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Mammalian netrin family proteins are involved in targeting of axons, neuronal migration,

and angiogenesis and act as repulsive and attractive guidance molecules. Netrin-5 is

a new member of the netrin family with homology to the C345C domain of netrin-1.

Unlike other netrin proteins, murine netrin-5 consists of two EGF motifs of the laminin

V domain (LE) and the C345C domain, but lacks the N-terminal laminin VI domain

and one of the three LE motifs. We generated a specific antibody against netrin-5 to

investigate its expression pattern in the rodent adult brain. Strong netrin-5 expression was

observed in the olfactory bulb (OB), rostral migrate stream (RMS), the subventricular zone

(SVZ), and the subgranular zone (SGZ) of the dentate gyrus in the hippocampus, where

neurogenesis occurs in the adult brain. In the SVZ and RMS, netrin-5 expression was

observed in Mash1-positive transit-amplifying cells and in Doublecortin (DCX)-positive

neuroblasts, but not in GFAP-positive astrocytes. In the OB, netrin-5 expression

was maintained in neuroblasts, but its level was decreased in NeuN-positive mature

neurons. In the hippocampal SGZ, netrin-5 was observed in Mash1-positive cells and in

DCX-positive neuroblasts, but not in GFAP-positive astrocytes, suggesting that netrin-5

expression occurs from type 2a to type 3 cells. These data suggest that netrin-5 is

produced by both transit-amplifying cells and neuroblasts to control neurogenesis in the

adult brain.

Keywords: axon guidance, netrin, adult neurogenesis, rostral migratory stream, subventricular zone, subgranular

zone

Introduction

Netrin family proteins are diffusible axon guidance molecules. Originally netrin-1 was identified
as a chemical attractant for spinal commissural axons during embryonic development (Serafini
et al., 1994, 1996). Netrin-1 has a homology to the laminin B2 chain and consists of the N-terminal
laminin VI domain, three EGF motifs of the laminin V domain (LE), and the C345C domain.
Netrin-1 (Unc-6 in nematodes) is evolutionally well conserved in both vertebrates and inverte-
brates (Rajasekharan and Kennedy, 2009). Mammals express netrin-1, -3, and -4, whereas netrin-2,
the ortholog of netrin-3, exists only in birds and in fish (Wang et al., 1999). The functions of netrin

Abbreviations:AD, Alzheimer’s disease; DCC, deleted in colorectal carcinomas; DCX, doublecortin; DG, dentate gyrus; GCL,

granule cell layer; GFAP, glial fibrillary acidic protein; LE, EGF motifs of laminin V domain; OB, olfactory bulb; RMS, rostral

migratory stream; SVZ, subventricular zone; SGZ, subgranular zone.
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proteins are quite variable. In addition to regulating axonal
guidance as both attractive and repulsive cues, netrin proteins
promote cell survival by binding to DCC (deleted in colorec-
tal carcinoma) and/or to the Unc5 dependent receptor for both
neurons and tumor cells (Arakawa, 2004; Adams and Eichmann,
2010; Castets and Mehlen, 2010). Netrin-1 is also an angio-
genic factor that acts as a guidance molecule and promotes pro-
liferation of endothelial cells (Delloye-Bourgeois et al., 2012).
Recently, it was reported to promote atherosclerosis by inhibiting
the emigration of macrophages from plaques and by attenuating
hypoxia-elicited inflammation at mucosal surfaces (Ramkhela-
won et al., 2014).

