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Background and Aims: Trimethylamine-N-oxide (TMAO) is recognized as a novel marker and mediator of atherosclerotic
cardiovascular disease (ASCVD). Endothelial progenitor cells (EPCs) are crucial for maintaining vascular homeostasis.
Impaired EPC numbers and function correlate with increased adverse cardiovascular events. The aim of this study was to
decipher the effect of TMAO on late EPCs (LEPCs) and its underlying molecular mechanism.
Methods and Results: In vitro migration and tubulogenic capacities of LEPCs were attenuated by TMAO in a dose-dependent
manner, accompanied by inhibition of manganese superoxide dismutase (MnSOD) and mitochondrial damage. TMAO-induced
mitochondrial damage provoked proinflammatory responses (increased levels of IL-6, IL-1b, ICAM-1, E-sel, and TNF-α) and
autophagic cell death (confirmed by western blot immunofluorescent staining and transmission electron microscopy) in LEPCs.
Overexpression of MnSOD through adenovirus transfection reversed TMAO-related LEPCs dysfunction. To study the effect of
TMAO on LEPC-mediated vascular repair in vivo, a hind limb ischemia model was established in nude mice, and LEPCs were
injected in the ischemic hind limb. Laser Doppler imaging of mouse ischemic hindlimbs at 21 days indicated that TMAO
treatment inhibited LEPCs-mediated blood flow recovery, which was restored by MnSOD overexpression. Immunohistology
analyses further revealed consistent alterations in capillary density determined by CD31 staining.
Conclusions: TMAO induces mitochondrial damage in LEPCs via MnSOD suppression, which leads to cell dysfunction,
proinflammatory activation, and autophagic cell death in vitro and impaired LEPCs-mediated revascularization in vivo.
Overexpression of MnSOD restores TMAO-induced LEPCs dysfunction and further enhances LEPC-mediated revascularization in
the ischemic hind limbs in nude mice.
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1. Introduction

Trimethylamine-N-oxide (TMAO) is a metabolite that origi-
nates from bacterial metabolism of choline-rich foods, such
as red meats and eggs, in the large intestine and is rapidly oxi-
dized by flavin-containing Monooxygenase-3 in the liver [1, 2].
Increased plasma TMAO level is considered an independent
predictor of adverse cardiovascular events in both coronary
artery disease (CAD) patients and the general population
[3–5]. TMAO has been reported to contribute to endothelial
dysfunction, vascular inflammation, platelet hyperreactivity,
and the development of atherosclerosis [6–8].

Endothelial progenitor cells (EPCs) are critical for main-
taining the integrity and function of vascular endothelium
and the revascularization of ischemic tissue [9–12]. The
number of circulating EPCs is inversely correlated with car-
diovascular risk factors and has declined in CAD patients
[13, 14]. Of note, a recent study showed that plasma TMAO
levels were negatively correlated with the number of circulat-
ing EPCs and flow-mediated vasodilatation (FMD) [15].
However, the detailed mechanisms underlying TMAO-
related EPC dysfunction remain unclear. Emerging evidence
indicated that TMAO induced endothelial dysfunction via
oxidative stress [6, 16]. LEPCs express intrinsically high levels
of MnSOD, and decreased MnSOD in LEPCs is a critical con-
tributor to the impaired capacity of angiogenesis [17–19].
Hence, we hypothesized that TMAO provoked mitochondrial
oxidative stress in LEPCs by downregulating MnSOD, which
led to cell dysfunction and consequently attenuates LEPC-
mediated revascularization in the ischemic tissues.

In this study, we sought to decipher the role of TMAO in
the regulation of LEPC function. Our results showed that
TMAO induced mitochondrial oxidative stress, which trig-
gered the proinflammatory activation as well as autophagic
cell death in LEPCs by suppressing MnSOD expression.
Upregulation of MnSOD restored TMAO-induced LEPC
dysfunction in vitro and enhanced LEPC-mediated repara-
tive effect in hind limb ischemic mice. Collectively, our study
demonstrates a crucial role of MnSOD in TMAO-mediated
regulation of LEPC function and provides a new perspective
for the therapeutic intervention for cardiovascular diseases.

