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Abstract: Aims: We hypothesized that critically ill patients with SARS-CoV-2 infection and insulin
resistance would present a reduced Heat Shock Response (HSR), which is a pathway involved in
proteostasis and anti-inflammation, subsequently leading to worse outcomes and higher inflamma-
tion. In this work we aimed: (i) to measure the concentration of extracellular HSP72 (eHSP72) in
patients with severe COVID-19 and in comparison with noninfected patients; (ii) to compare the HSR
between critically ill patients with COVID-19 (with and without diabetes); and (iii) to compare the
HSR in these patients with noninfected individuals. Methods: Sixty critically ill adults with acute
respiratory failure with SARS-CoV-2, with or without diabetes, were selected. Noninfected subjects
were included for comparison (healthy, n = 19 and patients with diabetes, n = 22). Blood samples
were collected to measure metabolism (glucose and HbA1c); oxidative stress (lypoperoxidation and
carbonyls); cytokine profile (IL-10 and TNF); eHSP72; and the HSR (in vitro). Results: Patients
with severe COVID-19 presented higher plasma eHSP72 compared with healthy individuals and
noninfected patients with diabetes. Despite the high level of plasma cytokines, no differences were
found between critically ill patients with COVID-19 with or without diabetes. Critically ill patients,
when compared to noninfected, presented a blunted HSR. Oxidative stress markers followed the
same pattern. No differences in the HSR (extracellular/intracellular level) were found between
critically ill patients, with or without diabetes. Conclusions: We demonstrated that patients with
severe COVID-19 have elevated plasma eHSP72 and that their HSR is blunted, regardless of the
presence of diabetes. These results might explain the uncontrolled inflammation and also provide
insights on the increased risk in developing type 2 diabetes after SARS-CoV-2 infection.

Keywords: SARS-CoV-2; inflammation; heat shock response; HSP72; metabolic diseases; critically
ill patients

1. Introduction

COVID-19 (coronavirus disease 2019) ranges in severity from asymptomatic to acute
respiratory distress syndrome (ARDS). The latter requires intensive care admission and
mechanical ventilation and is consequently associated with a high mortality rate [1–4].
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Critically ill patients with SARS-CoV-2 infection present a hypercoagulability state along
with a syndrome called “cytokine storm” (as represented by the high pro-inflammatory
state) [5]. Cytokine storm is a term applied to maladaptive cytokine release in response to
viral infection, leading to elevated systemic levels of cytokines and chemokines, including:
interleukin 1α (IL-1α); tumor necrosis factor alpha (TNF); interleukin 7 (IL-7); vascular
endothelial growth factor (VEGF); interleukin 8 (IL-8); interferon gamma (IFN-γ); interleukin 9
(IL-9); interleukin 10 (IL-10); monocyte chemoattractant protein-1 (MCP-1); and others [6]. The
elevated levels of these pro-inflammatory cytokines play a significant role in the morbidity
and mortality of SARS-CoV-2 infections [6]. At the center of this storm is the nuclear factor
kappa-light-chain-enhancer of activated B cells (NF-κB), which controls the expression of
several proinflammatory proteins. In fact, in critically ill patients with COVID-19, the NF-
κB signaling pathway is upregulated [7]. In general, the inhibition of the NF-κB signaling
pathway may be mandatory for the proper resolution of inflammation in SARS-CoV-2-infected
patients.

Resolution of inflammation can be reached through the activation of the heat shock
transcription factor-1 (HSF1), thereby initiating a very conserved transcriptional program
called the Heat Shock Response (HSR) [8]. Infection-induced elevation on the body temper-
ature (fever) is a known inductor of the HSF-1 activation. The activation of the HSR induces
the expression of Heat Shock Proteins (HSP), particularly the 70 kDa family (HSP70, and
its inducible form HSP72), a protein with anti-inflammatory and cytoprotective propri-
eties [9,10].

The HSR (represented by HSP72 expression and release) is essential to protect the
cells against a wide range of nonlethal stresses, such as oxidative stress, hyperthermia,
exertional stress, exercise, ischemia, and metabolic stress [11]. HSP72 is mandatory to
maintain cellular proteostasis by acting as a classical molecular chaperone [12]. In addition
to its key role in the maintenance of proteostasis, HSP72 exerts a potent anti-inflammatory
effect [13]. HSP72 can interact with the complex formed by NF-κB and its inhibitor (IκB),
impeding NF-κB translocation to the nucleus, and thus decreasing its activity [14]. A
detailed description of the HSR is available elsewhere [15]. Interestingly, the obesity-related
chronic inflammatory state shows a depressed HSR, and the mechanisms for such findings
are related to insulin resistance [16–19]. Thus, in SARS-CoV-2-infected people with some
degree of insulin resistance, the lower HSR may partially explain the hyper-inflammatory
state and the worse prognosis (when in comparison with insulin-sensitive infected subjects).
This abnormal response might be even more pronounced in subjects with established type
2 diabetes.