Neurogenesis in the adult brain occurs throughout life at
two major locations: the subventricular zone (SVZ) of the lat-
eral ventricles and the subgranular zone (SGZ) of the dentate
gyrus in the hippocampus (Zhao et al., 2008). In the anterior of
the SVZ, neuroblasts, derived from progenitor cells, form chains
and migrate along a restricted route, referred to as the rostral
migrate stream (RMS). During the migration, the stabilization,
and destabilization of themicrotubules in the neuroblasts are reg-
ulated by DCX and stathmin1, respectively. Disruption of either
DCX or stathmin1 disturbed the chain migration in the RMS
(Camoletto et al., 1997; Jin et al., 2010). Subsequently neurob-
lasts terminate migration and localize in the olfactory bulb (OB),
where they differentiate into interneurons (Doetsch et al., 1999;
Alvarez-Buylla and Garcıa-Verdugo, 2002). The chains of neu-
roblasts migrate through a tunnel of GFAP-positive astrocytes
called the “glial tube” which are derived from type B cells. During
the migration, neuroblasts are guided by various molecules. Sol-
uble netrin-1 is secreted from the mitral cells in the OB to attract
DCC-positive neuroblasts (Murase and Horwitz, 2002). Inhibit-
ing DCC by an antibody disrupted the direction of the migrating
chain of cells. Another netrin-1 receptor, neogenin, is known to
be expressed in both neuroblasts and GFAP-positive astrocytes
in the RMS of both rodents and humans (Bradford et al., 2010).
Neural stem cells in another region of the brain, the SGZ in the
adult hippocampus, can produce intermediate progenitors (type
2a cells), which in turn generate neuroblasts (type 2b to type 3
cells) (Eriksson et al., 1998). Recently, it was shown that DCX-
positive type 2b cells can also proliferate and expand the precur-
sor pool (Lugert et al., 2012). After exiting the cell cycle, these
cells differentiate into granule neurons. Althoughmuch is known
about adult neurogenesis in the SGZ, nothing is known about the
contribution of netrins and their receptors to neurogenesis.

We previously characterized new functions of FLRT2/3 as
novel repulsive axon guidance molecules acting via Unc5s (Yam-
agishi et al., 2011). In order to identify additional axon guidance
molecules, we performed BLAST analyses to search for proteins
with sequences homologs to netrin-1. Here, we report an unchar-
acterized protein, netrin-5, found on the NCBI database, which
was previously named due to its homology to other netrin family
proteins. We show that netrin-5 is strongly expressed in neuro-
proliferative regions, namely in the SVZ and SGZ. Netrin-5 is
co-expressed with Mash1, DCX, and stathmin1, which regulates
microtubule stability, in neuroblasts in both the SVZ and RMS,
whereas GFAP-positive cells do not co-express netrin-5. Consis-
tent with these findings, Mash1-positive cells and DCX-positive

neuroblasts in the SGZ also co-expressed netrin-5, indicating
netrin-5 expression occurs from type 2a to type 3 cells. These
expression patterns suggest that netrin-5 plays a role in adult
neurogenesis.

Materials and Methods

Animals
Wister rats (Japan SLC Inc.) aged 2–3 months were used in
most of the experiments unless otherwise stated. Two month
old C57BL/6 mice (Japan SLC Inc.) were used for anti-CD31
(PECAM1) antibody staining. Glial fibrillary acidic protein
(GFAP) expression was analyzed using 2 month old transgenic
mice overexpressing GFP under control of the astrocyte-specific
GFAP promoter (Gfap-EGFP mice, Mutant Mouse Regional
Resource Center; Kaneko et al., 2010). All animal experiments
were approved by the Committee on Animal Research at Hama-
matsu University School of Medicine and performed according
to the national guidelines and regulations in Japan.

Antibodies
To generate polyclonal antibodies, rabbits were immu-
nized once and boosted 3 times with a synthetic peptide
(C+FKQRAWPVRRGGQE; 353-366 aa) corresponding to
the sequence of the C345C domain of mouse netrin-5a
(NP_001028528.2). Antibodies were purified from serum using
an antigen-specific affinity column (Operon Biotech.). The
antigen sequence was chosen by the antigen prediction pro-
gram (Operon Biotech). The following commercial antibodies
were also used for immunofluorescence and western blotting:
anti-GAPDH (1:5000, mouse monoclonal, Abcam, ab8245),
anti-DCX (1:500, goat polyclonal, Santa Cruz, sc-8066), anti-
stathmin1 (1:500, mouse monoclonal, GeneTex, GTX62235),
anti-Mash1 (1:500, mouse monoclonal, BD, #5566045), anti-
GFAP (1:1000, mouse monoclonal, Millipore, MAB3402),
anti-GFP (JL-8; 1:500, mouse monoclonal, Clontech, 632381),
anti-NeuN (1:100, mouse monoclonal, Millipore, MAB377),
and anti-CD31 (PECAM1, 1:100, rat monoclonal, BD, #550274)
antibodies.

