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Abstract

Biophysical models of large-scale brain activity are a fundamental tool for understanding the

mechanisms underlying the patterns observed with neuroimaging. These models combine a

macroscopic description of the within- and between-ensemble dynamics of neurons within a

single architecture. A challenge for these models is accounting for modulations of within-

ensemble synchrony over time. Such modulations in local synchrony are fundamental for

modeling behavioral tasks and resting-state activity. Another challenge comes from the diffi-

culty in parametrizing large scale brain models which hinders researching principles related

with between-ensembles differences. Here we derive a parsimonious large scale brain

model that can describe fluctuations of local synchrony. Crucially, we do not reduce within-

ensemble dynamics to macroscopic variables first, instead we consider within and between-

ensemble interactions similarly while preserving their physiological differences. The dynam-

ics of within-ensemble synchrony can be tuned with a parameter which manipulates local

connectivity strength. We simulated resting-state static and time-resolved functional con-

nectivity of alpha band envelopes in models with identical and dissimilar local connectivities.

We show that functional connectivity emerges when there are high fluctuations of local and

global synchrony simultaneously (i.e. metastable dynamics). We also show that for most

ensembles, leaning towards local asynchrony or synchrony correlates with the functional

connectivity with other ensembles, with the exception of some regions belonging to the

default-mode network.

Introduction

The human brain is one of the most complex systems found in nature, consisting of billions of

neurons. Human behavior cannot be understood from only the computing properties of indi-

vidual neurons. Instead, human behavior requires the coordination of many ensembles of neu-

rons at multiple spatial scales. Neuroimaging studies reveal that patterns of large-scale local
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and distributed coordination appear and dissolve during behavioral tasks [1–5], as well as rest-

ing-state [6–10].

Biophysical models of large-scale brain networks provide a unified analysis framework for

understanding the mechanistic principles that generate large-scale patterns of neural activity.

In a large-scale biophysical model (LSBM) the nodes represent the electrophysiological

dynamics of ensembles of neurons. These ensembles of neurons interact via neural white mat-

ter fibers (edges) that can be derived from diffusion tractography images [11–13]. Currently it

is computationally prohibitive to simulate all neurons and synapses in the brain. Moreover,

even if it were possible, modeling such a large number of elements would yield results that

would be challenging to interpret. Therefore, the neural activity in an ensemble of adjacent

neurons is reduced mathematically to a few macroscopic variables. These macroscopic vari-

ables are subsequently coupled through the network of white matter fibers and used to simu-

late neuroimaging data such as magnetoencephalography (MEG) or functional magnetic

resonance imaging.

LSBMs have been used among others to determine the relationship between the anatomical

structure of neural fibers, the connectome, and the functional connectivity (FC) observed dur-

ing the resting state [11, 14, 15]; to assess the influence of source reconstruction or tractogra-

phy seeding methods on neuroimaging analysis [16, 17]; to create personalized models of

seizure activity in epileptic patients or models aiding surgical interventions [18–20]; to analyze

the sources and sinks of brain waves [21]; to model flows of information through the brain

[22]; and to derive the conditions necessary for selective synchronization between ensembles

of neurons [23].

However, the assumptions that are made to be able to derive the macroscopic variables

which describe the neural activity in an ensemble of neurons impose limitations. A fundamen-

tal limitation is that the macroscopic variables cannot describe within-ensemble modulations

of synchronization [5, 12, 24]. Yet, it is exactly these fluctuations of local synchrony (often

referred to as event-related synchronization/desynchronization) that characterize behavioral

tasks [25], and are associated with changes in functional connectivity between brain regions

during tasks and on-going activity [3, 4]. In addition, there is increasing evidence that these

local fluctuations can be short-lived (i.e., transient and bursting) in tasks and resting-state [9,

10]. Another limitation is more practical as the number of parameters often scales with the

level of biological detail which makes it difficult to fit such models. As a result, most studies

assume identical parameters for all ensembles, and thereby neglect between-ensemble

differences.

While biologically realistic LSBMs are impractical to model between-ensemble differences,

such differences have been modeled with non-biological models. The latter LSBMs model each

ensemble as a Stuart-Landau oscillator [26, 27]. Although one Stuart-Landau oscillator can

describe the mean firing rate in an ensemble of neurons for particular parameterizations [28,

29], this oscillator model is obtained from models of macroscopic activity that cannot capture

modulations of local synchrony [12, 24]. Moreover, when a set of Stuart-Landau oscillators

with additive noise and various bifurcation parameters are coupled in a heterogeneous net-

work with time-delays–as they are in LSBMs [27, 30], it is very difficult to estimate the range of

amplitudes of these oscillators. Therefore, it is hard to interpret their amplitudes as the local

degree of synchrony and to compare amplitude differences across oscillators.

To obtain a LSBM that explicitly accounts for modulations of local synchrony and still has a

low number of parameters, we introduce here a low-dimensional LSBM derived from a net-

work-of-networks of Kuramoto oscillators. The Kuramoto oscillators are a canonical model of

synchronization in biological systems, and they accounts for many of the dynamics of syn-

chrony found in neural populations such as traveling waves and metastability [15, 31, 32].
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Each sub-network of Kuramoto oscillators in this LSBM represents an ensemble of neurons

within a particular cortical region, and its synchrony is given by the Kuramoto order parame-

ter (KOP) [33, 34]. The KOP has been found to be a good measure of synchrony in an ensem-

ble of neurons whose dynamics are reduced with a mean-field approach [24, 35, 36]. In turn

this mean-field reduction captures modulations of synchrony and explains event-related de/

synchronization [5].

There are previous LSBMs that have used a network-of-networks of Kuramoto oscillators

structure [20, 23, 37, 38]. Yet, these LSBMs did not model resting-state FC, and their formula-

tion is computationally expensive for LSBMs. Moreover their dynamics are influenced by the

number of oscillators in the sub-networks and their natural frequencies [39, 40]. Such finite-

size effects are relevant for modeling resting-state because resting-state FC emerges at the

point with the largest finite-size effects–the edge between asynchrony and partial synchrony

[11, 27, 41]. To solve these problems we applied a mean-field reduction over a model with infi-

nite oscillators on each sub-network. This reduction gave one equation per sub-network that

describes the evolution of the local synchrony with the KOP. Moreover, the dynamics of the

KOP can be manipulated with the local coupling parameter that represents the local connectiv-

ity strength.

Our LSBM simulated resting-state alpha band static FC (sFC) and time-resolved FC (trFC)

of amplitude envelopes in two scenarios of increasing complexity. The first scenario assumes

identical ensembles (homogeneous ensembles), whereas the second scenario generalized this

to the case with different local connectivity strengths for each ensemble (heterogeneous

ensembles). Our results show that FC emerges in both scenarios when high metastable dynam-

ics (i.e., temporal fluctuations of synchrony) coexist within-ensembles and between-ensem-

bles. At this working point, repulsion from local synchrony along with time-delayed attraction

to global synchrony leads to coordinated fluctuations of local synchrony that are responsible

for creating changing patterns of FC. At the same time, there are ensembles that are attracted

to local synchrony which do not have FC, but influence other ensembles. An exception to this

behavior are ensembles that represent parts of the default-mode network as they are attracted

to local synchrony and also are functionally connected to each other.

Results

Dynamics of the large-scale brain model

The LSBM that we propose is defined by Eqs 1A and 1B, which describe the temporal evolu-

tion of the KOP in one ensemble (i.e. the local synchrony within the ensemble). The dynamics

of this LSBM are governed by the global coupling parameter G, the local coupling of each

ensemble Ln, the spike-propagation velocity (proportional to the time-delays τnp), and the

probability distribution of natural frequencies in each ensemble (On central natural frequency;

Δn spread of natural frequencies). We focus on the impact of global and local couplings as well

as time delays, and assume an identical frequency distribution for all ensembles (O = 10.5 Hz,

Δ = 1). The section model and methods explains this LSBM in detail.