The extracellular HSP72, opposite to its action in the intracellular environment, acti-
vates several proinflammatory responses. eHSP72 has been reported to stimulate neutrophil
microbicidal capacity [20] and chemotaxis [21], recruitment of NK (natural killer) cells [22],
as well as cytokine release from various immune cells [23,24]. In the extracellular com-
partment, this protein binds to cell-surface receptors known as the Toll-like receptor (TLR
2 until 4) [25]. This interaction can lead to the activation of proinflammatory signaling
proteins such as MyD88 and TIRAP (which activate IKK, p38, JNK, and ultimately NF-κB),
and induce changes in gene expression [26].

We have hypothesized (when determining worse outcomes) that critically ill patients
with both SARS-CoV2 infection and insulin resistance would present a blunted HSR and,
consequently, a higher level of inflammation [15]. In this work, we aimed: (i) to measure
the basal concentration of extracellular HSP72 (eHSP72) in critically ill patients with severe
COVID-19 pneumonia to compare with noninfected individuals, (ii) to compare the HSR
(in vitro) between critically ill severe COVID-19 pneumonia patients with and without type
2 diabetes, and (iii) to compare HSR in these patients with noninfected individuals.
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2. Methods and Materials
2.1. Study Design and Participants

This study protocol was approved by the Ethics Committee of Hospital de Clínicas de
Porto Alegre (CAAE 32962620600005327 and FIPE-HCPA 2020-0218). The study procedures
were conducted according to the Declaration of Helsinki, and the informed consent was
obtained from the patient’s legal representatives.

This is a prospective cohort study. Patients with acute respiratory failure admitted to
the intensive care unit (ICU) of Hospital de Clinicas de Porto Alegre (Porto Alegre, Brazil)
were prospectively included after screening from November 2020 to August 2021. Patients
were eligible if they had laboratory-confirmed SARS-CoV-2 infection that was determined
via reverse transcriptase–polymerase-chain reaction (RT-PCR) assay from either nasal or
pharyngeal swabs. Inclusion criteria were determined via ICU admission that was less
than 48 h, orotracheal intubation and mechanical ventilation (MV) within the first 48 h
of ICU admission, and age ≥18 years. The exclusion criteria were chronic kidney disease
on dialysis; cirrhosis Child–Pugh B or C; chronic corticosteroid use; hypercortisolism;
adrenal insufficiency; solid organ transplantation; gastric surgery or small bowel resection
(including bariatric surgery); decreased intestinal absorption; life expectancy less than 24 h;
pregnancy or breastfeeding; and participation of interventions groups from other studies.

In order to compare the obtained results from critically ill patients with severe COVID-
19 pneumonia with noninfected subjects, we used the data and stored frozen samples from
previous studies [17,27,28]. These samples were obtained from healthy individuals (here
named noninfected control group, n = 19) and individuals with type 2 diabetes (noninfected
with diabetes, n = 22). All data analyses were performed using the same methodology.

2.2. Procedures and Biochemistry Measurements

All consecutive patients over 18 years of age admitted to the ICU with a confirmed
SARS-CoV-2 RT-PCR test and submitted to MV within the first 48 h of ICU admission were
eligible for study entry.

Blood samples were collected until 72 h of ICU admission. The baseline characteristics
such as age, gender, comorbidities, and medications were collected from electronic medical
records and from the patient’s family when needed. Diabetes was defined based on previ-
ous diagnosis, current use of anti-hyperglycemic medications, or an admission glycated
hemoglobin (A1C) value ≥6.5% (48 mmol/mol).

Blood samples were obtained from central catheters and stored in heparin-coated
and gel-clotted VacutainerTM tubes using standard aseptic techniques. Samples were
immediately centrifuged (at 4 ◦C and 1000× g for 15 min), after which plasma and serum
were removed and stored at −80 ◦C for further analysis. Plasma glycemia levels were
measured in an automated system Cobas C111 (Roche Diagnostics, Basel, Switzerland).
HbA1c was measured by HPLC (Variant II Turbo) and expressed as a % of total hemoglobin
for HbA1c.