2. Material and Methods

2.1. Ethical Statement. Twenty healthy subjects aged 18–55
years were enrolled in the study. All subjects gave their
written informed consent before study entry. Exclusion cri-
teria included malignancy, cardiovascular events, active
inflammatory disease, and those with other cardiovascular
risk factors or taking other medications. The ethics approval
was granted by the Ethics Committee of the First Affiliated
Hospital, Sun Yat-sen University in Guangzhou ([2017]
154), China.

Male BALB/c nude mice (6–8 weeks) were purchased
from the Experimental Animal Center of Sun Yat-sen
University, used for animal experiment, and kept under con-
trolled environmental conditions (constant laminar airflow,
20°C–23°C, 40%–60% relative humidity, and 12/12 h light/
dark cycle). The animal experiments were reviewed and

approved by the committee review of animal experiments
in the First Affiliated Hospital of Sun Yat-sen University
([2021] 049). All animal protocols followed the Guide for
the Care and Use of Laboratory Animals published by the
US National Institutes of Health (National Institutes of
Health Publication No. 85-23, revised 1996).

2.2. LEPC Culture, Identification, and Treatment. LEPCs
were cultured as previously described [20]. Briefly, periph-
eral blood mononuclear cells from healthy subjects were
isolated using Ficoll separation medium by density gradient
centrifugation and then cultured in EBM-2 medium (endo-
thelial cell growth basal medium; Lonza) supplemented with
20% fetal bovine serum (Sigma-Aldrich), 10 ng/mL VEGF
(vascular endothelial growth factor), 4 ng/mL FGF (fibro-
blast growth factor), and 10ng/mL EGF (epidermal growth
factor; US Biologicals) and antibiotics (100U/mL penicillin
and 100μg/mL streptomycin). After 21–28 days of culture,
the adherent mononuclear cells dually positive for endothelial
markers including CD31, CD309, CD34 and CD45 (BD
Pharmingen) were identified as LEPCs by flow cytometry
(Cytoflex, Beckman Coulter, United States) as previously
described.

TMAO was purchased from Sigma-Aldrich, Missouri,
United States. It was dissolved in PBS. LEPCs were treated
with different concentrations of TMAO (100, 200, 400, and
800μmol/L) for 24 h. To monitor the occurrence of autoph-
agy flux, LEPCs were treated with 100nmol/L bafilomycin
A1 (MedChemExpress, New Jersey, United States) for 2 h
following the addition of TMAO (400μmol/L) for another
24 h.

2.3. Cell Viability Measurements. The Cell Counting Kit-8
(CCK-8) (Dojindo, Kumamoto, Japan) was utilized to assess
the viability of LEPCs exposed to TMAO, according to the
manufacturer’s instructions. Briefly, LEPCs were seeded into
a 96-well microplate (Corning Life Sciences, Corning, New
York) at a density of 1 × 104 LEPCs per well and exposed
to varying concentrations of TMAO for 24 h (100, 200,
400, 800μmol/L) or a constant concentration (400μmol/L)
at different time intervals (12, 24, 48, and 72 h). Subse-
quently, 10μL of CCK-8 solution was added to each well,
followed by incubation at 37°C for 2 h. Viable cells were
quantified via absorbance measurements using a monochro-
mator microplate reader (Tecan Group Ltd, Mannedorf,
Switzerland) at a wavelength of 450nm. The optical density
at 450nm was evaluated to determine the percentage of cell
viability relative to the control group, which was set at 100%.