_rn ¼ � Dnrn þ
Ln

2
1 � r2

n

� �
rn þ

G
2E

1 � r2

n

� � XE

p¼1;p6¼n

Anp rp t � tnp
� �

cos cpðt � tnpÞ � cn

� �
ð1AÞ

_cn ¼ On þ
G
2E

rn þ
1

rn

� �
XE

p¼1;p6¼n

Anp rp t � tnp
� �

sin cpðt � tnpÞ � cn

� �
ð1BÞ

In these equations, the over dot represents the time derivative. Notice that we have removed
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the time dependency of r and ψ when they do not have time delays. Eq 1A represents the tem-

poral evolution of the level of synchronization within ensemble n (brain region). The variable

r is bounded between zero and one, where zero means full desynchronization and one means

full synchronization. Eq 1A can be divided into three parts by the plus signs. The first and sec-

ond parts represent local dynamics, while the third part encapsulates the interaction with

other ensembles.

• The first part opposes within-ensemble synchrony due to the heterogeneity of natural fre-

quencies Δn.

• The second part contains the local coupling parameter Ln, which tunes the connectivity

strength within the ensemble.

• The last part scales between-ensemble coupling strength, G, as well as the interaction delays,

τnp. The interaction between ensembles, where E represents the number of ensembles (brain

regions), depends on the density of neural fibers between them, Anp, their phase differences,

and their local synchronies.

The contribution of Ln over rn can be assessed by assuming that the global coupling is equal

to zero. With this assumption, Eq 1A becomes the mean-field reduction of a canonical Kura-

moto model [42]. For this equation, there is a critical coupling value (Lc) at Ln = 2Δn. Thus,

ensembles with Ln> 2Δn tend to synchronize, while ensembles with Ln<2Δn tend to become

desynchronized. The lower Ln (including negative values), the more asynchronous the ensem-

ble, rn! 0 [43]. In addition, the further away Ln is from Lc, the stronger the influence of Ln on

rn. Eq 1B describes the dynamics of the mean phase of the oscillations within the ensemble n.

The mean phase evolves at the pace of its natural frequency, On, plus the interaction with other

ensembles scaled by G/E and approximately the inverse of its own local synchrony level. There-

fore, locally desynchronized ensembles (small rn) are strongly influenced by other ensembles,

while locally synchronized ensembles (rn ~ 1) are almost not influenced by others.

In what follows, we refer to rn as the local synchrony. The phase synchronization among all

ensembles, R, is referred as global synchrony. Global synchrony was measured as the KOP of

the local phases as follows,

R ¼ j
1

N

XE

n¼1

eio= n j ð2Þ

The standard deviation of the modulus of the KOP over time (i.e. SD (abs(KOP))t) is a mea-

sure of the metastability [44]. Therefore we describe the dynamics of the LSBM in terms of

global metastability, SD(R)t, and local metastabilities, SD(rn) t.

Scenario 1: Ensembles with homogeneous local couplings

In the first simulation scenario, we searched for optimal global parameters (global coupling,

and spike-propagation velocity), while we held the local coupling identical for all ensembles

(the local coupling will be optimized in the second scenario, during which the global parame-

ters are kept at the levels determined by this first scenario). We assumed a constant spike-

propagation velocity and time delays proportional to the Euclidean distance between nodes.

The optimal parameters were found by two independent stochastic optimizers (particle swarm

optimization, PSO; and adaptive differential evolution, aDE). The fitness function of the opti-

mizers maximized the correlation between simulated and MEG sFC in the alpha band, while it

was constrained to biologically plausible solutions (see sections Fitness function, and Optimiza-
tion constraints). sFC was measured as the correlations of the low-pass filtered ampliude
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envelops of the analytic alpha band signals. The optimal solutions had a correlation of ~0.55

between simulated and MEG sFC (Fig 1). The optimal global parameters of the two optimizers

were identical up to the second decimal point.

Fig 2 shows that FC emerges when the local coupling is below the critical coupling, Lc.
Being below Lc would lead to asynchronous ensembles if they were decoupled from the rest of

the brain. However, when there are between-ensemble interactions, the local synchrony can

increase. Suitable local and global couplings have a negative correlation. The global coupling

increases as the local coupling decreases. Moreover, Fig 2 shows that time-delays are needed to

reproduce sFC.

A LSBM parametrized within the same range but without time delays leads to full global

synchrony (R ~ 1) and steady partial local synchrony (0 < rn = constant< 1) proportional to

the coupling strength with other ensembles. On the contrary, a LSBM with long time delays

becomes globally asynchronous with steady partial local synchrony. This is consistent with

previous results obtained analytically in a model with homogeneous couplings [45].

Global and local metastability are relatively high, but not maximal, in the area that better

predicts FC (see S2 Fig). The highest global metastability appears to be above Lc, although the

simulated sFC has low similarity with MEG sFC. The highest local metastability appears below

Lc. In other regions of the parameter space both metastabilities tend to be lower than in the

area that reproduces FC better. The averaged global and local synchronies are moderately high

Fig 1. Connectome and FC from real MEG data and from simulations. First column shows resting-state MEG static FC (orthogonalized alpha band

envelope correlations, top), and the anatomical network or connectome (bottom). The second and third columns show the FCs obtained from simulations with

homogeneous and heterogeneous ensembles, respectively. The top row shows the static FCs. The bottom row shows the histograms of time-resolved FC

recurrence (trFC: correlation of static FCs for 15 sec. moving window with 12 sec. overlap) for simulation (blue) and MEG data (pink). Brain lobes are color-

coded around the connectivity matrices–blue, temporal; orange, occipital; red, parietal; and green, frontal.

https://doi.org/10.1371/journal.pone.0275819.g001
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and almost constant in the area that best predicts FC. Outside of this area, global and local syn-

chrony either increases or drops abruptly (see S2 Fig).

Next, we evaluated the trFC within the area of the parameter space that reproduces sFC

(black polyhedrons in Fig 2). trFC was measured as the recurrence (Pearson correlation) of

sFCs over a 15-second sliding window with 13 seconds overlap. Histograms of recurrence val-

ues were built for both simulated and MEG data. The similarity between these two histograms

was measured with the Kolmogorov-Smirnov distance (KS-distance). The parameters that best

predicted 300-second sFC and trFC simultaneously were associated with the highest concur-

rent local and global metastabilities (Fig 3). The best trFC had a KS-distance of ~0.04, and the

best sFC had a correlation of ~0.52. The S3 Fig shows the trFC KS-distances and sFC correla-

tions over the polyhedron in Fig 3. The global parameters that provided the best joint fit of

sFC and trFC were used in the second scenario (this corresponded to: spike-conductance

velocity� 3.42 m/s, and global coupling� 3.57; magenta arrow in Fig 3).

A simulation with a good fit to MEG (Fig 3; magenta arrow) is shown in Figs 1 (sFC and

trFC) and 4 (time-courses of synchrony and power spectra). The power spectra shows the

Fig 2. Similarity between simulated and MEG sFC during the optimization with homogeneous ensembles. Each dot represents the correlation

between simulated and empirical MEG sFC during one evaluation of the fitness function. A three-dimensional parameter space consisting of global

coupling, local coupling, and mean delay (proportional to spike-conductance velocity) is optimized for reproduction of the empirical sFC. Each panel

has one dimension collapsed over the two axes. Simulations outside of the optimization constraints are not shown. The black area indicates the area of

the parameter space that is further analyzed for trFC. Only the parameter combinations which produced dynamics within the biological constrains are

shown.

https://doi.org/10.1371/journal.pone.0275819.g002

Fig 3. Global and local metastability as a function of trFC and sFC similarity between 300-second simulations with homogeneous ensembles and

MEG. Each dot has the same conventions as Fig 2, but the dots are arranged by similarity to trFC (KS-distance; y-axis), and similarity to sFC

(correlation; x-axis). (Left panel) Dots are colored by their global metastability. (Right panel) Dots are colored by the local metastability averaged over

ensembles. The black ellipsoid marks the areas that provide a good compromise between trFC and sFC fit. Magenta arrows indicate the simulation from

which we took the global parameters for the second scenario.

https://doi.org/10.1371/journal.pone.0275819.g003
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central frequency of each ensemble. However, the power density at the microscopic level

would be broader than in Fig 4 (except if rn = 1) because the LSBM reduces a probability den-

sity of frequencies to its mean-field frequency. It is a non-trivial task to obtain the individual

frequencies given the mean-field frequency. Local synchrony fluctuates at different rates at

each ensemble. These fluctuations are not strictly periodic because they do not have a constant

frequency. Nevertheless some regularities are visible at different time scales within and

between ensembles. The global synchrony has large fluctuations as well. These aperiodic but

temporally structured fluctuations at both spatial scales resemble metastable dynamics. The

first 20 seconds of simulation correspond to the initial transient dynamics that were not

included in the FC.