Histological Analysis
The animals were deeply anesthetized and intracardially per-
fused with 4% paraformaldehyde (PFA)/PBS for 5min. Brains
were dissected, post fixed in 4% PFA/PBS for 10min, and frozen
at−80◦C. Cryostat sagittal sections at 20µm thickness were fixed
in 4% PFA/PBS for 10min. For anti-Mash1 antibody staining,
50µm thick vibratome sections were cut. Endogenous perox-
idase was quenched in 0.3% H2O2 in methanol for 20min at
RT. After washing with PBS, the sections were permeabilized in
0.3% Triton-X 100/PBS for 3min. Then, the sections were incu-
bated with blocking solution containing 3% normal goat serum
(NGS) in 0.1% Triton-X 100/PBS for 1 h at RT followed by incu-
bation of primary antibodies in 1% NGS/0.1% Triton-X 100/PBS
overnight at 4◦C. Either HRP-conjugated (DAKO) or Alexa Fluor
dye-conjugated secondary antibodies (Life Technologies) were
incubated with the sections for 30min at RT. For anti-Mash1
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antibody staining, tyramide Signal Amplification (TSA) ampli-
fication was performed according to manufacturer’s instructions
(PerkinElmer, NEL701001KT). The sections treated with HRP-
conjugated antibodywere visualized by ImmPACTDAB (DAKO)
according to the manufacturer’s instructions. The samples from
the Gfap-EGFP mice were treated with anti-GFP (JL-8) anti-
body to amplify the GFP signal. The sections with fluorescent
secondary antibodies were observed using confocal microscopy
FV1000 (Olympus). Similar results were obtained from at least
three independent animals.

Western Blotting
Total cell lysates from different brain regions were prepared in
lysis buffer, consisting of 1% Triton X-100/TBS supplemented
with a proteinase inhibitor cocktail (Roche). The samples from
three rats were pooled and resolved on a SDS-PAGE gel. Then,
the proteins were transferred to a PVDF membrane and the
membrane was incubated sequentially with blocking solution,
primary antibody, and HRP-conjugated secondary antibody. The
membrane was developed with the enhanced chemiluminescence
(ECL) reagent (Thermo Scientific).

Results

Netrin-5 Homology to Netrin-1
In order to search for a new axon guidance protein homologs to
murine netrin-1, we performed protein BLAST analysis with the
mouse netrin-1 C345C domain (472-601 aa), which is partially
involved in binding to the Unc5 receptor (Kruger et al., 2004).
As a result, netrin-5 isoform c (accession no. NP_001276622;
383 aa) showed the highest score with 32% identity to netrin-1.
Unlike the structures of netrins-1, -3, and -4, full length netrin-5a
(NP_001028528.2) consists of 452 aa comprising two laminin V-
type EGF-like (LE) domains and the C345C domain, but lacking
the N-terminal laminin VI domain (Figure 1A). A splice variant,
netrin-5b, has a unique short tail at the C-terminus instead of the
C345C domain. Netrin-5c is shorter than this isoform because
it lacks the N-terminal sequence but contains 3 LE domains.
Netrin-5s from both human and bovine are different from rodent
netrin-5. Human and bovine netrin-5 has a shorter signal peptide
but contains all three LE domains (Figure 1B). Many amino acids
in both the LE1 and LE3 domains are highly conserved among
these 4 species. Homology between human and mouse netrin-5
is 73%. Interestingly, most cysteine residues are highly conserved
between netrin-1 and netrin-5, suggesting that the 3D structure
of netrin-5 might be similar to that of netrin-1. Netrin-5 exists
only in mammals, suggesting that it was evolutionarily acquired
later than the other netrin family proteins.