2.4. In Vitro Migration and Scratch Assay. The migration
ability of LEPCs was evaluated using a modified Boyden
chamber (Costar Transwell assay, 8μm pore size, Corning,
New York). The chamber was placed in a well containing
500μL EBM-2 supplemented with PBS in a 24-well culture
plate. 2 × 104 LEPCs were resuspended in 250μL EBM-2
medium and pipetted into the upper chamber. After incuba-
tion at 37°C for 24 h, transmigrated cells were fixed with 4%
paraformaldehyde for 15min and 0.3% crystal violet for
another 15min for further enumeration and analysis.
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A “scratch” was created by scraping the culture cell mono-
layer in a straight line with a p200 pipet tip. The cells were
washed with culture medium for three times to remove the
debris and then cultured for 24h. The scratch healing was
recorded by photographing under an inverted microscope
(10× magnification) and analyzed using ImageJ software.

2.5. In Vitro Tube Formation. Growth factor reduced Matri-
gel (Corning) was warmed up at 4°C overnight, and 100μL
of Matrigel was plated in 48-well plates and incubated for
1 h at 37°C. 8 × 105 LEPCs were resuspended in EBM-2
medium, loaded on top of the Matrigel, and then incubated
at 37°C. The tube formation was imaged directly under a
microscope at several time points. An average of tubules
was counted from 3 to 5 random fields.

2.6. Adenoviral Transduction. To evaluate the various stages
of autophagy, treated LEPCs were transduced with adenovi-
rus vector LC3 (Ad-mRFP-GFP-LC3) which were purchased
from HanBio Technology (Shanghai, China) at a multiplicity
of infection of 200 for 8 h, and the medium was replaced
with fresh growth medium 48h after infection. Images were
obtained by the LSM780 laser scanning confocal microscope
(ZEISS, Germany) system.

LEPCs were transduced with adenovirus encoding the
human SOD2 gene (Ad-SOD2) or the negative control gene
(Ad-NC) (Genechem company, Ltd., Shanghai, China) at a
multiplicity of infection of 200, and the medium was
replaced with fresh growth medium 48h after infection
(the specific results were shown in Figure S1).

2.7. Mitochondrial Membrane Potential (MMP) Disruption.
MMP disruption was detected with JC-1 cationic dye
(5μg/mL, KeyGen Biotech, China), respectively. Briefly,
LEPCs were labeled with one of the specific fluorescent dyes
for 30min at 37°C. Then, cells were washed and resuspended
with PBS at a concentration of 1 × 106 cells/mL. The per-
centage of labeled cells was analyzed via a FACS Canto flow
cytometry (BD Biosciences) and LSM-710 confocal micros-
copy imaging (Carl Zeiss).

2.8. Autophagosome and Autolysosome Ultrastructure
Imaging. Autophagosome and autolysosome ultrastructure
of LEPCs was imaged by transmission electron microscopy
(FEI Tecnai G2 Spirit Twin, United States). LEPCs were
fixed with a buffer containing 2.5% glutaraldehyde for 24 h
and refixed in 1% osmium tetroxide for 30min. After that,
cells were dehydrated in graded ethanol and washed with
propylene oxide before being embedded and sectioned.

2.9. Detection of Apoptosis. The apoptosis rate of LEPCs was
detected with Annexin V-FITC/propidium iodide (PI)
apoptosis detection kit (BD Biosciences). According to the
manufacturer’s instructions, treated LEPCs were washed
with cold PBS and binding buffer. Then, cells were resus-
pended in binding buffer and incubated with Annexin V-
FITC and PI for 15min in the dark at room temperature.
Finally, LEPCs were added to binding buffer for dilution
and analyzed by flow cytometry (Cytoflex, Beckman Coulter,
United States).