Scenario 2: Ensembles with heterogeneous local couplings

Having established the global parameters of our LSBM, we then turn to the scenario in which

local couplings can differ between ensembles. Here, the optimizers identified the local cou-

plings that reproduced sFC, while the global parameters were kept constant (derived from the

first scenario). To reduce the dimensionality of the parameter space, we assumed equal local

couplings in homotopic ensembles as the sFC and the anatomical networks are almost sym-

metric respect to the interhemispheric fissure.

Fig 4. Power spectral density (PSD) and temporal evolution of local synchrony in each ensemble, overlaid with the level of global synchrony. Top: LSBM with

homogeneous ensembles; Bottom: LSBM with heterogeneous ensembles. Each horizontal line reflects the ensemble that represents one brain region. The lobes are

color-coded using the same conventions as previous figures. The left panel shows the power spectrum of the central frequency from the probability density of

frequencies. The right panel shows the temporal evolution of local (within-ensemble) synchrony in yellow-blue color. The global synchrony (between-ensembles) is

represented in red (right, y-axis).

https://doi.org/10.1371/journal.pone.0275819.g004
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PSO and aDE achieved a maximal correlation between simulated and MEG sFC of 0.80 and

0.78, respectively. The optimal parameters found by each optimizer were not identical (0.81

correlation & 0.84 cosine similarity), and neither were the sFCs generated (0.90 correlation &

0.94 cosine similarity). S3 Fig shows the local coupling parameters used in each optimization

iteration sorted by the correlation with MEG sFC. Next, we looked at the 300-second sFC and

trFC produced by the 1000 best solutions from each optimizer.

Fig 5 shows that the solutions with high similarity to MEG data tend to have high global

and local metastabilities, although there are some differences in metastability for solutions

with comparable fit to sFC and trFC (see later). The best fit to MEG trFC has a KS-distance of

~0.02, and the best correlation to MEG sFC is ~0.79.

Fig 6 shows in red the local couplings for the solutions that achieved the best compromise

between sFC and trFC similarity to MEG data (correlation > 0.75 and KS-distance < 0.04), a

set of 49 solutions. There is not a unique combination of local couplings which predicts sFC

and trFC. Some ensembles—such as the superior temporal or the inferior temporal regions—

can take a wide range of local couplings, while others—such as the precuneus—work within a

narrow range of local couplings. There are other ensembles like the parahippocampal area, the

cuneus, or the posterior cingulate that can take local couplings from two disjoint sets of values.

For example, the local couplings at the posterior cingulate group either around 6 or -3. Next,

the local couplings at the posterior cingulate region were used to divide these 49 solutions into

two groups. The group with local couplings above 2 is shown with the orange histogram in Fig

6. The solutions from each group had the local couplings reconfigured in a way that produced

almost the same sFC and trFC.

The global metastability is significantly different (Mann-Whitney U test) between the

groups separated by the local coupling at the posterior cingulate (p-value< 10−8) as well as the

local metastability averaged over ensembles (p-value < 10−6). Such differences in metastability

are also significant for solutions with sFC correlation higher than 0.7 and trFC KS-distance

lower than 0.15. These differences are noticeable in Fig 6 as well.

Next, simulated local metastability was compared with local MEG metastability. Local

MEG metastability for a particular brain region measured as the standard deviation over time

of the envelope from the Hilbert transformed alpha band signals. Local metastability was mea-

sured in each participant independently, and subsequently averaged across participants. The

group of solutions depicted in orange in Fig 6 had a median correlation of 0.13 between MEG

Fig 5. Global and local metastability of heterogeneous ensembles as a function of trFC and sFC similarity between 300-second simulations and MEG for

the best 2000 simulations. Each dot represents one simulation similar to Fig 3. (Left panel) Dots are colored by their global metastability. (Right panel) Dots

are colored by their local metastability.

https://doi.org/10.1371/journal.pone.0275819.g005
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and simulated local metastability, while the other group of solutions had a median correlation

of -0.14. This shows that although FC is very similar for both groups of local couplings, the

metastable dynamics can be quite different. In what follows, we will show only results from the

cluster of local couplings which have a positive correlations with MEG data (orange histogram

in Fig 6).

The local couplings have a significant negative correlation with the simulated nodal sFC

strength (sFCS; average correlation of -0.46 and -0.40 for the right and left hemispheres respec-

tively, p-values < 10−5). The nodal sFCS is the sum of sFC in a node, so brain regions with

high functional connectivity to other regions have high sFCS. Fig 7 shows that there is a gen-

eral tendency of areas with relatively higher sFCS (above around 15) to have a local coupling

below the critical local coupling, Lc. In contrast, areas with lower sFCS have their local cou-

plings either above or below Lc. There are a few exceptions to this, such as the precuneus or the

parahippocampal which have relatively high sFCS and high local couplings, or the insula and

the pars orbitalis which both have low local coupling and low sFCS. Simulated and MEG sFCS

follow the same pattern except for some asymmetries between hemispheres. For example, the

simulations show a strong sFCS asymmetry in the precuneus, and the isthmus cingulate which

are not present in the MEG data. The local couplings were not correlated with the nodal con-

nectivity strength of the anatomical network (ρ< 0.07 in right and left hemispheres).

The sFC and trFC of one these solution are shown in Fig 1, and the associated power spectra

as well as the synchrony time courses are shown in Fig 4. Similar to the heterogeneous ensem-

bles, there is a variety of short- and long lasting patterns of within- and between-ensembles

synchrony that resemble metastable dynamics. However, in the model with heterogeneous

local couplings there is higher variability of local and global synchrony than in the mode with

homogeneous local couplings. The S7 Fig shows the spectrogram of the solution shown in Figs

1 and 4.

Fig 6. Density estimates of local couplings by brain regions for the best solutions in terms of sFC and trFC similarity. Each column on the x-axis is a brain

region. In each column, there are vertically two density estimates of local couplings with the value indicated by the y-axis. The densities on the left (red) contain

the number of solutions that best predict sFC and trFC for a given local coupling (y-axis). The vertical thin red line connects clusters of solutions in the same

brain region. The densities on the right (orange) are a subset of the local couplings of the densities on the left. This subset contains solutions from only one

cluster of local couplings. The horizontal gray line indicates the critical local coupling.

https://doi.org/10.1371/journal.pone.0275819.g006
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Discussion

We have derived a parsimonious large-scale brain model (LSBM) that is able to successfully

simulate the dynamics of resting-state MEG functional connectivity. This LSBM reconciles

simplicity with biological interpretability and allows for the manipulation of both local and

global neural synchrony within one framework. Such modulations of synchrony are observed

in neuroimaging data at multiple spatial and temporal scales, and are believed to be fundamen-

tal property of neural activity [1–3, 5–8, 18, 25, 27, 46] Our model goes beyond traditional

LSBMs that are not able to capture modulations of local synchrony [5, 12, 24]. Moreover, the

tendency of each ensemble to de/synchronize can be adjusted with a single parameter that rep-

resents within-ensemble connectivity strength. Because local synchrony can be manipulated

with one parameter, it is feasible to fit LSBMs with heterogeneous local synchronies and to

analyse between-ensemble differences.