2.3. Plasma Cytokine Quantification

Blood samples were collected in EDTA tubes and centrifuged immediately at 4 ◦C
and 1000× g for 15 min. The separated plasma was stored at −80 ◦C until analysis.
Plasma values of TNF and IL-10 were assessed by magnetic bead assay using the Human
Magnetic Custom Luminex® Kit (Invitrogen Life Technologies, Carlsbad, CA, USA) and
the Luminex® 200TM magnetic bead plate reader (Luminex, Austin, TX, USA) following
the manufacturers’ instructions.

A standard curve was generated by serial dilutions of the reconstituted standard.
Samples and standards were incubated with mixed beads overnight at room temperature
on an orbital shaker. Beads were washed and then incubated with the detection antibodies
at room temperature for 1 h and with streptavidin for 30 min. Beads were washed and
resuspended, and the plate was subsequently analyzed on the Luminex® 200TM reader.
The results were plotted as a function of fluorescence intensity. Mean fluorescence intensity
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(MFI) takes into account the number of fluorescent pixels within the scanned area. MFI
values below the detection limit were assumed to be missing values. MFI was then
converted to picograms (pg)/mL based on the standard curve. All samples were analyzed
in duplicate.

2.4. Oxidative Damage

Thiobarbituric acid-reactive substances (TBARS) were used to determine lipid per-
oxidation. Briefly, samples were first centrifuged at 12,000× g at 4 ◦C for 10 min, then
250 µL of the sample, 10 µL of 4.5 mM butylated Hydroxytoluene (BHT), and 200 µL of 30%
trichloroacetic acid (TCA) were added to 1.5 mL Eppendorf tubes. These were subsequently
placed in a boiling water bath (100 ◦C) for 15 min, and centrifuged at 15,000× g at room
temperature for 2 min. Next, 400 µL of supernatant and 400 µL of 0.23% thiobarbituric acid
(TBA) were pipetted into the cryotubes and boiled in a 100 ◦C water bath for 30 min. The
samples were cooled down for 5 min and pipetted in duplicates of 200 µL into a 96-well
plate. TBARS was then determined in a microplate reader at 540 nm (Multiskan Go, Thermo
Scientific, Waltham, MA, USA) [29]. Carbonyl assay was used to determine oxidative dam-
age to proteins and the absorbance was read at 360 nm (Multiskan Go, Thermo Scientific,
Waltham, MA, USA) [30].

2.5. Heat Shock Response Test

Considering the importance of the HSR for stress adaptation, we tested the capacity
of peripheral blood mononuclear cells (PBMCs) (a major source of circulating HSP72 and
representative of the immune cell stress response), to release HSP72, under heat stress
conditions (a normal and expected response in healthy cells). Briefly (accordingly with
the protocol [19]), after harvesting, the whole blood was immediately incubated at two
different temperatures: 37 ◦C (control) and 42 ◦C (heat stressed) for 2 h in a water bath
(with a gentle mix every 15 min). After incubation, the total blood was centrifuged to
isolate plasma/serum and the PBMCs through a density gradient separation, as previously
described [31]. Then, plasma was used for the direct analysis of extracellular HSP72,
while PBMCs were prepared for the measurement of iHSP72. The PBMCs were washed
and treated to ensure the absence of erythrocytes. PBMCs were then resuspended in an
RPMI 1640 medium (pH 7,4 supplemented with 2% NaHCO3, 10% bovine calf serum,
100 U/mL penicillin and 100 µg/mL streptomycin); seeded in a 24-well flat-bottom plate
(1 × 106 cells/well); and placed in an incubator for 6 h (37 ◦C in a 5% CO2) in order to
recover from the HS and reach the peak of HSP70 expression [19]. Cells were then removed
from the incubator, lysed, and the total content of proteins was prepared for Western
blotting analysis [19]. The difference between the concentration at 37 ◦C and 42 ◦C is used
as an HSR index [19]. This test was applied previously, in several different conditions and
diseases [17,32].

2.6. Extracellular HSP72 Quantification

A highly sensitive enzyme-linked immunosorbent assay (ELISA) method (EKS-715,
Stressgen, Victoria, BC, Canada) was used to quantify the levels of plasma HSP72 protein
as previously described [33]. Absorbance was measured at 450 nm and a standard curve
was constructed from known dilutions of HSP72 protein to allow quantitative assessment
of HSP72 concentration. Quantifications were made using a microplate reader (Multiskan
Go, Thermo Scientific, Waltham, MA, USA).