2.10. Real-Time PCR Analysis. Total RNA was extracted with
Trizol reagent (Invitrogen, California, United States), and
cDNA was synthesized using the PrimeScript RT reagent
kit (Takara Biotechnology, Japan). The mRNA expression
of GAPDH, IL-6, IL-1b, ICAM1, E-Selectin, and TNF-α
was quantified using the 2−ΔΔCT analytical method in tripli-
cate using a Step One Plus real-time PCR System (ABI,
United States). The mRNA level of the GAPDH gene was
measured in each sample as an internal normalization stan-
dard. The primer GAPDH (sense:5′-TGCACCACCAACTG
CTTAGC′, antisense:5′-GGCATGGACTGTGGTCATGAG-
3′), IL-6 (sense:5′-TTCAATGAGGAGACTTGCCTG-3′
,antisense:5′CTGGCATTTGTGGTTGGGTC-3′), IL-1b
(sense:5′-ACAACTGCACTACAGGCTCC-3′, antisense:5′-
TGTCGTTGCTTGGTTCTCCT-3′), ICAM1 (sense:5′-
ACGGAGCCAATTTCTCATGC-3′,antisense:5′- TTGGGA
TGGTAGCTGGAAGATC-3′), E-Selectin (sense: 5′-
ccccgaagggtttggtgagg-3′, antisense: 5′- ccggaactgccaggcttgaa-
3′), and TNF-α (sense:5′-GTACCTTGTCTACTCCCAGGT
TCTCT -3′, antisense: 5′-GTGTGGGTGAGGAGCACGTA
-3′) were synthesized by Ruibiotech (Beijing, China). Real-
time PCR was performed in a 20-μL reaction mixture contain-
ing primers, FastStart Universal SYBR Green master (ROX)
reagent (Roche Applied Science, Mannheim, Germany) and
2-μL cDNA sample.

2.11. Western Blot Analysis. Total protein was extracted and
quantified by cytoBuster TM protein extraction reagent
(Beyotime Biotechnology, China) and bicinchoninic acid
protein assay kit (Thermo, United States) separately. Protein
extracts were subjected to SDS-PAGE, transferred to polyvi-
nylidene fluoride membranes (Roche, Indianapolis, Indiana,
United States). The following antibodies were used: mouse
anti-MnSOD antibody (1:500; Santa cruz, United States),
anti-Bcl-2 antibody (1:1000; Immunoway, United States),
rabbit anti-Bax antibody (1:1000; Immunoway, United
States), and rabbit anti-GADPH antibody (1:1000; Cell Sig-
naling Technology) rabbit anti-ACTB antibody. Proteins
were visualized with HRP-conjugated anti-rabbit IgG
(1:2000; Cell Signaling Technology), followed by use of the
ECL chemiluminescence system (Thermo). The original
uncut western blot membranes were shown in Figure S2.

2.12. Hind Limb Ischemia Model. The hindlimb ischemia
models were performed as described in our previous study
[20]. Briefly, mice were anesthetized with 2.5% isoflurane
and maintained with 1.5% isoflurane and placed in dorsal
recumbency with hind limbs externally rotated. A skin inci-
sion was made over the femoral artery, beginning at the
inguinal ligament and continuing caudally to the popliteal
bifurcation. The femoral artery was isolated above the level
of the profunda and epigastric arterial branches, doubly
ligated using 7–0 Prolene suture, and transected. The SFA
caudal to the major branch points was dissected, ligated,
and excised in its entirety. LEPCs (1 × 105 cells) were resus-
pended in 100μL of prewarmed PBS (37°C) and injected
intramuscularly into three sites of ischemic gastrocnemius
muscle. The same volume of PBS was injected into control
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Figure 1: Continued.
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mice. Hind limb subcutaneous blood flow was detected
using a Laser Doppler imager (Perimed Instruments, Swe-
den) at 0, 3, 7, 14, and 21 days after surgery. After 21 days,
mice were euthanized through cervical dislocation under
anesthesia, and hind limb muscle tissues were harvested
for further analyses.

2.13. Immunohistochemical Staining. The muscle tissues
were harvested rapidly, washed with normal saline, fixed in
4% formaldehyde, and embedded in paraffin. The paraffin
blocks were cut into 2-μm thick sections. The muscle tissues
were deparaffinized and rehydrated, and antigen retrieval
was carried outby microwave oven heating in sodium citrate
buffer (0.01mol/L, pH 6.0). Sections were incubated with
rabbit monoclonal CD31 antibody (Cell Signaling Technol-
ogy Inc., Massachusetts, United States) followed by HRP
Anti-Rabbit DAB Detection kit (Cell Signaling Technology
Inc., Massachusetts, United States) according to the manu-
facturers’ instructions. Images were acquired using a light
microscope (Olympus BX63) with 400x magnification.