The proposed LSBM was able to simulate resting-state sFC and trFC of MEG alpha band

envelopes in two scenarios. In the first scenario all ensembles were identical (homogeneous

ensembles). In the other scenario each ensemble could take a different local coupling parame-

ters (heterogeneous ensembles).

Scenario 1: Ensembles with homogeneous local couplings

The LSBM with identical ensembles showed that FC emerged when there were interaction

delays between ensembles. This is in agreement with findings of previous LSBMs that relied on

different reductions of neural activity [14, 16, 30, 47]. Such interaction delays between ensem-

bles of neurons are due to finite spike-conductance velocities along neural fibers [48, 49].

Another consistent finding in LSBMs is that FC emerges when the dynamics of the ensem-

bles are close to a critical point. Below this critical point, ensembles do not oscillate, but once

the critical point is exceeded, the ensembles start to oscillate [11, 26, 27, 41]. For example, a sta-

bility analysis of LSBMs with several reductions of neural activity showed that additive noise as

well as delayed coupling with other ensembles induced oscillations and plausible patterns of

resting-state sFC [41]; LSBMs based on Stuart-Landau oscillators reproduced sFC and trFC

Fig 7. Density estimates of local couplings and functional connectivity strength by brain region. Each column on the x-axis is a

brain region. In each column there are: one two-sided density in orange, two one-sided densities in blue (left/right), and two arrows

in black. The orange density contains the same local couplings that are shown in orange in Fig 6. The magnitude of local coupling is

indicated on the left y-axis. Blue densities represent the sFCS for these local couplings, left and right for each hemisphere. The black

triangles indicate the MEG mean sFCS across subjects for each hemisphere. Both scales of FCS are on the right y-axis with the

respective colors. The scales of sFCS are inverted to aid visual comparison with local couplings as they have a negative correlation

(-0.46 and -0.40 for the right and left hemispheres respectively). The horizontal gray line indicates the critical local coupling.

https://doi.org/10.1371/journal.pone.0275819.g007
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only when the ensembles were near a supercritical Hopf bifurcation [26, 27]. Similarly, FC

emerged in our LSBM if the local coupling was just below a critical local coupling, Lc. Lc was

the minimum coupling required by an unperturbed ensemble to leave the desynchronized

state. Below Lc the ensembles pushed towards local asynchrony while local couplings above Lc

promoted local synchronization.

Ensembles that had low local coupling, reflecting desynchronization, were more sensitive to

the phase of other ensembles, which facilitated between-ensemble synchrony. This increase of

between-ensembles synchrony raised local synchrony, but local synchrony could not be main-

tained as between-ensemble synchrony was perturbed by interaction delays, and there was not

enough local connectivity to sustain the synchrony from within the ensemble itself. Therefore,

the ensembles went into a state of fluctuating partial local synchronization that gave rise to FC

networks.

We have shown that FC depends on a balanced interaction between the local coupling and

the global coupling among ensembles. When the global coupling increased, the local coupling

decreased proportionally. However, if only the global coupling increased, the LSBM became

fully synchronized globally and locally (see S2 Fig)–a pathological state that occurs during epi-

leptic seizures [50]. When only the local coupling decreased, the ensembles became asynchro-

nous and the fluctuations of local and global synchrony stopped (see S2 Fig). In other words,

in order to maintain the state of fluctuating partial synchrony responsible for FC, the ensem-

bles counterbalanced an increase of attraction to global synchrony by decreasing local syn-

chrony and vice versa. Hence, FC emerged from precise opposition between local attraction to

asynchrony and between-ensembles attraction to synchronicity, the latter being perturbed by

interaction delays. This relationship between local and global coupling suggests that the critical

local coupling was shifted towards lower local couplings if the global coupling increased.

Other LSBM have included a local feedback inhibitory control mechanism to counteract the

increase of global coupling [51, 52]. Feedback inhibitory control adapts the strength of recur-

rent inhibitory synapses to compensate for the increase in excitatory activity due to long-range

connections with other ensembles. Feedback inhibitory control increased the predictability of

FC for spontaneous and evoked activity [51, 52].

Interestingly, FC was reproduced when high metastability (fluctuations of synchrony) coex-

isted at global and local scales. Metastability is a hallmark of brain dynamics and it occurs at

multiple spatial scales. Metastability allows to simultaneously integrate and segregate informa-

tion [21, 46]. Metastable dynamics are believed to provide the neural flexibility needed to

adapt and respond fast as well as to maintain current states like memories [46, 53]. Because

previous LSBM could not capture fluctuations of local synchrony [5, 12, 24], they reported

only high global metastability without corresponding local metastability [15, 26, 27]. In con-

trast, our LSBM showed maximal global metastability when local metastability and the fitness

to sFC were low. This suggests that accounting for fluctuations of local synchrony–local meta-

stability–might be necessary for successfully modeling large-scale brain networks.

Scenario 2: Ensembles with heterogeneous local couplings

The LSBM with heterogeneous ensembles allowed for ensembles which could promote local

synchrony or aynchrony at various levels. This model simulated FC with higher accuracy than

the model with homogeneous ensembles. This was not entirely surprising given that the model

with heterogeneous ensembles had 34 parameters to tune local dynamics compared to a single

parameter in the model with homogeneous ensembles.

More interestingly, the plausible local couplings of each ensemble exhibited different distri-

butions, including bimodal distributions. This suggests that there is not a single way to
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generate a particular target FC, but instead it can be generated by multiple different configura-

tions of local dynamics. Such pattern points at an adaptive property of the brain, which can

function in a number of different states, thereby making it resilient to perturbations. A similar

effect is observed at a lower scale as the same macroscopic activity can be obtained form a net-

work of neurons with different synaptic strengths [54].

The local coupling had a negative correlation with the sum of nodal sFC strength (sFCS). In

other words, ensembles with lower local couplings (below Lc) had a tendency to higher sFCS,

and vice versa. Similar to the LSBMs with homogeneous ensembles, the balance between the

local tendency towards asynchrony and the time-delayed between-ensemble synchrony gave

rise to fluctuations of local synchrony and FC. In contrast, ensembles with high local couplings

(above Lc) had a tendency to synchronize locally and did not engage into coordinated fluctua-

tions of local synchrony, i.e. FC. Such ensembles were more attracted to local than between-

ensemble synchrony. Nevertheless, they had strong influence on other ensembles driving

ensembles with low local coupling. Some exceptions to this observation were ensembles that

belong to the default-mode network, such as the precuneus or the parahipocampal areas [55],

which tended to have high local couplings and relatively high FC as well. Such high local cou-

pling may reflect a state of high local coupling and low excitability that allows for maintaining

the local dynamics in the face of external disturbance. Future research should investigate these

individual differences in dynamics between the different ensembles.

In the simulations there were ensembles with asymmetric sFCS between hemispheres

which were different from the MEG sFCS asymmetries (e.g. the precuneus). These discrepan-

cies might be due to the assumption of equal local coupling at homotopic brain regions. To

our knowledge there is only one study so far which has attempted to optimize all cortical brain

regions in a LSBM [27]. This study showed that some homotopic brain regions had different

parameters. However it is not possible to compare parameters systematically across studies

because the topologies of the FC are considerably different and the neuroimaging technologies

are different (FC in [27] included frontal but not occipital regions and it was measured with

fMRI). Although the assumption of homotopy reduced our ability to fit the functional data, we

decided that this was the best trade-off between model complexity and model fit.

Optimization framework

While we have argued that a multimodal distribution of plausible local couplings can have rea-

sonable biological underpinnings, there exist other plausible explanations. First, it could be

that the optimizers explored two local optima, but they failed to find a global optimum. It is

known that stochastic optimization does not guarantee finding a global optimum. However,

we think this explanation is unlikely because we have obtained similar results in multiple runs

of different optimizers. It is therefore likely that there were two global optima.