Netrin-5 Expression in the Adult Brain
In order to explore the expression pattern of netrin-5 in adult rat
brain, we generated an antibody against the C345C domain. The
level of netrin-5 protein in the adult rat brain was first evaluated
by immunodetection on western blotting using a rabbit poly-
clonal antibody against the C345C domain. Netrin-5 appeared
at ∼46 kDa and is expressed in the OB, the cerebral cortex, the
hippocampus, and the cerebellum in the adult brain (Figure 2A).

In the OB, the expression level was relatively higher than that
in other regions. In the hippocampus, netrin-5 showed a weak
expression level. Consistent with the western blotting, immuno-
histochemistry on sagittal sections showed extensive expression
in the OB (Figure 2B). Netrin-5 immunoreactivity was observed
throughout the granule cell layer of the OB. In the rostral migra-
tory stream (RMS), the immunoreactivity was strong. However,
a weaker signal in the outer plexiform layer and almost no sig-
nal were observed in the anterior olfactory nucleus. In accor-
dance with the strong immunoreactivity in the RMS of the OB,
strong netrin-5 expression was also observed throughout the
RMS from the anterior wall of the SVZ of the lateral ventricle
(Figure 2C). In addition, the choroid plexus had a positive signal.
Non-clustered netrin-5 positive signal was observed in both the
corpus callosum and hippocampal commissure (Figures 2C,D).
Sparse immunoreactivity was observed in both the striatum and
the cerebral cortex. These cells were positive for CD31, a vas-
cular endothelial marker (Figure S1). Only a subset of endothe-
lial cells showed netrin-5-immunoreactivity. Since netrin-5 is
strongly expressed in both the SVZ and RMS, it may play a role in
adult neurogenesis. Therefore, we next focused on the subgranu-
lar zone (SGZ) of the dentate gyrus in the hippocampus, the other
neurogenic region in the adult brain. Although the immunoreac-
tivity in the hippocampus was relatively low by western blotting,
netrin-5 signal was specifically observed in the SGZ as expected
(Figures 2D,E). There were few positive cells in the pyramidal
cell layer of both the CA1 and CA3 regions and in the hilus
region.

Netrin-5 Expression in Transit-amplifying Cells
(Type C Cells) and Neuroblasts (Type A Cells), but
not in Neural Stem Cells (Type B Cells), in the SVZ
In the adult SVZ, a subset of the astrocyte-like cells (type B cells)
are proliferative stem cells that generate neuroblasts (type A cells)
via transit-amplifying cells (type C cells). The majority of netrin-
5 immunoreactive cells in the SVZ showed a morphology typi-
cal of the chain-forming neuroblasts. In order to determine the
netrin-5-expressing cell types in the SVZ, we performed double-
immunolabeling in a sagittal section of the rat adult brain using
antibodies against netrin-5 and DCX, a microtubule binding pro-
tein widely used as a marker for neuroblasts (Zhao et al., 2008).
As shown in Figures 3A–C, all DCX-positive cells at the SVZ co-
expressed netrin-5. There were some netrin-5-positive SVZ cells
that did not co-express DCX, suggesting that netrin-5 expression
is initiated in DCX-negative type C cells. We also stained for the
microtubule binding protein stathmin1, which is expressed in the
SVZ cells, including neuroblasts (Camoletto et al., 1997; Jin et al.,
2004). Double immunostaining showed complete co-localization
of stathmin1 and netrin-5 (Figures 3D–F). Since stathmin1
expression is regulated by Mash1 (Ascl1) (Yamada et al., 2010),
we then evaluated netrin-5 expression in Mash1-positive transit-
amplifying cells (Figures 3G–I). As a result, all Mash1 positive
cells were netrin-5 positive, indicating that transit-amplifying
cells also express netrin-5 (Figures 3G–I). Next, we determined
whether netrin-5 expression occurs in type B cells. Netrin-5 was
not detected in GFAP-positive cells (type-B cells or other astro-
cytes; Figures 3J–L). Taken together, these results suggest that
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FIGURE 1 | Netrin-5, a new member of the netrin protein family. (A)

Schematic drawing of the domain structure of the netrin family (Mus

musculus; NTN1, 3, 4, and 5a-c). NTN5a and NTN5b lack the laminin VI

domain and one of EGF-like motifs of the laminin V domain. NTN5b

further lacks the C345C domain. NTN5c is smaller than NTN5a but

contains three EGF-like domains. (B) Alignment of the predicted amino

acid sequences of Homo sapiens NTN5 (accession number

NP_665806.1), Bos taurus NTN5 (NP_001193801.1), Mus musculus

NTN5 isoform a (NP_001028528.2), and Rattus norvegicus NTN5

(NP_001166997.1). Amino acid residues identical among the species are

shaded in red. Similar residues are colored in red but not shaded.