2.7. Protein Quantification and Western Blotting for Intracellular HSP70 Immunocontent

Cellular protein quantification was determined using a BCA Protein Assay Kit (Thermo
Scientific, Waltham, MA, USA), and samples (1 µg) were mixed with 5× Laemmli loading
buffer [50 mM Tris, 10% SDS, 10% glycerol, 10% 2-mercaptoethanol, and 2 mg/mL bro-
mophenol blue] at a final concentration of 1:5, boiled for 5 min, and then electrophoresed [32].
For sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), equivalent
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amounts of protein (1 µg) were applied in a 10% polyacrylamide minigel for 2 h at 100V [32].
Proteins were then transferred onto nitrocellulose membranes (GE Healthcare, Chicago,
IL, USA) according to the manufacturer’s instructions (Bio-Rad, Hercules, FL, USA) (2 h,
100 V) [32]. For immunoblotting, membranes were blocked in 2% BSA in a wash buffer
[50 mM Tris, 5 mM EDTA, 150 mM NaCl (TEN)-Tween 20 0.1% solution, pH 7.4] for 30 min
and then incubated overnight at a 1:1.000 dilution with monoclonal Anti-HSP70 antibodies
that were produced from mice (Sigma-Aldrich, St. Louis, MO, USA) [32]. After appropriate
washing, the membranes were probed with anti-mouse IgG and biotin antibodies at a
1:10.000 dilution (Sigma-Aldrich, St. Louis, MO, USA) for 1h. Membranes were then
incubated with a final Streptavidin−Peroxidase Polymer, Ultrasensitive (Sigma-Aldrich, St.
Louis, MO, USA), at a 1:1.000 dilution for 1 h. Visualization of the blots was performed
using the chemiluminescence reagent, p-coumaric acid, and luminol in an ImageQuantTM
LAS 4000 chemiluminescence system (GE Healthcare, Chicago, IL, USA), and quantified
using ImageJ (version 1.51f; NIH, Maryland City, MD, USA) [32]. A standard molecular
weight marker (RPN 800, Rainbow Full Range Bio-Rad, CA, USA) was used as a reference
to determine the molecular weights of the bands. The data were then normalized using
GAPDH expression.

2.8. Statistical Analysis and Sample Size

Categorical variables were expressed as percentages. Data were expressed as mean ±
standard deviation (SD) or median [P25-P75], depending on variable distribution. Groups
were compared using one-way analysis of variance with the Bonferroni post hoc test, the
Kruskal–Wallis test, or chi-square test, as appropriate. Values were considered statisti-
cally significant if p < 0.05. Statistical analyses were performed using SPSS, version 23.0
(Armonk, NY, USA). Further, Spearman’s rank order correlation coefficient (r) was used
to determine correlations between extracellular HSP72 HSR and other variables. For all
analyses, statistical significance was accepted for p < 0.05. Our samples were collected from
a smaller group of patients selected from a major study. The sample size was calculated to
be 420 patients using an EnvStats package, version 2.3.1, R software, to detect a difference
in mortality between groups (controls vs. people with diabetes)—with a power of 80% and
an α-error of 5%—and considering 10% to be missing due to dosage errors [34]. From this
population, we collected blood samples from 60 consecutive patients.

3. Results
3.1. Patient Characteristics and Cytokine Profile in Critically Ill Patients with Severe COVID-19
Pneumonia

The baseline characteristics of critically ill patients with severe COVID-19 pneumonia
are described in Table 1. No significant differences were found for age, weight, and body
mass index (BMI) between the critically ill patients (with vs. without type 2 diabetes). As
expected, glycaemia and HbA1C were higher in patients with diabetes. No statistical differ-
ences were observed between the groups for TNF (26.6 [9.36–32.39] vs. 17.7 [12.77–27.41]
pg/mL), IL-10 (2.86 [1.42–4.57] vs. 2.0 [1.42–6.87] pg/mL), or TNF/IL-10 (6.85 [3.35–13.28]
vs. 5.06 [2.38–10.43]).

3.2. Plasma Extracellular HSP72 Concentration in Critically Ill Patients with COVID-19

As depicted in Figure 1, no differences between critically ill patients with COVID-19
were found for eHSP72 (0.453 ± 0.202 vs. 0.547 ± 0.253 ng/mL). Interestingly, we detected
a positive correlation between plasma eHSP72 and HbA1C (r = 0.394, p = 0.0042) in critically
ill patients with COVID-19.