Second, we used sFC and trFC to assess the similarity between simulations and MEG data.

The fitness function of the optimizers only evaluated the similarity of sFC, but this was suffi-

cient to predict trFC with high precision. However local and global metastability were different

among the two clusters of local couplings. Adding local information to the fitness function

might help to constrain the solutions of the optimization. Here we focused on optimizing FC

as this is the most common approach on the literature. Moreover, we find relevant the fact that

similar FC could emerge from different local dynamics. This might contribute to explain the

variability in neuroimaging measurements between and within-subjects during-resting sate as

well as behavioral tasks.

Third, not all optimizers were able to find suitable solutions. For example a successful opti-

mizer on similar problems (covariance matrix adaptation evolutionary strategy [56]) was not
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able to find proper solutions in this context, while aDE and PSO worked satisfactorily. aDE

and PSO found similar solutions, although they relied on different heuristics. These heuristics

were noticeable in their evolution towards the best solution. PSO was more exploitative, while

aDE was more explorative. PSO found a good set of parameters fast, and then restricted explo-

ration near these parameters. On the contrary, aDE favored diverse combinations of parame-

ters, but took longer to find a good set of parameters. Given the dissimilar behavior of the two

optimizers, a further improvement could be to try other algorithms or to migrate solutions

between optimizers. Strategic migrations of parameters tends to improve the optimization

[57]. However, this enhancement might not avoid converging to local optima, nor may it

improve the similarity between simulated and MEG data. Recently an optimization approach

based on Bayesian Gaussian-process optimization gave remarkable results in a LSBM with a

5-dimensional-parameter space with less computing time [16]. Further research on this frame-

work with higher-dimensional-parameter spaces could fuel the usability of LSBM.

Limitations and extensions

In this LSBM we made several assumptions and choices that might influence the results. First,

we imposed a network-of-networks structure where the higher level nodes represent ensem-

bles of neurons in each region of a cortical parcellation. The parcellation scheme determines

the number of brain regions, their size, and the topology of the anatomical network that con-

nects the ensembles. This should be taken into account when interpreting or comparing the

results with other studies. Moreover sub-cortical structures were not included, although syn-

aptic noise in the thalamus has been related with multistable changes of alpha band amplitude

[58]. The study of such noise-driven changes of amplitude was limited to a single region, but

sub-cortical structures might be relevant for faster changes on FC and enhanced metastability.

To derive the model we assumed that each ensemble is a fully connected network. This

assumption could be relaxed. A similar model to ours that contained random Erdös-Réniy

topologies at the ensembles showed analytically and numerically that the same synchrony

states are achieved with a shift in the coupling parameters proportional to the average degree

of the networks [59]. Manipulating the topology of the connectivity of the ensembles might be

useful to understand its impact on FC [60]. Moreover topological manipulations could con-

tribute to understanding the effects of neurological disorders and different kinds of brain dam-

age arising from natural causes or surgical interventions [19, 60]. For example, LSBMs with a

network-of-networks of Kuramoto oscillators have previously been used to understand abnor-

mal neural synchrony [20, 37, 38]. These studies found, for example, that hyper-synchronous

activity was found to emerge more easily from structurally central regions and when neural

fibers had altered properties [38]. In addition, they demonstrated that hyper-synchrony can

emerge more easily form the resting-state FC of epileptic patients [20, 37], although these stud-

ies used the network of FC to couple the ensembles instead of the network of neural fibers. A

network-of-networks of Kuramoto oscillators is an effective method to derive analytically the

features of the brain that allow specific patterns of FC [23].

Another local heterogeneity that could be introduced is a diversity of density distributions

of natural frequencies. We assumed that all ensembles have identical distributions of natural

frequencies. Nevertheless heterogeneous natural frequencies might be a relevant factor because

it has been observed in EEG data that the alpha peak frequency differs between brain regions

during resting-state and behavioral tasks [61]. Such difference infrequencies might perturb

global phase synchronization on the same manner as time-delays.

One may argue that a limitation or virtue of this LSBM is that it models only one frequency

band but not the whole power spectrum of MEG. Yet, MEG is typically analyzed in frequency
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bands which each seem to play distinct functional roles [3, 5, 7, 25, 62–64]. During behavioral

tasks as well as resting-state each frequency band tends to produce a different FC pattern [3, 7,

64]. Moreover, behavioral studies analyze event related synchronization within one frequency

band [5, 25, 65]. Therefore, this LSBM provides a simple framework for modeling single-fre-

quency-band electrophysiological data. Additionally the mathematical framework of the

LSBM allows for multimodal distributions of frequencies [66]. Here we focused on reproduc-

ing FC in the alpha band, but we hypothesize that FC could be reproduced in other frequency

bands simply by shifting the distribution of natural frequencies to the same frequency band, as

a Hopf bifurcation model has already demonstrated successfully [26].

We have shown that the LSBM reproduces not only static FC, but also time-resolved FC.

However, time-resolved FC might be influenced by the length of the moving windows used to

estimate short-lived FC states. We chose a conservative length of 15 seconds, which may have

missed short-lived FC patterns [7].

Finally, we assumed that all neural fibers have the same spike-propagation velocity, and

that the length of the neural fibers is the Euclidean distance between ensembles. However

there is a broad range of possible velocities which depend on the physiological properties of

the neural fibers [48, 49]. Some of this variability could be incorporated in the LSBM by using

a probability density function of time delays [67]. Furthermore, other simulation studies have

shown that the density of inter-hemispheric neural fibers is underestimated, and better predic-

tions of FC can be achieved by scaling the inter-hemispheric connections [16, 17]. Addition-

ally, we assumed that homotopic ensembles have the same local coupling to exploit the

symmetries on the anatomical and FC networks as well as to speed up computations. Even

though our results suggest that without this assumption the similarity between MEG and sim-

ulations could improve, we think that this assumption is a good compromise between model

complexity, computational time, and explanatory power.

Significance

This study shows that resting-state MEG sFC and trFC emerge from the opposition between

local asynchrony and global synchrony perturbed by interaction delays. Local asynchrony is

facilitated by low local connectivity. Ensembles with low local connectivity adapt rapidly their

phases to synchronize with other ensembles which suggest higher excitability. The increase of

between-ensemble phase synchrony leads to higher local synchrony. However, between-

ensemble synchrony is broken intermittently by the interaction delays, causing local syn-

chrony to drop. These dynamics create coordinated fluctuations of local synchrony. The

dynamics of the model are highly metastable at global and local scales when FC emerges. We

also observed ensembles with high local connectivity which did not engage in FC, but still

influenced the dynamics of ensembles that are responsible for FC. Parts of the default-mode

networks show a differential behavior with high local coupling and strong FC.

We have presented a parsimonious large-scale brain model that balances simplicity and bio-

logical interpretability. Such a framework might contribute to determining the conditions and

mechanisms that lead to the patterns observed in neuroimaging data. We have shown that this

model can realistically simulate resting-state FC, and we hypothesize that it could be used to

simulate changes in FC over a course of a behavioral task as well [3]. Moreover, our results sug-

gest that modulations of local synchrony are fundamental for large-scale synchronization and

FC. In the future we aim to use this model to understand which and how brain regions con-

tribute to switch between transient functional connectivity networks during a behavioral task,

which will contribute to elucidate how cognitive functions can arise from specific patterns of

functional connectivity.
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Methods and model

Modeling one ensemble of neurons

The LSBM presented here aims at describing the evolution of the neural synchrony in an

ensemble of neurons (cortical region) with a temporal resolution similar to MEG measure-

ments. Moreover the LSBM should have the same framework for local and global synchrony.

The model should have only one parameter to tune local synchrony, but it should allow for

incorporating other properties of neural ensembles. The model is motivated by recent findings

showing that modulations of synchrony in an ensemble of neurons can be expressed in terms

of the Kuramoto order parameter (KOP) [5, 24, 35, 36].