Putative signal peptides, EGF-like motifs of the laminin V domain, and the

C345C domain are indicated. An asterisk (*) indicates conserved cysteine

in netrin-1 and in netrin-5.
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FIGURE 2 | Expression of netrin-5 in the adult brain. (A) Immunoblotting

analysis revealed that anti-netrin-5 antibody recognizes a protein of ∼46 kDa in

the total cell lysate of the dissected adult rat brains. Netrin-5 expression was

higher in the olfactory bulb and lower in the hippocampus. The same

membrane was reprobed with anti-GAPDH antibody as a loading control

(lower panel). (B–E) Immunohistochemistry of sagittal sections of adult rat

brain with anti-netrin-5 antibody. Anti-netrin-5 antibody stained strongly in the

GCL of the OB (B), SVZ, RMS, CP (C), and SGZ of the DG (D,E). AO, anterior

olfactory nucleus; CBL, cerebellum; CC, corpus callosum; CP, choroid plexus;

CTX, cerebral cortex; DG, dentate gyrus; GCL, granule cell layer; HP,

hippocampus; OB, olfactory bulb; RMS, rostral migratory stream; SGZ,

subgranular zone; SVZ, subventricular zone. Bars indicate 500µm in (B–D),

and 100µm in (E).

netrin-5 is expressed in transit-amplifying cells and in neurob-
lasts but not in either neural stem cells or astrocytes in the
SVZ.

Netrin-5 Expression in Neuroblasts in the RMS
Since the newly formed neuroblasts in the SVZ migrate toward
the anterior region through the RMS, we next characterized the
netrin-5-positive cells in the RMS. Consistent with the result
in the SVZ, we found DCX-positive cells highly co-localized
with the netrin-5 signal in the RMS (Figures 4A–C). In con-
trast to the homogeneous expression of DCX in the neurob-
lasts, netrin-5 was expressed at various levels in the cells. There
were some netrin-5-positive cells that did not co-express DCX.
On the other hand, almost all of the netrin-5-positive cells
showed co-localization with stathmin1 (Figures 4D–F). Mash1-
positive transit-amplifying cells were also positive for netrin-5

FIGURE 3 | Expression of netrin-5 in the SVZ of adult rat brain. (A–C)

Immunostaining of sagittal sections of adult rat brain revealed that

DCX-positive cells in the SVZ stained for netrin-5 as observed in confocal

imaging (white arrowheads). Some netrin-5-positive cells were DCX-negative

(black arrowheads). (D–F) Stathmin1 and netrin-5 showed high co-localization

(white arrowheads). (G–I) Mash1-positive cells are also netrin-5-positive (white

arrowheads). (J–L) Netrin-5 expression did not co-localize with GFAP. Bar

indicates 50µm.

(Figures 4G–I), suggesting that the DCX-negative- and netrin-
5-positive cells (Figures 4A–C) were transit-amplifying cells.
The chains of rapidly migrating neuroblasts are ensheathed
by a meshwork of GFAP-positive astrocytes, namely the “glial
tube” (Lois and Alvarez-Buylla, 1994; Lois et al., 1996; Kaneko
et al., 2010). Although GFAP and netrin-5 immunoreactive sig-
nals are spatially intermingled, none of the GFAP-positive sig-
nal co-localized with netrin-5 (Figures 4J–L). Since GFAP is a
cytoskeletal protein and anti-GFAP antibody staining cannot
visualize the entire shape of the astrocytes, we utilized GFAP
promoter-controlled EGFP transgenic mice (Gfap-EGFP). As
expected, most of netrin-5-positive cells are GFP-negative, con-
firming the mutually exclusive expression of netrin-5 and GFAP
(Figures 4M–O).