3.3. Comparison of Plasma HSP72 among Different Groups: Noninfected Control Subjects,
Noninfected Subjects with Diabetes and Critically Ill Patients with COVID-19 Pneumonia

Since we were expecting much higher levels of eHSP72 in critically ill patients with
COVID-19, and as there are no available data in the literature, we decided to compare
the results of eHSP72 in critically ill patients with other groups of patients from previous
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studies, including: noninfected healthy controls (n = 19) and noninfected subjects with
diabetes (n = 22). For this comparison among the three groups, we analyzed all critically ill
patients together, both those with and without diabetes (Figure 2).

Table 1. Subjects’ characteristics, biochemistry, and cytokine profile.

Patient Characteristic
Critically Ill Infected COVID-19:

Control
(n = 27)

Critically Ill Infected COVID-19:
Diabetics
(n = 32)

p Value

Sex (M/F) (13/14) (18/14)
Age (years) 58.2 ± 13.5 63.5 ± 11.2 p = 0.522

Body Mass (kg) 90.8 ± 18.42 89.3 ± 20 p = 0.762
BMI (kg/m2) 33 ± 6.7 33.6 ± 7.9 p = 0.631

Glycemia (mg/dL) 171 ± 48 235 ± 79 # p = 0.006
HbA1C (%) 5.9 ± 0.5 8.9 ± 2.2 # p < 0.0001

TNF-α (pg/mL) 26.6 [9.36–32.39] 17.7 [12.77–27.41] p = 0.532
IL-10 (pg/mL) 2.86 [1.42–4.57] 2.0 [1.42–6.87] p = 0.682
TNF-α/IL-10 6.85 [3.35–13.28] 5.06 [2.38–10.43] p = 0.405

# When different from Critically Ill Infected SARS-CoV2: Control. Data expressed as absolute number, mean ± SD
or median [P25-75].
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19 pneumonia, noninfected healthy subjects and noninfected patients with diabetes. * When different
from noninfected controls (healthy). ‡ When different from noninfected patients with diabetes
p < 0.05. Data expressed as mean ± SD.

Critically ill patients with COVID-19 pneumonia presented higher plasma concentra-
tions of eHSP72 (0.486 ± 0.23 ng/mL) when compared with noninfected healthy controls
(0.096 ± 0.06 ng/mL) and noninfected subjects with diabetes (0.198 ± 0.05 ng/mL).

3.4. Heat Shock Response in Critically Ill Patients with Severe COVID-19 Pneumonia

As shown in Figure 3, no differences in the HSR were found between critically ill
patients with COVID-19 with or without diabetes. To confirm that both the exocytosis
and intracellular content of HSP72 were reduced, we analyzed the immunocontent of
HSP72 from the PBMCs. As depicted in Figure 3, intracellular quantification confirmed the
reduced expression of iHSP72. A possible inverse correlation between intracellular HSR
and the inflammatory index (TNF-α/IL-10) (r = −0.284) may be present, despite not being
statistically significant (p = 0.058).

3.5. Comparison of Heat Shock Response between Different Groups: Noninfected Control Subjects,
Noninfected Subjects with Controlled Diabetes, and Critically Ill Patients with Severe COVID-19
Pneumonia

To compare the HSR with other groups, we analyzed blood from noninfected patients:
the healthy control group and the noninfected subjects with diabetes. In a different ap-
proach from the baseline blood eHSP72 group, we included all groups that we performed
the HSR test on: noninfected controls, noninfected subjects with diabetes, critically ill
patients with COVID-19 without diabetes, and critically ill patients with COVID-19 with
diabetes. Table 2 shows the patient group characteristics. Notably, infected patients even
without a previous diagnosis of diabetes and HbA1c <6.5% presented significant hyper-
glycemia, most likely due to stress hyperglycemia (>140 mg/mL). In line with this, infected
patients with diabetes also had higher serum glucose values when compared to noninfected
subjects with diabetes. Interestingly, obesity was highly prevalent in critically ill patients
with COVID-19, regardless of the presence of diabetes, as demonstrated by the higher BMI
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observed than usually seen in the critically ill population (Table 2). This may indicate the
presence of insulin resistance and may also explain the hyperglycemia and the levels of
HbA1c within this group.Biomolecules 2019, 9, x FOR PEER REVIEW 8 of 17 
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2 h in a water bath. After the incubation, the PBMC were resuspended in an RPMI 1640 medium (pH
7.4 supplemented with 2% NaHCO3, 10% bovine calf serum, 100 U/mL penicillin and 100 µg/mL
streptomycin), seeded in a 24-well flat-bottom plate (1 × 106 cells/well), and placed in an incubator
for 6 h (37 ◦C in a 5% CO2) in order to recover from the HS and reach the peak of HSP70 expression.
Cells were then removed from the incubator, appropriately lysed and the total content of proteins was
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image was used to show the immunocontent of iHSP72. Data expressed as mean ± SD.
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Table 2. Subjects’ characteristics and general biochemistry: All groups.