In our LSBM the neural activity within an ensemble of neurons is describe by the KOP, and

the KOP is obtained form a network of Kuramoto oscillators [33, 34]. Kuramoto oscillators

can describe many synchronization phenomena observed on neural ensembles [31, 32]. The

KOP is a complex number with the modulus bounded between zero and one. When the modu-

lus of the KOP, rn, is zero the neurons fire asynchronous, so the total electric potential pro-

duced is minimal. When the modulus of the KOP is equal to one, the neurons fire in a fully

synchronized manner, resulting in a maximal electric potential.

Modeling a network of ensembles of neurons

In a LSBM an ensemble of contiguous highly connected neurons–a brain region–is typically

represented as a node in a fixed network whose edges are neural fibers. The set of edges con-

necting pairs of ensembles of neurons form a heterogeneous weighted multigraph. One weight

of the multigraph is proportional to the density of neural fibers, A. The second weight of the

multigraph represents the distance between the ensembles, D. This distance might impose

time delays in the interaction between ensembles due to finite spike-conductance velocities

[48, 49]. At the ensemble level–sub-network–it is reasonable to assume that the interaction

delays are negligible and the neurons are fully connected. In this way, the brain model becomes

a network-of-networks. The section Anatomical network of neural fibers has more details

about computing the multigraph of neural fibers.

The KOP for each ensemble of neurons was derived with a mean-field reduction in a net-

work-of-networks of Kuramoto oscillators. To enforce such structure, the couplings within-

ensemble were instantaneous, and identical, while the couplings between ensembles were

delayed and weighted by the multigraph of neural fibers. In addition, the couplings within-

ensemble were much larger than the couplings between ensembles. Kuramoto models with a

network-of-networks structure have been studied previously [20, 23, 45, 59]. We used a Kura-

moto model and a mean-field reduction similar to the one analyzed by Skardal et al. [45, 59].

The mean-field reduction is based on the Ott-Antonsen ansatz [42]. With this reduction the

dynamics of each ensemble are given by the KOP (KOP ¼ rneio
= n). The temporal evolution of

the KOP is dictated by Eqs 1A and 1B in the results section (Equation S15a and S15b in S1

Text). In total the LSBM consists of E complex delayed differential equations where E repre-

sents the number of ensembles (brain regions). The S1 Text provides all the mathematical

details needed to derive the LSBM.

Model parameters

Some parameters of the LSBM can be given beforehand, while others should be estimated. The

natural frequencies on the ensembles were set beforehand by a Lorentzian distribution func-

tion with center frequency O and spread Δ. We limited our simulations to the alpha frequency

band, and we assumed the same distribution of frequencies for all ensembles (O = 10.5 Hz; Δ =
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1). We chose this range for three reasons. First, other MEG resting-state studies have reported

significant FC in this band [7, 64, 68, 69]. Second, earlier LSBMs have shown high correlation

of simulated and empirical sFC in alpha band [17, 26, 47]. Third, the MEG used on this study

had relatively higher power in the alpha band compared to other bands (see S6 Fig).

Other parameters were estimated with stochastic optimizers–the global coupling among

ensembles, G, the local coupling within each ensemble, Ln, and the spike-propagation velocity,

v. The spike-propagation velocity and the distance between ensembles determined the interac-

tion delays, τee’. A constant spike-propagation velocity was assumed for simplicity. However,

neural fibers have a wide range of spike-propagation velocities [48, 49]. Nonetheless most

LSBM either neglect time delays or assume a constant velocity as well. These parameters were

estimated because they have a large impact on the dynamics of LSBMs [15, 16, 30, 47].

Simulation scenarios and parameters estimation

The LSBM was evaluated in two scenarios. The first scenario assumed that all local couplings

were identical (heterogeneous ensembles), resulting in 3 free parameters (spike-propagation

velocity, global coupling, and one local coupling for all ensembles). Studies with LSBMs often

assume identical ensembles, hence this scenario is similar to previous literature. In the second

scenario the local couplings were free to vary across ensembles (heterogeneous ensembles),

while the global parameters were fixed from the first scenario (spike-propagation velocity, and

global coupling). The second scenario assumed that homotopic ensembles in the left and right

hemisphere had identical local couplings, thus having E/2 free parameters. This assumption

reduced the parameter space, as well as the computing time, and it exploited the symmetries in

the model. The multigraph of neural fibers and the MEG sFC are almost symmetric with

respect to the interhemispheric fissure (see Fig 2). The relatively small number of parameters

allowed stochastic optimizers to efficiently identify the parameters that reproduced MEG sFC.

Then, trFC was computed within the restricted area of the parameter space that reproduced

sFC. S1 Fig contains a schematic representation of the parameter identification process.

Fitness function

The fitness function of the optimizers assessed the similarity between the sFC of MEG data

and simulated neural activity. Each evaluation of the fitness function included 20 runs of the

LSBM with identical parameters but different initial conditions (phases, ψn, but not rn). The

initial phases were drawn from a uniform distribution in the range [-π to π) at the beginning

of the optimization and kept across iterations of the optimizers. The initial rn of each ensemble

was set to its equilibrium point, rneq, if the ensemble was detached from other ensembles (rneq

=
p
1–2Δ/Ln). Multiple initial conditions were used to avoid overfitting of parameters to one

set of initial conditions, which improves the chances of generalizing the results. Moreover,

using multiple initial conditions allows for evaluating the effect of the initial conditions on the

simulated FC (S5 Fig). These initial conditions might be interpreted as the previous state of the

system.

The sFC from each run of the LSBM was obtained in the same way as the empirical MEG

except for the orthogonalization step. Simulated data were not orthogonalized because there is

no source leakage in the simulation. Another reason for not orthogonalizing was that the sim-

ulated data often were not normally distributed, which is a necessary condition for successfully

applying orthogonalization [70]. Nevertheless we checked that simulated FC was not driven by

zero-phase synchronization. Simulated neural activity was the imaginary part of the KOP. The

same projection to neural activity has been used in prior LSBMs [15, 26, 27]. The median sFC

across the 20 runs of the LSBM was compared with the MEG sFC by calculating the correlation
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between the upper triangular elements of the sFC matrices. The section MEG and simulated
data processing provides more details on data processing.

Optimization constraints

The optimizers were constrained to biologically plausible solutions. These constraints pre-

vented the LSBM from being either fully synchronized or incoherent, and enforced a minimal

metastability. Full synchrony and incoherence are biologically implausible because low global

synchrony appears during unconscious states [71], while high global synchrony appear during

epileptic seizures [20, 50]. In addition, previous studies have shown that during resting-state

there is high metastability [15, 21, 27]. The constraints were derived from the global synchrony

(Eq 2) averaged over time, hRit, the global metastability, SD(R)t, the average of local synchrony

over ensembles and over time, hhrniEit, and the average local metastability over ensembles

(hSD(rn)tiE. The median of these metrics across the 20 runs of the LSBM in one iteration had

to comply with:

• 0.25< median(hRit)< 0.8,

• 0.05< median(SD(R)t),

• 0.25< median(hhrniEit)< 0.8,

• 0.05< median(hSD(rn)tiE)

Solutions outside these constraints were heavily penalized to guarantee that the same set of

parameters was not chosen again. These boundary values were selected based on visual inspec-

tion of model behavior.

Stochastic optimization algorithms

The optimization was carried out by three independent stochastic sampling algorithms. Sev-

eral algorithms were used to examine the reproducibility and stability of solutions, and to

avoid that a particular optimizer could not handle the optimization. Stochastic sampling algo-

rithms are especially useful for complex global optimization problems in which the fitness

function cannot be treated analytically. The fitness function is treated as a black box, although

it is not guaranteed to find a global optimum. Nevertheless, a single best solution was not

taken, but rather a range of optimal solutions which were used to evaluate trFC later.