Netrin-5 Expression in both Neuroblasts and
Neurons in the GCL of the OB
Themigrated neuroblasts are differentiated into GABAergic neu-
rons and integrated in the GCL of the OB (Abrous et al., 2005).
Since the strong immunoreactivity of netrin-5 was observed
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FIGURE 4 | Netrin-5 expression by neuroblasts and transit-amplifying

cells but not by astrocytes within the RMS. (A–C) Immunostaining of

sagittal sections of rat adult brain showed that most of the DCX-positive cells

in the RMS stained for netrin-5 as observed in confocal imaging (white

arrowheads). Some netrin-5-positive cells were DCX-negative (black

arrowhead). (D–F) Stathmin1 and netrin-5 showed high co-localization (white

arrowheads). (G–I) Anti-Mash1 staining revealed that Mash1-positive cells

express netrin-5 (white arrowheads). (J–L) Anti-GFAP staining showed that

netrin-5 was not expressed in astrocytes. (M–O) Most Gfap-EGFP cells did not

show netrin-5 expression. (A–L) adult rat brain and (M–O) adult Gfap-EGFP

mouse brain. Bar indicates 50µm.

in the GCL (Figure 2B), we attempted to determine the cell
type in the GCL. The netrin-5 signal was observed in the cell
body and in the basal part of the apical dendrites of the DCX-
positive new neurons (Figures 5A–C). Since only about 20% of
the netrin-5-positive cells in the GCL co-expressed DCX, we next
analyzed whether netrin-5 expression is present in mature neu-
rons. As expected, the DCX-negative- and netrin-5-positive cells
were NeuN-positive, indicating that netrin-5 is also expressed in
mature GCs (Figures 5D–F). The expression level of Netrin-5 is
stronger in the DCX-positive cells than that in the NeuN-positive
cells, suggesting that netrin-5 expression is decreased during the

FIGURE 5 | Expression of netrin-5 in the GCL of the OB in the adult

brain. (A–F) Triple-immunostaining of sagittal sections of adult rat brain using

anti-DCX, anti-netrin-5, and anti-NeuN antibodies. Netrin-5 was highly

expressed in Dcx+ neuroblasts (white arrowheads), Dcx+NeuN+ immature

neurons (white arrows), and a subset of NeuN+ mature neurons (black

arrowheads), and decreased but still detectable in most NeuN+ mature

neurons. (G–I) Anti-GFAP staining showed that netrin-5 was not expressed in

astrocytes. (J–L) Gfap-EGFP cells did not show netrin-5 expression. (A–I)

adult rat brain and (J–L) adult Gfap-EGFP mouse brain. Bar indicates 50µm.

maturation process. Consistent with the exclusive expression of
GFAP and netrin-5 in both the SVZ and RMS, we could not
observe co-localization of GFAP and netrin-5 in the GCL of the
OB (Figures 5G–L), indicating that netrin-5 is not expressed by
astrocytes.

Netrin-5 Expression in Type 2a to Type 3 Cells in
the SGZ of the Hippocampal Dentate Gyrus
Since DCX-positive cells showed netrin-5 immunoreactivity in
the SVZ, RMS, and the GCL of the OB, we next analyzed the
other major location of adult neurogenesis in rat brain, the sub-
granular zone (SGZ) of the hippocampal dentate gyrus (Eriks-
son et al., 1998). As shown in Figures 6A–C, all DCX-positive
cells showed co-localization with the netrin-5 signal. In the
same field, anti-NeuN staining revealed that most of netrin-5-
positive cells contain undetectable or very low levels of NeuN
(Figures 6D–F). This was in contrast to the OB where netrin-5
expression remained in mature neurons (Figures 5D–F). Most
of netrin-5-positive cells also contain stathmin1 (Figures 6G–I),
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FIGURE 6 | Netrin-5 expression by type 2 a to type 3 cells but not by

type 1 cells within the SGZ. (A–F) Triple-immunostaining of sagittal sections

of adult rat brain with anti-DCX, anti-netrin-5, and anti-NeuN antibodies.