2.14. Statistical Analysis. All results were expressed as the
mean ± SEM and plotted using GraphPad Prism 8 software.
Two groups of normal distribution data were analyzed using
2-tailed Student’s t-test. Statistical significance of multiple
groups was assessed by one-way analysis of variance
(ANOVA) followed by Tukey’s test. Biological experiment
replicates in each group were specified in the figure legends
(N value). p < 0 05 was considered to denote statistical sig-
nificance. All statistical analyses were performed using SPSS
statistical software (SPSS Version 23.0).

3. Results

3.1. Characterization of Late EPC. After 21–28 days of cul-
ture, the LEPCs were identified using flow cytometry. The
expression levels of three endothelial cell markers were
CD31 (94 6 ± 0 9%), CD309 (44 5 ± 1 2%), and CD34

(15 9 ± 0 4%), while the monocyte marker CD45 was
0.5 ± 0 1% (Figure 1a). These cells were subsequently used
in the following experiments.

3.2. TMAO Dose-Dependently Hampered LEPC Function
and Provoked Mitochondrial Damage In Vitro. The CCK-8
cytotoxicity assay was employed to assess the cytotoxicity
of TMAO in LEPCs. LEPCs were exposed to varying con-
centrations of TMAO (100, 200, 400, and 800μmol/L) for
24 h or to a fixed concentration of TMAO (400μmol/L)
across different time intervals (12, 24, 48, and 72h). As
shown in Figure 1b, TMAO exerted no significant cytotoxic
effect on LEPCs. To investigate the effect of TMAO on LEPC
function, LEPCs were treated with PBS control and TMAO
at different doses (100, 200, 400, and 800μmol/L) for 24 h.
LEPC migration capacity was tested with scratch-wound
experiments and transwell assays. As shown in Figure 1c,d,
LEPCs treated with TMAO demonstrated impaired migra-
tion ability in a dose-dependent manner both in scratch-
wound experiments and transwell assays compared with
PBS-treated ones. To evaluate mitochondrial damage, we
assessed MMP disruption with JC-1 cationic dye in LEPCs
treated with or without TMAO treatment. TMAO treatment
significantly increased MMP disruption in a dose-dependent
manner compared with the PBS control group (Figure 1e).
These results indicated that TMAO might induce LEPC dys-
function via mitochondrial damage.

3.3. TMAO Activated Proinflammatory Responses and
Autophagic Cell Death in LEPCs. Given that mitochondrial
damage is a potent trigger of inflammation and cell apopto-
sis, we further studied the effect of TMAO on inflammatory
activation and cell apoptosis in LEPCs. The mRNA expres-
sion levels of proinflammatory factors (IL-6, ICAM-1, and
E-selectin) were analyzed in LEPCs treated with PBS or
TMAO for 24 h. In comparison with the PBS treated group,
LEPCs treated with TMAO exhibited markedly increased
levels of IL-6, ICAM-1, and E-selectin in a dose-dependent
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manner (Figure 2a). Then, we measured the protein level of
Bax and Bcl-2 in LEPCs. Consistent with the increased mito-
chondrial damage, TMAO treatment significantly promoted
the expression of Bax and inhibited the Bcl-2 level, which
indicated a shift to proapoptotic status (Figure 2b). More
interestingly, we observed enhanced cell autophagic activi-
ties in LEPCs treated with TMAO. As shown in
Figure 2c,d, both immunofluorescent staining and transmis-
sion electron microscopy results demonstrated an increased
number of autolysosomes in the TMAO treated group com-
pared to the PBS control group. Taking together, our results
suggest that TMAO induced mitochondrial damage may
lead to inflammatory activation and autophagic cell death
in LEPCs.