Patient Characteristic Noninfected Control
(n = 19)

Noninfected Diabetics
(n = 22)

Critically Ill Infected
COVID-19: Control

(n = 27)

Critically Ill Infected
COVID-19: Diabetics

(n = 32)

Age (years) 54.5 ± 8.3 68.9 ± 7.8 58.2 ± 13.5 63.5 ± 11.2
Body Mass (kg) 68.1 ± 9.3 79.12 ± 10.8 90.8 ± 18.42 * 89.3 ± 20 *

Height (m) 1.63 ± 0.08 1.66 ± 0.8 1.66 ± 0.1 1.67 ± 0.1
BMI (kg/m2) 25.6 ± 2.5 28.7 ± 3.1 33 ± 6.7 * 33.6 ± 7.9 *

Glycaemia (mg/dL) 102.5 ± 12.4 133.1 ± 21.4 171.1 ± 48.38 *‡ 235.7 ± 79.4 *‡#

HbA1C (%) - 6.75 ± 0.6 5.94 ± 0.51 8.9 ± 2.2 ‡#

* Different from noninfected controls. ‡ When different from noninfected diabetics. # When different from critically
ill, infected COVID-19: Control. Data expressed as absolute number or mean ± SD.

Figure 4 depicts the comparison between noninfected healthy controls, noninfected
subjects with diabetes, and critically ill patients with COVID-19 pneumonia (with or
without diabetes). As previously compared, patients without diabetes have a preserved
HSR [18]. However, in the presence of COVID-19 infection, particularly in critically ill
patients, the HSR is blunted even in the absence of diabetes. Thus, a similarly disrupted
HSR can be found in noninfected subjects with diabetes and in critically ill patients with
COVID-19. Regarding markers of oxidative damage (lipids and proteins) our results have
shown that, compared to healthy people, infected subjects present higher levels of damage
(Figure 5). However, following the same pattern of the HSR, no differences exist between
infected controls and diabetics.Biomolecules 2019, 9, x FOR PEER REVIEW 10 of 17 
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Figure 4. Comparison of the Heat Shock Response between critically ill patients with COVID-19
pneumonia with and without diabetes, noninfected healthy subjects, and noninfected patients with
diabetes. Briefly, the collected blood, was immediately incubated (i.e., the whole blood) at two
different temperatures: 37 ◦C (control) and 42 ◦C (heat stressed) for 2 h in a water bath. After
the incubation, plasma was collected and used for HSP72 measurements. The difference between
concentration at 37 ◦C and 42 ◦C is used as the HSR index. * When different from noninfected healthy
subjects. p < 0.05. Data expressed as mean ± SD.
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Figure 5. Comparison of lipid (A) and protein (B) oxidative damage between critically ill patients
with COVID-19 pneumonia with and without diabetes, noninfected healthy subjects. * When different
from noninfected healthy subjects. p < 0.05. Data expressed as mean ± SD.

4. Discussion

This is the first study that measured the basal concentration of blood HSP72 and the
HSR status in critically ill patients with severe COVID-19 pneumonia, with and without
diabetes. The main findings of this study are: (1) the concentration of plasma eHSP72
is high in critically ill patients with COVID-19 pneumonia and (2) the HSR is blunted in
critically ill patients with severe COVID-19 pneumonia when compared to healthy patients
without COVID-19, regardless of their glycemic status.

In conditions where chronic inflammation and oxidative stress occur, such as in
patients with type 1 diabetes (T1DM) [35] and type 2 diabetes (T2DM), higher levels of
eHSP72 are also present [36]. In fact, serum eHSP72 concentration is positively correlated
with markers of inflammation in humans, such as C-reactive protein, monocyte count, and
TNF-α [37,38]. However, in this sample of critically ill patients, the presence of diabetes did
not influence the eHSP72 levels. These results indicate that, apparently, metabolic disease
does not seem to influence the HSR when the patient is severely ill. As the blunted HRS is
similar in critically ill patients with COVID-19 (with or without diabetes) and noninfected
patients with diabetes, we may state that diabetes induces similar responses in terms of
HSP72 and the HSR systems that severe COVID-19 (by different mechanisms) induces. In
the same vein, in the past, diabetes was believed to be a cardiovascular equivalent [39].
Since the HSR is already significantly depressed in subjects with diabetes, no further
decrease is observed in these patients when facing severe COVID-19.