DCX-positive cells in the SGZ were stained for netrin-5 as observed in

confocal imaging (white arrowheads). Small populations of netrin-5-positive

cells were DCX-negative, NeuN-low (black arrowhead). Please note that most

of NeuN-positive cells were netrin-5 negative. (G–I) Stathmin1 and netrin-5

showed partial co-localization (white arrowheads). (J–L) Anti-Mash1 staining

revealed that Mash1-positive cells express netrin-5 (white arrowheads). (M–O)

Anti-GFAP staining showed that netrin-5 was not expressed in astrocytes. Bar

indicates 50µm.

similar to that in both the SVZ and RMS. Next, we analyzed
the expression of Mash1 in netrin-5-expressing cells. Consis-
tent with the observation in both the SVZ and RMS, netrin-5
was also observed in Mash1-positive transient-amplifying cells
(Figures 6J–L). Finally, we analyzed netrin-5 expression in neu-
ral stem cells (type 1 cells). Double-immunostaining for both
GFAP and netrin-5 revealed that the GFAP-positive signal did
not co-localize with netrin-5 (Figures 6M–O). Consistent with
this result, none of the GFAP promoter-derived GFP-positive
cells merged with netrin-5-positive cells (data not shown).
Taken together, these results indicate netrin-5 is expressed from

type-2a through to type-3 cells during adult neurogenesis in the
hippocampus.

Discussion

Here, we have characterized a new netrin family member, netrin-
5, which is expressed in neuroproliferative zones and is associated
with migratory pathways in the adult brain, i.e., the SVZ, RMS,
OB, and SGZ. It is still unclear whether netrin-5 is a secreted
or a cytosolic protein. According to the computational predic-
tion based on the databases, netrin-5 has a putative 34 amino
acids signal peptide on the N-terminus for secretion. In addi-
tion, 11 disulfide bonds and N-glycosylation sites are suggested.
Given that netrin-5 is secreted, it is uncertain which receptor(s)
it recognizes. Netrin-1 and -3 bind to DCC, Unc5s, DSCAM, and
Neogenin (Keino-Masu et al., 1996; Wang et al., 1999; Ly et al.,
2008; Lai Wing Sun et al., 2011). Netrin-1 shows higher affinity
to DCC than that of netrin-3 (Wang et al., 1999). Netrin-4 does
not bind to the DCC receptor but binds to various integrin fam-
ily proteins, i.e., integrin α6β1, α6β4, α2β1, and α3β1 (Staquicini
et al., 2009; Larrieu-Lahargue et al., 2011; Yebra et al., 2011; Hu
et al., 2012). The binding of netrin-4/integrin is mediated by
the unique N-terminal laminin VI domain of netrin-4, which is
not conserved in netrin-1 and −3. Since netrin-5 is lacking this
laminin VI domain, it may not bind to DCC, Unc5s, and inte-
grins. On the other hand, the deletion of the laminin VI domain
of netrin-1 did not affect the binding toDCC (Kruger et al., 2004).
Interestingly, three binding sites on the netrin-1/DCC complex
have been identified by crystal structure analysis (Finci et al.,
2014; Xu et al., 2014). Among those binding sites, the laminin VI
domain and LE3 domain of netrin-1 bind to DCC FN5 and FN4
domains, respectively, resulting in a continuous netrin-1/DCC
assembly as proposed by Xu et al. (2014). Furthermore, Kruger
et al. (2004) mapped netrin-1/Unc5c binding sites and found
multiple binding sites on netrin-1, including the C345C domain.
Therefore, the LE3 domain and C345C domain of netrin-5 might
bind to DCC and to Unc5s, respectively. Those binding analyses
should be performed in the future to identify the receptors for
netrin-5.

