers to data set of Musca domestica, green refers
to data set of Lucilia cuprina, greenish blue refers to data set of Chrysomya megacephala, and dark purple refers
to data set of Chrysomya (Achoetandrus) ruffifacies).

As the training results presented in the supplementary data (Fig. S1), all models provided 100% accuracy
and 0% loss in the early stage of training (< 10 epochs). This could be due to the training and testing processes
with cropping specific portions of the fly images using our custom object detection model. Moreover, all images
were from the laboratory strains, and their variation of morphological characteristics might be less than their
wild counterparts. As a result, the training time was short, and the accuracy of the model was high. Of the four
models tested, AlexNet demonstrated a good balance between performance and speed. This model can proceed
the system the fastest and its model size was the smallest. The speed and accuracy of AlexNet made it useful for
web-based and mobile applications that relied on both speed and reliable predictions. Speed was a factor in user
satisfaction and would be important for future development such as video-based applications'®. Therefore, we
focused on the AlexNet results for the remainder of this article.

By using tSNE visualization, the AlexNet model can separate species explicitly into distinct groupings based
on characteristics extracted from the model as shown in Fig. 3. All four species were separated with overlapping
data of C. megacephala and C. rufifacies. It could be due to the similarity of morphological characteristics of
both species?’. This result indicated that the performance of the AlexNet model was equal to human practice.

The five hidden convolutional layers of AlexNet on four example images of posterior spiracles were visualized
as shown in Fig. 4. In each layer, the posterior spiracle of each species was randomly selected for visualization.
The color images were generated to clearly show the patterns. The multiple hidden layers could extract a rich
hierarchy of patterns from the input image, including low-level, middle-level, and high-level patterns that can
be observed. The lower layers extracted the detailed local patterns from images, such as the textures, margins,
and others. The complexity and variation of the visualized patterns increased when it comes to the middle layers.
The higher layers extracted specific pattern features.

The classification results (validation and test) for each image are displayed in the confusion matrices (Fig. 5)
which show how predicted species (columns) correspond to the actual species (rows). The values along the
diagonal indicate the number of correct predictions, whereas oft-diagonal values indicate misclassifications.
Interestingly, no misclassification was found after testing the model by using the test images (Fig. 5A). Therefore,
the results indicated that the predictions of the AlexNet model match the taxonomic expert classification. The
confusion matrix showed misclassification between C. megacephala and C. rufifacies (Fig. 5B), corresponding
to the results of tSNE visualization. When the model was tested with the outsource images, the accuracy of
the classification for C. megacephala, C. rufifacies, L. cuprina, and M. domestica was 94.94, 98.02, 98.35, 100%,
respectively (Fig. 5B). The results from using the Heatmap program showed that the prediction accuracy of this
model was still high (98.70-100%), depending on image conditions (Fig. 6).

The framework of the AlexNet model was demonstrated in Fig. 7. This model consists of 5 convolutional
layers (Convl, Conv2, Conv3, Conv4, and Conv5) and 3 fully connected (FC6, FC7, and FC8) layers'. The
convolutional layers extract features, and then the fully connected layers combine the features to model the
outputs. The example of characteristics of the images presented in all 5 convolutional layers were shown in Fig. 4.

Previously, CNNs have been used successfully to identify different cells or species''-13¢?7_ This study also
confirmed the efficiency of CNNs in identifying fly species.

Finally, we created a web application called “The Fly” by using our classification model for identifying spe-
cies of fly maggots. The web application is available at https://thefly.ai. Users can identify species of fly maggots
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Figure 4. Visualization of hidden convolutional layers in AlexNet for four example images (To clearly show the
patterns, we generated the color images; (A) Chrysomya (Achoetandrus) ruffifacies, (B) Chrysomya megacephala,
(C) Lucilia cuprina, (D) Musca domestica).
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Figure 5. The confusion matrix achieved by the AlexNet model: (A) Validation (B) Test dataset.
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Figure 6. Heatmap of attention maps of AlexNet on example images showing prediction accuracy (98.70-
100%) of this model for classification of each fly species in different image conditions.

by uploading their images of posterior spiracles and the result with associated probability percentage will then
be shown. This web application can be accessed and used on both desktop and mobile browsers. In terms of
performance limitations, this web application was designed to identify only four species of fly maggots using
images of posterior spiracles. This web application is the beginning step of the development of automatic species-
identification for fly species in Order Diptera. More images of these four species and other species must be studied
in the future. In addition, the results from this study will be applied to develop a feature as a microservice for the
identification of fly maggots in a mobile application called iParasites which is currently available on AppStore
and GooglePlay. We, nonetheless, wish to project that taxonomic experts are still important and critical for the
development of this automatic identification by Al-based imaging system as mentioned in a previous report''.

Conclusion

Currently, CNNS have been successfully used in a wide range of scientific discipline including Entomology'!-192%%7,
This study demonstrated that all state-of-the-art CNNs used in this study including ResNet-101, Densenet161,
Vggl9_bn, and AlexNet provided high efficiency in the computer vision aspect. AlexNet showed the fastest
speed to process the identification model and could reliably identify species of fly maggots based on images of
posterior spiracles. However, the results from this study confirmed that the Al-based imaging system will be
useful in developing automatic species identification for flies and other insects. In the next step, more images of
other fly species should be collected as training data sets. Moreover, the results from this study can be used in
the development of identification features in mobile applications and in further species identification by using
other types of images.
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Figure 7. Framework of the proposed interpretation architecture for the deep learning model, AlexNet, in this
study. The AlexNet model contains eight learned layers with weights (five convolutional layers and three fully
connected layers), namely Convl as a convolutional layer that accepts an input image tensor (224 x 224 x 3)
and performs Convolution to obtain the position and strength of the input image properties causing tensor
output (55x55x96), Conv2 as a convolutional layer that generates tensor output (27 x 27 x 256), Conv3 as

a convolutional layer that creates tensor output (13 x 13 x 384), Conv4 as a convolutional layer that creates
tensor output (13 x 13 x384), Conv5 as a convolutional layer that creates tensor output (13 x 13 x256), FC6 as

a fully connected layer (4096) which flattens tensor output from Conv5 into a single vector by weight sharing,
resulting in tensor output (4096 x 1), FC7 as a fully connected layer which performs the same actions as FC6
and generates tensor output (4096 x 1), and FC8 as a fully connected layer to generates tensor output (1000 x 1)
which is the prediction result and which contains 1000 neurons corresponding to the 1000 natural image classes.

Data availability
The dataset and source codes for this study are publicly available through the second author’s GitHub repository:
https://github.com/pharinyab/Fly-PosteriorSpiracles- AlexNet.
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