3.4. MnSOD Mediated the Mitochondrial Damage and
Dysfunction in LEPCs Induced by TMAO. To further investi-
gate the molecular mechanism underlying TMAO-induced
mitochondrial injury and cell dysfunction in LEPCs, we ana-
lyzed the level of MnSOD, an essential mitochondrial anti-
oxidant enzyme that detoxifies the free radical superoxide,
in LEPCs treated with TMAO. Our results displayed that
TMAO suppressed the protein expression of MnSOD
(Figure 3a). Moreover, overexpression of MnSOD through
adenovirus transfection (Ad-MnSOD) remarkably restored
TMAO-induced impaired cell migration (Figure 3b,c) and
tube-forming (Figure 3d) capacities of LEPCs compared
with the nontarget control (Ad-NC).

In addition, the mRNA levels of proinflammatory factors
(IL-6, IL-1b, ICAM-1, and TNF-α) in Ad-MnSOD LEPCs
were significantly lower than Ad-NC LEPCs after TMAO
treatment (Figure 4a). Moreover, MnSOD-overexpression
reversed cell apoptosis and the mitochondrial damage
induced by TMAO treatment in LEPCs (Figures 4b, 4c,
and 4d). The autophagy activity was also attenuated in Ad-

MnSOD LEPCs compared with the Ad-NC group after
TMAO treatment (Figure 4e,f)). Overall, these results dem-
onstrated that MnSOD played a key role in TMAO-
regulated mitochondrial damage and consequent cell dys-
function and apoptosis in LEPCs.

3.5. TMAO Impeded LEPC-Mediated Revascularization in
Hind Limb Ischemic Mice by Suppressing MnSOD. Consid-
ered the in vitro data clearly implicating MnSOD as a key
regulator of TMAO induced LEPCs dysfunction, we next
determined the in vivo functionality of the TMAO/MnSOD
pathway in a mouse model of hind limb ischemia. Notably,
the rescue of blood perfusion at 21 days was attenuated in
the Ad-NC+TMAO group compared to the Ad-NC+PBS
group, while MnSOD overexpression markedly reversed
the impaired reperfusion ratio (Ad-MnSOD+TMAO vs.
Ad-NC+TMAO) (Figure 5a).

In order to more specifically assess the effects of TMAO/
MnSOD on revascularization in the ischemic limb, we per-
formed immunohistochemical staining of CD31. CD31 pos-
itive vascular-like structures were clearly elevated in the Ad-
MnSOD+TMAO group compared with the Ad-NC
+TMAO group, which is consistent with improved blood
reperfusion (Figure 5b). Taken together, these data indicate
that TMAO remarkably attenuated LEPC-mediated revascu-
larization in vivo, which could be restored by MnSOD
overexpression.

4. Discussion

Here, we demonstrated for the first time that TMAO sup-
pressed MnSOD expression and induced mitochondrial
damage in LEPCs, which led to proinflammatory activation
and autophagic cell death in vitro and impaired LEPCs-
mediated revascularization in hind limb ischemic mice.
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Figure 2: TMAO provokes the proinflammatory response, autophagy, and apoptosis in LEPCs. (a) RT-PCR analyses of proinflammatory
cytokines mRNA levels in LEPCs treated with or without TMAO (n = 3). (b) Western Blotting analyses of Bcl-2 and Bax levels in LEPCs
treated with or without TMAO. (c) Autophagy flux was detected by confocal microscopy in LEPCs transfected with Ad-mRFP-GFP-LC3
(GFP indicates autophagosome; mRFP indicates autolysosome. Scale bar: 20 μm; n = 3). (d) Autophagic vacuoles and autolysosomes were
quantified by transmission electron microscopy; red arrows denote autophagosome, and yellow arrows indicate autolysosomes. Scale bar:
0.2 μm (Mean ± SEM; ∗p < 0 05, ∗∗p < 0 01, ∗∗∗p < 0 001, and ∗∗∗∗p < 0 0001 vs. NC).
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Figure 3: Continued.
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MnSOD overexpression in LEPCs restored TMAO-induced
impaired function in vitro and the reparative effect in vivo.
Our data provide novel insight into the mechanisms under-
lying TMAO-induced LEPC dysfunction and expand our
understanding of the relationship between TMAO and
ASCVD.