Another complication related to the elevated levels of eHSP72 is insulin resistance [33].
The underlying mechanisms that may lead to insulin resistance could involve an eHSP70-
mediated stimulation of the TLR2/4. Accordingly, the TLR2/4-dependent activation of
JNKs promotes phosphorylation of IRS-1 at Ser307 in rodents (equivalent to Ser312 in
humans), leading to the inhibition of Akt activation [40], to a reduced glucose uptake by
sensitive tissues, and to a state of resistance to insulin action. Thus, higher blood eHSP72
levels in patients with COVID-19 might contribute to the insulin resistance and stress
hyperglycemia commonly present in these patients (Table 2), which may lead to negative
outcomes. In addition, there is also a possible deleterious effect of elevated eHSP72 on
pancreatic beta cells. Previous studies have shown that chronic high eHSP72 exerts direct
effects on clonal pancreatic human and rodent beta cells and islets, such as decreased beta
cell and islet viability, insulin secretion, and mitochondrial function [33]. Taken together,
the elevated eHSP72 concentration may be related to the long-term metabolic imbalance
reported in the literature [41–43].

Regarding the HSR, our initial hypothesis was that critically ill patients with COVID-19
pneumonia with diabetes would have a lower response when compared to those critically
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ill patients without diabetes, leading to better outcomes in the last group. However, we
found that, in critically ill patients with COVID-19, the HSR is blunted regardless of the
presence of diabetes, indicating that the virus may directly inhibit this pathway or, perhaps,
use all chaperone machinery for its own cycle of replication (Figure 6).Biomolecules 2019, 9, x FOR PEER REVIEW 12 of 17 
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Figure 6. Possible role of elevated plasma eHSP70 and a lower HSR in a SARS-CoV-2 infection.
In several cells, infection caused by SARS-CoV-2 might lead to downregulation of ACE2. This
would decrease the production of angiotensin (1–7) and the activation of the MAS receptor. MAS
receptor activation induces anti-inflammatory responses and, in addition, by the activation of SIRT1,
stimulates the HSR pathway [44]. Without this axis, the HSR is diminished and the inhibitory
effect of intracellular HSP72 over NF-κB is absent, leading to a disrupted inflammatory resolution.
The cytokine storm induces direct damage on cells/tissues and activates, along with the increased
sympathetic tonus, the release of HSP72 to the extracellular environment (eHSP72) [45]. Extracellular
HSP72 might reinforce the inflammatory system and induce activation of TLR (Toll-like receptors,
particularly TLR4) in several cell types, including pancreatic beta cells and skeletal muscle [11]. The
chronic activation of the TLRs by eHSP72 might reduce the capacity of the HSR activation, worsening
the inflammatory response and altering metabolic status.
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In different cell types, the higher demand for protein synthesis may lead to the
unfolded protein response (UPR) and endoplasmic reticulum stress (ER stress) [13]. The
UPR is triggered to avoid the formation of protein aggregates that cause cellular dysfunction.
If the UPR is resolved through autophagy and the HS response, then cells can reach
proteostasis again, otherwise, they undergo apoptosis [14]. HSP70 is mandatory to maintain
proteostasis during high demand of protein synthesis, as it occurs in beta cells producing
high insulin content [13]. Under normal conditions, when HSP72 expression is normal, the
chaperone supply for the appropriate folding of newly synthetized proteins is sufficient.
However, due to an inflammation-induced inability to express iHSP70, the UPR is induced,
causing cell dysfunction, perpetuation of inflammation, and apoptosis [13]. Viral activities
have a profound impact on ER function [46]. In particular, SARS-CoV hijacks the ER
to process its structural and nonstructural proteins [47,48]. In fact, it was demonstrated,
in vitro, that the induction of ER stress and the UPR by SARS-CoV is modulated through
the S protein [47]. In that paper, using kidney epithelial cells, the authors have shown that
the S protein modulated ER stress differentially by stimulating PKR-like ER kinase (PERK),
but sparing the other two branches of the UPR signaling mediated through IRE-1 and ATF-6
(inositol-requiring enzyme 1 and activating transcription factor 6), respectively [47]. Thus,
it is reasonable to speculate that SARS-CoV-2 overloads the ER to produce the necessary
material for replication, leading to an increased use of chaperones (HSP72, for example),
and finally causing the full depletion of this pathway. Our findings suggest HSP72 to be
lower than expected, independent from the previous metabolic state. Without HSP72, cells
would lose their proteostasis control and leave inflammatory factors, such as NF-κB, free
to increase the inflammation in a positive forward feedback system. In fact, the lack of
a proper HSR in critically ill patients with COVID-19 might explain, at least in part, the
high levels of proinflammatory cytokines in our cohort, which was found to be without
a difference between patients with or without diabetes. Despite not being statistically
significant (p = 0.058), we found a possible inverse correlation between an intracellular
HSR and the inflammatory index (TNF-α/IL-10) (r = −0.284).