The optimization algorithms used were–self-adaptive Differential Evolution (aDE), Covari-

ance Matrix Evolutionary Strategy, and Particle Swarm Optimization (PSO) [56, 57, 72]. These

algorithms are generally successful in solving benchmark problems that include features of our

problem like a high-dimensional parameter space, a non-separable function and a non-linear

function [57, 72–75]. Other features like the shape of the cost function could not be obtained

before hand, although the chosen algorithms can cope well with unimodal and multimodal

functions [57, 72–75]. More information about these algorithms can be found in other sources

[56, 57, 72, 73]. The algorithms were implemented with the toolbox pagmo version 2.7 [76] in

Python programming language. The 1220DE flavor of the aDE algorithm was used with all

mutation variants and the iDE adaptation scheme. We opted for this algorithm because it has
several parameters that are self-adapted to the features of the cost function. The parameters of

the other algorithms were set to their default values, which align with the values recommended

in the literature [56, 57, 72, 73]. In the first scenario the optimizers had a population of 20 indi-

viduals and 200 generations. Each individual consisted of one set of candidate parameters for

which the fitness functions were evaluated. The generations are the number of iterations of the

algorithm. The optimizers on the second scenario had 110 individuals and 250 generations.
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The Covariance Matrix Evolutionary Strategy exhibited very poor performance, and therefore

it is not reported further.

Model simulations

Numerical simulations of the LSBM were carried out using the time-delayed first-order Euler

method. The integration step size was set to 0.001 seconds. Because of the time delays, a history

of initial values was simulated independently for each ensemble from the longest time delay to

the initial simulation point. Then, simulations were run for another 66 seconds in the fitness

function, or 321 seconds when trFC was computed. In both cases, the first 19 seconds were dis-

carded to remove the initial transient dynamics. The first and last second of the remaining

time were discarded after filtering and Hilbert transforming the simulated neural data in order

to avoid edge artifacts. In total 45 seconds were used to compute sFC in the fitness function,

and 300 seconds were used for computing trFC. We kept the simulation time as short as possi-

ble to reduce the total optimization time. The model was implemented in Python. The fitness

function was compiled and parallelized with Numba. One evaluation of the fitness function for

one individual (i.e. 20 LSBMs, one for each of the initial conditions) took approximately 7 sec-

onds. The 20 LSBMs in the fitness function were parallelized over 20 nodes in a computing

cluster. In total one optimizer in the first scenario took approximately 8 hours. One optimizer

in the second scenario took approximately 70 hours.

Search of time-resolved functional connectivity

trFC was searched within the range of parameters that adequately reproduced sFC. In the first

scenario, trFC was evaluated within the polyhedron of parameter space defined by black lines

in Fig 3. A total of 1000 models were evaluated with parameters randomly taken from the opti-

mal polyhedrons. To obtain the random parameters, first, the velocity-local-coupling polyhe-

dron was subdivided into triangles which were uniformly sampled relative to their areas. Next,

a global coupling parameter was uniformly sampled from the range of possible values given

the local coupling drawn before. The polyhedrons were defined by hand to capture the set of

solutions with higher sFC similarity to MEG while remaining within the biological constraints.

The polyhedron approach reduced the number of trFC simulations need to cover the parame-

ter space. Each combination of parameters was simulated 30 times with different initial phases.

The initial phases were different to the ones used during the optimization. trFC as well as sFC

were computed over 300 seconds of simulated data in the same way as MEG trFC and sFC. A

similar approach was followed in the second scenario, apart from the polyhedron approach. In

the second scenario trFC and sFC were simulated with the best 1000 parameter combinations

found by each of the optimizers (2000 combinations of parameters in total). The similarity

between simulated and MEG trFC was measured by the Kolmogorov-Smirnov distance

between the recurrence histograms of simulated and MEG data. Similar approaches have been

used before to assess the similarity of trFCs in LSBMs [26, 27].

Analysis of MEG and simulated data

The MEG resting-state datasets (300 seconds, eyes open) of 55 healthy participants, previously

acquired as part of the UK MEG partnership [7, 77], were used in this work. For each partici-

pant, the data were downsampled to 250Hz using an anti-aliasing filter; high-pass filtered to

remove low-frequency variations below 1Hz; source-reconstructed in MNI 8mm standard

space using LCMV beamforming [78] (see [77] for further details about the pre-processing).

Summary time-courses were subsequently computed within each of the 68 regions of the Desi-

kan-Killiany cortical parcellation [79] using PCA, while preserving the relative variances
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between regions, and signal leakage was mitigated using symmetric multivariate leakage cor-

rection [80]. To compute FC in alpha-band, the orthogonalized time-courses were band-pass

filtered between 8-13Hz, their Hilbert envelope was then low-pass filtered above 0.5 Hz and

downsampled to 5 Hz. Pairwise Pearson correlations between regions were computed between

downsampled envelopes to obtain sFC. trFC was computed over sliding widows of 15 seconds

with an overlap of 12 seconds. Within each window sFC was computed. Recurrence of sFC

within-subjects was measured by the Pearson correlation between the upper diagonal elements

of the sFCs for each pair of windows. Finally, a histogram of sFC reoccurrences was built. S6

Fig shows the time-frequency spectra of broad-band and alpha-band MEG activity.

Computation of the anatomical network

The anatomical network was computed by averaging the results of probabilistic tractography

[81, 82] on 10 diffusion datasets from the Human Connectome Project [83, 84] parcellated

into 68 cortical regions (34 per hemisphere) using the Desikan-Killiany cortical parcellation

[79]. The FSL tool ProbTrackX [85, 86] was used to compute 1000 probabilistic streamlines

starting from each brain voxel, and ending at the boundary between white-matter and grey-

matter (WM/GM) as defined by the CIFTI format [87]. For connectivity strength between any

two regions A and B was computed by dividing the number of streamlines connecting A and

B, by the total number of streamlines reaching A or B (so-called fractional-scaling [88]). The

resulting connectivity matrix was made symmetric by averaging with its transpose, and

rescaled to have an average degree of 1. Then the connectivity matrix was normalized to have

average edge weight equal to one. Finally, Euclidean distances were computed between the

barycentre of each region in order to estimate the delays between them.

Supporting information

S1 Text. Motivation and derivation of the large-scale brain model.

(PDF)

S1 Fig. Schematic representation of the parameter identification process. (A) Optimization

of parameters for the first (homogeneous ensembles) or the second scenario (heterogeneous

ensembles). (B) Simulations to find the parameters that are able to predict static FC and time-

resolved FC.

(TIF)

S2 Fig. Dynamics of the model with homogeneous ensembles. Each dot corresponds to one

combination of parameters (x-y axis) during the optimization. Each column corresponds to a

different dynamical feature. (A) Global synchrony averaged over time. (B) Local synchrony

averaged over ensembles first and then over time. (C) Global metastability (D) Local metasta-

bility averaged over ensembles. For each metric, each value corresponds to the median

obtained across 20 simulations computed with different initial conditions. Vertical blue lines

indicate the critical local couplings of the ensembles, Lc. The black areas indicate the region of

the parameter space within which time-resolved functional connectivity was analysed.

(TIF)

S3 Fig. Evolution of local couplings optimization sorted by fitness to MEG sFC. Each row

inside the upper panel depicts the local couplings of one ensemble. The columns correspond

to iterations of the respective optimizer (aDE and PSO). The brain lobe associated with each

ensemble is color coded on the left (same as Fig 2). The fitness (Pearson correlation between

MEG and simulated sFC) of each iteration is at the bottom of the panels. trFC was evaluated at

PLOS ONE Local synchrony and functional connectivity in a large-scale brain model

PLOS ONE | https://doi.org/10.1371/journal.pone.0275819 October 26, 2022 19 / 25

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0275819.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0275819.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0275819.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0275819.s004
https://doi.org/10.1371/journal.pone.0275819


the parameters to the right of the black vertical line.

(TIF)

S4 Fig. FC comparison between 300-second simulations and MEG data. Each dot corre-

sponds to one combination of parameters–global coupling, local coupling, and mean delay.

The parameters are restricted to the area that gave the best sFC predictions during the optimi-

zation (black area in Fig 2). (sFC, first row) correlation between the simulated and MEG sFC.