The importance of gut microbiota, as a novel endocrine
organ, in the regulation of cardiovascular function has been
recognized in the past decade [21, 22]. Emerging evidence
indicated that the level of TMAO, a metabolite derived from
the gut microbiota, is closely associated with endothelial dys-
function and the increased risk of major adverse cardiovas-
cular events [1, 3]. In the presented study, we confirmed
that TMAO treatment deteriorated the migration and
tube-forming abilities in a dose-dependent manner. More-
over, TMAO-treated LEPCs exhibited enhanced expression
of proinflammatory factors, including IL-6, IL-1b, ICAM-1,
E-Sel, and TNF-α, and activated autophagic cell death.
Although Chou et al. [15] recently reported that increased
plasma TMAO levels in patients with stable angina were
associated with reduced circulating EPC numbers and
impaired function. Our results suggest that TMAO could
cause extensive injury and provoke autophagy-mediated cell
apoptosis in LEPCs. Given the important role of LEPCs in
maintaining the homeostasis of vascular function, TMAO-
induced LEPC malfunction and apoptosis may contribute
to the increased risk of adverse cardiovascular events in
ASCVD patients with high plasma TMAO.

Mitochondrial damage is an essential trigger of proin-
flammation activation and cell apoptosis [23, 24]. Intrigu-
ingly, recent studies indicated that TMAO impaired
endothelial cell function via mitochondrial damage [6, 25].
It has been reported that TMAO-induced NLRP3 activation
occurred through the inhibition of SOD2 and increased pro-
duction of mitochondrial reactive oxygen species [26]. To

determine whether mitochondrial damage was involved in
TMAO-induced LEPC dysfunction and apoptosis, we
assessed the MMP disruption level in LEPCs. We found that
TMAO dose-dependently augmented MMP disruption in
LEPCs. Of note, in contrast with the increased MMP disrup-
tion, MnSOD level was remarkably suppressed by TMAO.
Ample evidence suggests the key role of MnSOD in the
clearance of mtROS and maintenance of LEPC function
[19, 27]. Deficiency of MnSOD is highly associated with
impaired LEPC-mediated vascularization [17, 28, 29]. To
confirm the effect of MnSOD on LEPCs treated with TMAO,
we overexpressed MnSOD via adenovirus transfection.
Notably, overexpression of MnSOD in LEPCs treated with
TMAO significantly attenuated mitochondrial damage and
restored the impaired LEPC function, as well as ameliorated
proinflammatory activation and autophagic cell death.
Hence, our results indicated that MnSOD was the essential
mediator of TMAO-related LEPC deterioration.