The HSR is essential for the maintenance of proteostasis and the inflammatory sta-
tus. Stress-activated HSF1 can provide a robust anti-inflammatory response through the
induction of HSP72. However, a mandatory pathway to maintain a normal chaperone
machinery (i.e., in the HSR) is through insulin signaling [11]. Hampered insulin signaling
will lead to a deficient ability to induce the HSR in order to resolve inflammation (which
is a mechanism associated with overactivity of the GSK-3β enzyme). Not surprisingly,
obesity-related chronic inflammatory states show a depressed HSR [16–18]. Thus, a lower
HSR in insulin-resistant individuals might be responsible for the exacerbated levels of
inflammation and the comparatively worse prognosis observed in critically ill patients
infected by SARS-CoV-2, perhaps as little is known regarding insulin signaling during criti-
cal illness [49]. In addition, infection caused by SARS-CoV-2 may lead to downregulation
of ACE2. This would decrease the production of angiotensin-(1-7) and the activation of
the MAS receptors. MAS receptor activation can induce anti-inflammatory responses and,
through the activation of SIRT1, stimulate the HSR pathway [44]. Without this axis, the
HSR is diminished and the inhibitory effect of intracellular HSP72 over NF-κB is absent,
leading to a disrupted inflammatory resolution (Figure 6).

Considering the therapeutic potential that increasing the HSR may have on the in-
flammatory response in critically ill patients with severe COVID-19 pneumonia, we could
suggest different strategies of treatment: (i) the rational use of antipyretic drugs (allowing
mild elevation of body temperature by fever, without causing heat damage, but guarantee-
ing the increase in HSP72); (ii) artificially increasing the body temperature (using thermal
blankets, for example (please refer to reference [45] to understand the beneficial effects
of heat therapy); and (iii) the use of HSP72 activators such as BGP-15 [15]. The pharma-
cological inducer of HSP72 and BGP-15, has been shown to be safe and well tolerated in
phase II clinical trials in patients with diabetes and insulin resistance [50,51]. In addition,
the use of BGP-15 in animal models was found to induce metabolic benefits, as well as
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reducing inflammatory signaling, and improving respiratory muscles during mechanical
ventilation [52]. Nevertheless, the efficiency and safety of such therapies could be tested in
this study population.

This study has limitations. First, despite the fact that our data show no difference in
the HSR between critically ill patients with SARS-CoV-2 infection with or without diabetes,
it is important to consider that most of our critically ill patients had obesity, with potentially
high degrees of insulin resistance. For this reason, we need to look at the data with caution,
since our study population without diabetes were not “metabolic healthy”. Second, the
lack of information regarding the HSR in noncritically ill patients with COVID-19 prevents
us from testing if the previous level of the HSR would determine the evolution of the
disease and the need for ICU admission. Finally, low sample size, inability to stratify data
by sex, and the inability to account for previous medications were also a limitation in this
work. Additional information regarding patients medications and full data can be found at
supplementary material (Figure S1 and Table S1).

5. Conclusions

Despite the limitations of this study, we demonstrated that critically ill patients with
severe COVID-19 pneumonia present elevated concentrations of plasma eHSP72. In ad-
dition, the HSR, a vital pathway for proteostasis and anti-inflammation, is blunted. The
consequences of these two abnormalities might explain, in part, the uncontrolled inflamma-
tion (cytokine storm) seen in these patients. Finally, the administration of HSR activators
should be further investigated.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biom12101374/s1, Figure S1: eHSP72 with separate groups;
Table S1: Patient Medication Profile.
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