(trFC, second row) KS-distance between the histograms (simulated vs. MEG data) built from

the recurrence of sFC recurrence over a 15-second sliding window with 12-second overlap.

Each dot is the median of 30 simulations with identical parameters and different initial condi-

tions.

(TIF)

S5 Fig. Functional connectivity (FC) variability. (Left) Standard deviation of the FC over

subjects (Middle, model with homogeneous ensembles) Standard deviation of the FC from

simulations with identical parameters but different initial conditions. (Right, model with het-

erogeneous ensembles) Standard deviation of the FC from simulations with identical parame-

ters but different initial conditions.

(TIF)

S6 Fig. Time-frequency spectrogram from MEG activity in the alpha band. (Above) Broad-

band activity with a low-pass filter at 48 Hz. (Middle) Band-pass filtered alpha-band activity.

(Bottom) Welch periodogram of broadband activity in all ROIs.

(TIF)

S7 Fig. Time-frequency spectrogram from simulated activity in the alpha band. The param-

eters are the same parameters as Figs 2 and 5 for heterogeneous ensembles.

(TIF)
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35. Montbrió E, Pazó D, Roxin A. Macroscopic Description for Networks of Spiking Neurons. Phys Rev X.

2015; 5: 021028. https://doi.org/10.1103/PhysRevX.5.021028

PLOS ONE Local synchrony and functional connectivity in a large-scale brain model

PLOS ONE | https://doi.org/10.1371/journal.pone.0275819 October 26, 2022 22 / 25

https://doi.org/10.1016/j.neuroimage.2013.11.047
https://doi.org/10.1016/j.neuroimage.2013.11.047
http://www.ncbi.nlm.nih.gov/pubmed/24321555
https://doi.org/10.1016/j.neuroimage.2018.02.063
https://doi.org/10.1016/j.neuroimage.2018.02.063
http://www.ncbi.nlm.nih.gov/pubmed/29518570
https://doi.org/10.1371/journal.pcbi.1005025
http://www.ncbi.nlm.nih.gov/pubmed/27504629
https://doi.org/10.1016/j.neuroimage.2016.04.049
http://www.ncbi.nlm.nih.gov/pubmed/27477535
https://doi.org/10.1523/ENEURO.0083-18.2018
https://doi.org/10.1523/ENEURO.0083-18.2018
http://www.ncbi.nlm.nih.gov/pubmed/29911173
https://doi.org/10.1371/journal.pcbi.1003947
http://www.ncbi.nlm.nih.gov/pubmed/25393751
https://doi.org/10.1038/s41467-019-08999-0
http://www.ncbi.nlm.nih.gov/pubmed/30837462
https://doi.org/10.1038/ncomms11061
http://www.ncbi.nlm.nih.gov/pubmed/27067257
http://arxiv.org/abs/1607.06251
https://doi.org/10.1016/s1388-2457%2899%2900141-8
https://doi.org/10.1016/s1388-2457%2899%2900141-8
http://www.ncbi.nlm.nih.gov/pubmed/10576479
https://doi.org/10.1016/j.neuroimage.2017.03.023
http://www.ncbi.nlm.nih.gov/pubmed/28315461
https://doi.org/10.1038/s41598-017-03073-5
https://doi.org/10.1038/s41598-017-03073-5
http://www.ncbi.nlm.nih.gov/pubmed/28596608
https://doi.org/10.1103/PhysRevE.94.012410
http://www.ncbi.nlm.nih.gov/pubmed/27575167
https://doi.org/10.1162/089976699300016179
http://www.ncbi.nlm.nih.gov/pubmed/10490941
https://doi.org/10.1073/pnas.0901831106
http://www.ncbi.nlm.nih.gov/pubmed/19497858
https://doi.org/10.3389/fnhum.2010.00190
https://doi.org/10.3389/fnhum.2010.00190
http://www.ncbi.nlm.nih.gov/pubmed/21151358
https://doi.org/10.1016/j.physd.2006.12.004
https://doi.org/10.1016/j.physd.2006.12.004
https://doi.org/10.1103/RevModPhys.77.137
https://doi.org/10.1103/RevModPhys.77.137
https://doi.org/10.1103/PhysRevX.5.021028
https://doi.org/10.1371/journal.pone.0275819


36. Luke TB, Barreto E, So P. Complete Classification of the Macroscopic Behavior of a Heterogeneous

Network of Theta Neurons. Neural Computation. 2013; 25: 3207–3234. https://doi.org/10.1162/NECO_

a_00525 PMID: 24047318

37. Woldman W, Schmidt H, Abela E, Chowdhury FA, Pawley AD, Jewell S, et al. Dynamic network proper-

ties of the interictal brain determine whether seizures appear focal or generalised. Sci Rep. 2020; 10:

7043. https://doi.org/10.1038/s41598-020-63430-9 PMID: 32341399

38. Yan B, Li P. The emergence of abnormal hypersynchronization in the anatomical structural network of

human brain. NeuroImage. 2013; 65: 34–51. https://doi.org/10.1016/j.neuroimage.2012.09.031 PMID:

23000784

39. Daido H. Intrinsic fluctuations and a phase transition in a class of large populations of interacting oscilla-

tors. J Stat Phys. 1990; 60: 753–800. https://doi.org/10.1007/BF01025993

40. Peter F, Pikovsky A. Transition to collective oscillations in finite Kuramoto ensembles. Phys Rev E.

2018; 97: 032310. https://doi.org/10.1103/PhysRevE.97.032310 PMID: 29776135

41. Ghosh A, Rho Y, McIntosh AR, Kötter R, Jirsa VK. Noise during Rest Enables the Exploration of the

Brain’s Dynamic Repertoire. PLOS Computational Biology. 2008; 4: e1000196. https://doi.org/10.1371/

journal.pcbi.1000196 PMID: 18846206

42. Ott E, Antonsen TM. Low dimensional behavior of large systems of globally coupled oscillators. Chaos.

2008; 18: 037113. https://doi.org/10.1063/1.2930766 PMID: 19045487

43. Tsimring LS, Rulkov NF, Larsen ML, Gabbay M. Repulsive Synchronization in an Array of Phase Oscil-

lators. Phys Rev Lett. 2005; 95: 014101. https://doi.org/10.1103/PhysRevLett.95.014101 PMID:

16090619

44. Wildie M, Shanahan M. Metastability and chimera states in modular delay and pulse-coupled oscillator

networks. Chaos. 2012; 22: 043131. https://doi.org/10.1063/1.4766592 PMID: 23278066

45. Skardal PS, Restrepo JG. Hierarchical synchrony of phase oscillators in modular networks. Phys Rev

E. 2012; 85: 016208. https://doi.org/10.1103/PhysRevE.85.016208 PMID: 22400644

46. Tognoli E, Kelso JAS. The Metastable Brain. Neuron. 2014; 81: 35–48. https://doi.org/10.1016/j.

neuron.2013.12.022 PMID: 24411730

47. Nakagawa TT, Woolrich M, Luckhoo H, Joensson M, Mohseni H, Kringelbach ML, et al. How delays

matter in an oscillatory whole-brain spiking-neuron network model for MEG alpha-rhythms at rest. Neu-

roImage. 2014; 87: 383–394. https://doi.org/10.1016/j.neuroimage.2013.11.009 PMID: 24246492

48. Caminiti R, Carducci F, Piervincenzi C, Battaglia-Mayer A, Confalone G, Visco-Comandini F, et al.

Diameter, Length, Speed, and Conduction Delay of Callosal Axons in Macaque Monkeys and Humans:

Comparing Data from Histology and Magnetic Resonance Imaging Diffusion Tractography. Journal of

Neuroscience. 2013; 33: 14501–14511. https://doi.org/10.1523/JNEUROSCI.0761-13.2013 PMID:

24005301

49. Liewald D, Miller R, Logothetis N, Wagner H-J, Schüz A. Distribution of axon diameters in cortical white
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