EPCs are capable of postnatal vasculogenesis and
enhance tissue repair after ischemic vascular injury [10, 30,
31]. Revascularization mediated by autologous patient-
derived EPC is a promising therapeutic strategy for enhanc-
ing vascular repair in ischemic diseases [32, 33]. Thus, we
further explored the effect of TMAO on LEPCs-mediated
revascularization in vivo in hind limb ischemic nude mice.
Our results showed that TMAO treatment hindered the
reparative capacities of LEPCs, which can be reversed by
MnSOD overexpression. The decline in the number and
function of EPCs is considered to be biomarkers for
ASCVD. Our results provide evidence that impaired EPC
function may be involved in the TMAO-associated adverse
cardiovascular outcomes in ASCVD patients. These findings
have significant implications for therapeutic strategies aimed
at vascular repair in patients with ASCVD by restoring
TMAO-mediated impaired LEPC functions.
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Figure 3: TMAO-induced functional deterioration of LEPCs by inhibiting MnSOD. (a) Western Blotting analyses of MnSOD expression in
LEPCs treated with or without TMAO. (n = 3, ∗p < 0 05 and ∗∗p < 0 01 vs. NC). (b) Representative images and quantification of scratch-
wound assay to determine migration area over 24 h. Scale bar: 100μm (n = 3, ∗∗p < 0 01 vs. Ad-NC+PBS, ∗p < 0 05 vs. Ad-NC
+TMAO). (c) Representative images and quantification of transwell assay of migration capacity. Scale bar: 100μm (n = 4, ∗∗∗p < 0 001
vs. Ad-NC+PBS, ∗∗p < 0 01 vs. Ad-NC+TMAO). (d) Representative images and quantification of matrigel tube formation assay over
6 h in LEPCs. Scale bar: 50 μm (n = 3, ∗∗∗p < 0 001 vs. Ad-NC+PBS, ∗p < 0 05 vs. Ad-NC+TMAO) (Mean ± SEM).
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Figure 4: MnSOD overexpression reverses TMAO-induced proinflammatory response and mitochondrial apoptosis in LEPCs. (a) RT-PCR
analyses of proinflammatory cytokines mRNA levels in LEPCs (n = 3, ∗∗∗p < 0 001 vs. Ad-NC+TMAO). (b) Representative images and
quantification of low cytometry analyses of cell apoptosis in LEPCs (n = 3, ∗∗∗p < 0 001 vs. Ad-NC+PBS, ∗p < 0 05 vs. Ad-NC+TMAO). (c)
Western Blotting analyses of Bcl-2 and Bax level in LEPCs (n = 3, ∗∗∗p < 0 001 vs. Ad-NC+PBS, ∗∗p < 0 01 vs. Ad-NC+TMAO; ∗p < 0 05
vs. Ad-MnSOD+TMAO). (d) Representative and quantification of JC-1staining to determine mitochondrial membrane potential. Scale bar:
50μm (n = 3, ∗p < 0 05 vs. Ad-NC+TMAO). (e) Autophagy flux was detected by confocal microscopy in LEPCs transfected with Ad-mRFP-
GFP-LC3 (GFP indicates autophagosome; mRFP indicates autolysosome. Scale bar: 0.5μm. n = 3, ∗p < 0 05 vs. Ad-NC+TMAO). (f)
Autophagic vacuoles and autolysosomes were quantified by transmission electron microscopy (red arrows denote autophagosome; yellow
arrows indicate autolysosomes. Scale bar: 0.5μm. n = 3, ∗∗∗p < 0 001 vs. Ad-NC+TMAO; ∗∗p < 0 01 vs. Ad-MnSOD+TMAO) (Mean ± SEM).
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5. Limitations and Perspectives

This study possesses several limitations. First, while our data
suggest that MnSOD could serve as a therapeutic target to
enhance the reparative capacity of LEPCs, this hypothesis
necessitates further clinical investigation. Moreover, addi-
tional research is imperative to elucidate the upstream regu-
latory mechanisms through which TMAO modulates
MnSOD activity and LEPC function. Finally, apart from
mitochondrial damage mediated by MnSOD suppression,

the roles of endoplasmic reticulum–mitochondrial calcium
signaling and inflammatory pathways in TMAO’s effects
on LEPC function warrant further investigation.

6. Conclusion

In summary, our data reveals that TMAO impairs LEPC
function by suppressing MnSOD expression and provoking
mitochondrial damage as illustrated in Figure 6. This study
provides insight into the mechanism whereby TMAO affects
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Figure 5: MnSOD overexpression restores TMAO-induced impaired reparative capacity of LEPCs in vivo. (a) Reperfusion assessed by laser
Doppler imaging at 21 days postligation with blood flow quantified as a ratio in ischemic versus healthy control limb (n = 5, ∗p < 0 05 and
∗∗p < 0 01 vs. Ad-NC+PBS, #p < 0 05 vs. Ad-NC+TMAO). (b) Capillary density was measured by immunohistochemical staining (n = 10,
∗∗p < 0 01 vs. Ad-NC+PBS, ∗p < 0 05 vs. Ad-MnSOD+TMAO) (Mean ± SEM).
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LEPC-mediated vascular repair. Taken together, our results
indicate that MnSOD may be a potential therapeutic target
for improving LEPCs reparative effect in ASCVD patients
with high TMAO levels.
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