Interestingly, netrin-5 is strongly expressed in the SVZ, RMS,
and SGZ of the DG in the hippocampus where neurogene-
sis occurs in the adult brain (Figures 2B–D). Netrin-5 is also
expressed in the choroid plexus, where netrin-1 is also expressed
(Lein et al., 2007), and in both the corpus callosum and the hip-
pocampal commissure. In the RMS, amajor population of netrin-
5-positive cells express Mash1, DCX, and stathmin1, namely in
transit-amplifying cells and in neuroblasts, but it is not expressed
in the GFAP-positive astrocytes, suggesting the involvement of
netrin-5 in neurogenesis. Consistently, netrin-5 expression is
decreased during neuronal maturation in both the GCL and the
DG. On the other hand, NeuN-positive neurons also express
weak levels of netrin-5 in the GCL, suggesting that netrin-5
might have a function during the maturation process, such as
dendritogenesis and synaptogenesis in GABAergic neurons.

The netrin-1 receptors, DCC and neogenin, are also expressed
in neuroblasts in both the RMS and SVZ (Murase and Horwitz,
2002; Bradford et al., 2010). In contrast to netrin-5, Netrin-1 is
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not detected in the RMS but is located on the outer border of the
most ventral end of the descending limb of the RMS and inmitral
cells in the OB (Bradford et al., 2010). Inhibition of DCC func-
tion by a blocking antibody disturbs the direction of neuroblast
migration and reduces the speed of migration (Murase and Hor-
witz, 2002). Therefore, we hypothesize that this DCC-dependent
migration may be also mediated by netrin-5 acting either in an
autocrine or paracrine manner. DCC is also known as a depen-
dent receptor, meaning that DCC-positive cells undergo apop-
tosis without their ligand. Since netrin-1 expression is limited in
the anterior region of the RMS, another ligand is needed to main-
tain the survival of the neuroblasts. We hypothesize that netrin-5
binds to DCC to prevent cell death. In order to clarify the molec-
ular function of netrin-5 as a guidance molecule, in vitro analysis,
such as binding assays to define receptors, a turning assay, and a
growth cone collapse assay are necessary. In addition, loss and/or
gain of function studies using animal models will be needed to
better understand the in vivo functions of netrin-5.

Netrin-1 is well characterized as a repulsive guidance cue dur-
ing angiogenesis via the Unc5B receptor, which is expressed in
arterial endothelial cells, sprouting capillaries, and tip cells (Lu
et al., 2004). UncB activation by Netrin-1 causes retraction of
the filopodia of the endothelial tip cells and inhibits the neoves-
sel sprouting processes. Since netrin-5 expression was observed
in a subpopulation of CD31-positive endothelial cells, netrin-5
might have a role in guiding angiogenesis as a repulsive guid-
ance cue acting either in an autocrine or paracrine manner via
Unc5B.

A number of studies revealed that cognition and adult neu-
rogenesis are highly correlated in rodents (Mu and Gage, 2011).
Indeed, many mouse models of Alzheimer’s disease (AD), such as
Presenilin-1 with both M146V and 1Exon9 mutations in knock-
in mice and transgenic mice with the Swedish APP mutation,
showed decreased adult neurogenesis (Wang et al., 2004; Zhang
et al., 2007; Choi et al., 2008). Even in humans, substantial neu-
rogenesis occurs in the hippocampus of the adult brain (Spalding
et al., 2013). Although it is still controversial whether the prolif-
erative ratio of neural stem cells is altered, neuronal maturation

is impaired in the DG of AD patients (Li et al., 2008). Recently, it
has been reported that new neurons are generated in the adult
human striatum, which is impaired in patients with Hunting-
ton’s disease (Ernst et al., 2014). Therefore, it would be of interest
to investigate netrin-5 expression in the neurogenic regions in
the human brain especially in patients with neurodegenerative
disorders.

Although it is widely accepted that new neurons are contin-
uously generated and incorporated into the functional neural
network of the adult brain, the neurogenic cues, and the solu-
ble factors involved in the proper transportation of neuroblasts
to their appropriate location are still unclear. Our finding of the
expression of netrin-5 in neurogenic regions may provide some
hints toward understanding the fundamental processes (prolifer-
ation, migration, and differentiation) in adult neurogenesis.
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